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Chapter 1

Introduction

Abstract Argumentation has been a highly active field of AI-research for decades

and it is of particular relevance in the context of multi-agent systems [Carrera

and Iglesias, 2015]. Its applications range from formal argumentation in philoso-

phy [Prakken, 2011] over legal reasoning [Calegari et al., 2019] up to decision mak-

ing in medicine [Fox et al., 2007, Bromuri and Morge, 2013]. A decisive work for

this trend was the article ”On the acceptability of arguments and its fundamental

role in nonmonotonic reasoning, logic programming and n-person games” by Dung

in 1995.1 He took a set of arguments, for instance in a political discussion, and

analyzed them purely based on their conflicts with each other. The interpretation

of such an argumentation framework was then formalized by so called argumen-

tation semantics. During the three decades between then and now his concept

is being constantly expanded and many researchers in the field of argumentation

have contributed by developing their own argumentation semantics [Baroni et al.,

2011]. A relatively young category among those semantics are so called weak se-

mantics. They were designed for the purpose of accepting more arguments than

classic semantics in certain problematic cases.

Imagine for example three companies A,B,C, all of the same sector. Suppose A

and B are equally large and successful, while C is comparatively small. Naturally

A and B each try to dominate the market by taking over one of the other two com-

panies. Now A cannot buy B because B’s market value is too high and vice versa.

Although C is small and cannot resist being taken over by A directly, A cannot

buy C either because it would lead in a bidding competition with B. That would

mean either loosing C to B or potentially getting into a financial crisis by the take

over. One can say A and B successfully defend themselves with their own power

against being taken over by each other. This much can be adequately modeled

1 [Dung, 1995]
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by classic Dung-style semantics. But Company C survives for a different reason,

namely the deadlock between A and B, a fact classic semantics cannot account

for. What frequently seems to happen now is that researchers are confronted with

a case like the above example and conclude: ”Dungs semantics does not work cor-

rectly here.” Immediately after reaching this conclusion they are eager to propose

something that works. This has lead to a surprising variety of solutions [Bodanza

and Tohmé, 2009,Dondio and Longo, 2018,Baumann et al., 2020b,Dauphin et al.,

2020] for this and/or related problems. We are now in a similar situation with weak

semantics like Baroni&Giacomin were 2007 with general semantics when they said

”The increasing variety of semantics proposed in the context of Dung’s theory

of argumentation makes more and more inadequate the example-based approach

commonly adopted for evaluating and comparing different semantics.” in the ab-

stract of [Baroni and Giacomin, 2007]. The principle-based analysis proposed by

them has become the standard procedure for comparing different semantics in

various categories. This kind of analysis was conducted for weak semantics, too,

in [Baumann et al., 2020a,Dauphin et al., 2020,Dondio and Longo, 2021]. Thanks

to their work the overall performance of the various weak semantics is already well

understood, but the same cannot be said about their defense behavior.

Our first step towards a better understanding of this is extracting the resp. defense

concepts of a selected number of weak semantics. In order to do this an intro-

duction to Dung-style argumentation and to existing weak semantics is given in

Chapter 2, Previous Work. As SCC-semantics are already a category of their own,

we decided to exclude semantics based on SCC-recursiveness like the ub-semantics

in [Dondio and Longo, 2021] or the qualified semantics in [Dauphin et al., 2020]

from the scope of this work. The reader who is familiar with Dung-style argu-

mentation frameworks may want to forgo Section 2.1 and 2.2 but is advised to

catch up with the semantics introduced in Section 2.3. The aim of Chapter 3 is to

develop a general notion of defense for abstract argumentation that allows us to

categorize those weak semantics according to their underlying defense philosophy.

We demonstrate the new concept by applying it to the semantics from Section 2.3

and by defining a new weak semantics based on it. The remaining chapters are

structured as follows. Chapter 4 is dedicated to the comparison and analysis of

the aforementioned semantics under the new notion. In Chapter 5 we reexamine

the motivation behind weak argumentation and propose a number of properties

weak semantics should satisfy. In Chapter 6 we investigate the usability of the

introduced semantics for the ASPIC framework. We close with a short discussion

of the results and related as well as future work in Chapter 7.



Chapter 2

Previous Work

This chapter starts with a formal definition of Dung-style Argumentation Frame-

works and argumentation semantics which will serve as the formal background

for the concepts and results presented in this work. Next, we will first introduce

classic Dung-style-semantics [Dung, 1995], followed by three different approaches

to weak semantics in chronological order- the works of Bodanza&Tohmé on the

problems of self-attackers and odd cycles [Bodanza and Tohmé, 2009, Bodanza

et al., 2014], the undecidedness blocking concept of Dondio&Longo for handling

undecided attackers in label-based semantics [Dondio and Longo, 2018, Dondio

and Longo, 2021] and the recently publicized recursive semantics of Baumann,

Brewka and Ulbricht [Baumann et al., 2020b] whose aim is to preserve a concept

of defense with their approach. We present only three new results in this chapter

- an extension-based version of the weakly complete semantics from [Dondio and

Longo, 2021], a consequence of modularization we call persisting non-admissibility

and a proof concerning the directionality of the ∃-semantics from [Dauphin et al.,

2021]. All other definitions and results are taken from the resp. literature.

2.1 Basic ideas of Dungs Abstract Argumenta-

tion Theory

We will follow the introductions from [Baumann et al., 2020b] and [Baroni et al.,

2011]. Let Uarg be an infinite set - the universe of arguments.

Definition 2.1 (AF). An Argumentation Framework(AF) F = (A,R) is a tuple

of a finite set of arguments A ⊂f Uarg and a binary relation R ⊆ A× A on A,

which is called the attack relation.

Let UF be the set of all finite argumentation frameworks over Uarg.

7
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A Dung-style argumentation framework has two components, the arguments and

the attacks between the arguments. Both have no inner structure which is on the

one hand a virtue, on the other a weakness. The simplicity of the system allows a

wide range of applications and is very close to human argumentation in practice.

The downside is that there is very little information in an AF to work with. For

example there is no form of direct defense meaning attacks cannot be blocked. An

AF F = (A,R) is usually represented by a directed graph with A as its set of

vertices and R as its set of edges.

Example 2.2. The AF F = (A,R) with A = {a, b, c, d} and

R = {(a, b); (b, c), (c, b), (d, c), (d, d)} is represented by the following digraph.

a b

d

c

In general there are no limitations to the attack relation whatsoever, an argument

may attack itself, like d in Example 2.2, there may be no attacks at all and so

on. Note that there is at most one attack from the same argument a to the same

argument b, since there is only one pair (a, b) ∈ A× A, and that the attack (c, b)

is distinct from (b, c), since R is not symmetric in general.The symbol ”→” will

be used as a shorthand for attacks as follows.

Definition 2.3. Let F = (A,R) be an AF. An argument a ∈ A attacks another

argument b ∈ A, written as a → b iff (a, b) ∈ R. An argument a is unattacked iff

no attacks on a exist that is if (b, a) /∈ R for every argument b ∈ A (including a

itself).

A set of arguments E ⊆ A attacks another set D ⊆ A, in short E → D iff there

exist arguments e ∈ E, d ∈ D such that e → d. We say E is unattacked iff E is

not attacked by any arguments a ∈ A \ E not belonging to E.1

Example 2.4. In Example 2.2 a attacks b and {a, b} → c.2 Note the difference

between the unattacked argument a and the unattacked argument set3 {d}.

As in the above definition, small letters will denote arguments and capital letters

will denote both sets of arguments and AFs from here on. The capital letter R is

reserved for attack relations.
1There may still be attacks among the arguments of E.
2E → a is a shorthand for E → {a}, a→ E vice versa.
3short for ”set of arguments”
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The following definitions become useful when speaking about attacks and, more

importantly, defense between argument sets instead of single arguments.

Definition 2.5. Let F = (A,R) be an AF and E ⊆ A. The set of all attackers of

E is given by E− := {a ∈ A | a → E} and analogously E+ := {a ∈ A | E → a}
is the set of all arguments attacked by E. We define the range of E to be the

argument set E⊕ := E ∪ E+.

Definition 2.6 (Sub-AF). Let F = (A,R) be an AF and E ⊆ A. Then the

restriction of F on E is the AF F↓E= (E,R ∩ (E × E)), the Sub-AF of F with

argument set E.

When the AF we refer to is clear, an argument set and the restriction of an AF to

that argument set will be denoted by the same variable (a capital letter, e.g. E).

Example 2.7. Example 2.2 continued. The set of attackers of {b, c} is {b, c}− =

{a, b, c, d}, {b, c}+ = {b, c} itself, which is also the range {b, c}⊕ = {b, c}. The

restriction of F on {b, c}, F↓{b,c} is the AF below.

b c

A reader familiar with graph theory may have noticed that the concepts introduced

so far have counterparts in the field of digraph study, e.g. Sub-AFs are sub-

graphs, basically. While Dung-style Formal Argumentation makes good use of

the rich knowledge on digraphs in existence its focus lies elsewhere. The core of

this research field are the so called argumentation semantics. They are used to

formalize the process of determining potential ”winners” of the conflict represented

by an AF. Our introduction to semantics here is based on [Baroni et al., 2011].

Definition 2.8 (extension-based semantics). An extension-based argumentation

semantics is a mapping ςext : UF → 22Uarg returning for every AF F = (A,R) a set

of extensions ςext(F ) ⊆ 2A. A ς-extension of F is an argument set E ∈ ςext(F ).
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Although the combination of arguments with an attack relation is not exactly the

prototype of what one would call a logical syntax, an argumentation semantics is

exactly what the name implies - a semantics. It computes the possible values of an

argument based on the conflicts it engages in. The similarities to formal semantics

for e.g. propositional calculus become even more obvious when the argumentation

semantics takes the form of sets of labelings.

Definition 2.9 (label-based semantics). Let F = (A,R) be an AF. A ∆-labeling4

on F is a mapping lab : A →{in, out, undec} which assigns to each argument of

F one of the three states in, out or undec.

A label-based semantics is a mapping ςlab : UF → 2{lab | lab: Uarg→{in,out,undec}} re-

turning for each AF F = (A,R) a set ςlab(F ) of labelings on F .5

A label-based semantics ς defines which labelings interpret the conflicts in a given

AF ”correctly”, much like truth functions determine which variable assignments

to truth-values are legit for a set of formulas in propositional calculus. By contrast

extension-based semantics are not that function-oriented and more concerned with

an intuitive understanding of when and how arguments work together. Focusing

on the behavior of groups of arguments comes with many advantages, especially

when studying the various intuitions about defense. For this reason we will focus

on extension-based semantics in this work. Most semantics can be defined both as

an extension-based and as a label-based semantics,6 in these cases ςext denotes the

set of extensions and ςlab the set of labelings w.r.t to the same semantics ς. We

will use ς to refer to an argumentation semantics in general and the reader may

assume it is extension-based where no further specifications are given.

Some semantics take the form of elaborate algorithms, like the SCC-semantics

in [Dondio and Longo, 2021]. But most of them come in the form of a set of

rules that an extension resp. a labeling has to satisfy. The following definition

introduces a basic semantics that is often not even considered a semantics in its

own right but a property of any rational semantics.

4The only kind of labeling considered in this work, for a more general introduction to labelings

on AFs see [Baroni et al., 2011]
5To be precise ςlab(F ) ⊆ {lab | lab : Uarg → {in, out, undec}} is defined as a set of labelings on

all arguments but we only consider the restrictions of these labelings {lab�A) | lab ∈ ςlab(F )} when

talking about ς-labelings on F . To simplify this we redefine ςlab(F ) := {lab�A) | lab ∈ ςlab(F )}
to denote the set of the restrictions on F of labelings assigned by ς to F .

6extension-based can be translated to label-based without problems but the reverse is only

straightforward for semantics satisfying rejection, see [Baroni et al., 2011]
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Definition 2.10 (conflictfree semantics). The cf-semantics assigns to each AF

F = (A,R) the set cf(F ) = {E ⊆ A | E conflictfree} of all conflictfree argument

sets in F . An argument set E ⊆ A is conflictfree iff there are no attacks among

the arguments of E that is for any arguments a, b ∈ E we have (a, b) /∈ R.

An extension-based semantics ς has the property of being conflictfree iff ς(F ) ⊆
cf(F ).

Example 2.11. Example 2.2 continued. The set of all conflictfree extensions of

F is cf(F ) = {∅, {a}; {b}; {c}; {a, c}}.

The main reason why we introduce the conflictfree semantics as a semantics in

its own right is that it is a good reference for a semantics with no defense at all.

And since conflictfreeness is widely respected as a necessary characteristic of a

good argumentation semantics, the cf-semantics will serve us as a lower bound for

all attempts to weaken classic defense. The cf-semantics can be formulated as a

label-based semantics too. Like for the extension version, only one rule is needed.

Definition 2.12 (cf-labeling). Let F = (A,R) be an AF. lab : A→ {in, out, undec}
is a cf-labeling, lab ∈ cflab(F ) iff for any argument a ∈ A it holds that lab(a) = out

iff an attacker b ∈ {a}− exists with lab(b) = in.

A label-based semantics ςlab satisfies the rejection property iff ςlab(F ) ⊆ cflab(F ).7

Note that despite the labelings being three-valued, there is a one-on-one map-

ping between extensions and labelings with this labeling rule because the set of

out-labeled arguments is determined by the set of in-labeled arguments and the

undecided arguments end up being the rest. This is the so-called rejection property

and any labeling-semantics satisfying it can be translated to an extension-based

semantics without information loss. We will now give a short demonstration in

which sense these two definitions describe the same semantics.

Proposition 2.13. Let F = (A,R) be an AF. Then cfext(F ) = {in(lab) | lab ∈
cflab(F )} that is for each cf-extension E exists a cf-labeling lab such that both

E = {a ∈ A | lab(a) = in} and E+ = {a ∈ A | lab(a) = out} hold and vice versa.

Example 2.14. Example 2.2 continued. A cf-labeling on F can be constructed

as follows: Suppose we set lab(b) = in then lab(c) = out. Since a has no at-

tackers lab(a) 6= out and since it attacks b, which is labeled in, lab(a) 6= in so

7Our definition of cf-labelings is a special case, it is possible to define conflictfree labelings

as those where in(lab) is conflictfree(see [Baroni et al., 2011] for details), however, we decided

to give an example of a bijective relationship between a labeling-based and an extension-based

semantics here
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lab(a) = undec. Because d attacks itself labeling it in would lead to a contra-

diction and since no other in-labeled attacker is available lab(d) = undec. This

labeling coincides with the cf-extension {b}, for the construction of the other three

cf-labelings the same method can be applied.

Proof. Let F = (A,R) be an AF and let E ∈ cf(F ). Then labE : A→ {in, out, undec}
with labE(a) = in if a ∈ E, labE(a) = out if a ∈ E+ and labE(a) = undec else for

any argument a ∈ A satisfies the condition of Def. 2.12. Now let lab ∈ cflab(F )

be a cf-labeling, then in(lab) is conflictfree, because any argument b attacked by

an argument a ∈ in(lab) is labeled out and the set of all out-labeled arguments is

exactly in(lab)+.

The idea behind argumentation semantics is that a semantics evaluates a given AF

to decide which arguments can be accepted together by a rational agent. Those

groups of acceptable arguments are the extensions or, in case of labeling-semantics,

the in-labeled arguments of a certain labeling. But that alone is not enough for an

agent to decide e.g. which arguments should be added to a knowledge base, since

different extensions can be in conflict with each other and there is no preference

ranking among them. The question if a single argument is accepted by a certain

semantics is therefore commonly answered with one of the two following options.

Definition 2.15 (acceptability). Let F = (A,R) be an AF. An argument a ∈ A is

credulously accepted w.r.t. a label-based semantics ς iff some labeling lab ∈ ς(F )

exists such that lab(a) = in. a is credulously accepted by an extension-based

semantics ς, denoted by a ∈ext ς(F ), iff a ∈
⋃
E∈ς(F )E that is if a is an element of

some ς-extension E of F .

a is skeptically accepted w.r.t. a label-based semantics ς iff lab(a) = in for all

lab ∈ ς(F ), w.r.t an extension-based semantics ς, denoted by a ∈sk ς(F ), iff

a ∈
⋂
E∈ς(F )E that is if a ∈ E for all E ∈ ς(F ).

Example 2.16. For the AF of Example 2.2 the arguments a, b, c are credulously

accepted by the cf-semantics. Since the empty set is a cf-extension, no argument

is skeptically accepted.

Because skeptical acceptance ensures conflictfreeness among the accepted argu-

ments (if a conflictfree semantics is used) it is the preferred form of acceptance for

applications of formal argumentation. With this comes the problem that for two

extensions E,E ′ with E ⊂ E ′ only the arguments of E can be skeptically accepted.

The common solution for this is limiting a semantics to its maximal extensions, in

case of cf-semantics this restriction is called naive semantics.
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Definition 2.17 (naive semantics). Let F = (A,R) be an AF. The set of all naive

extensions of F is na(F ) = {E ∈ cf(F ) | ∀D ∈ cf(F ) : E ⊆ D ⇒ E = D} the set

of all maximal conflictfree argument sets in F .

To give an informal example of this semantics, in Example 2.2 the cf-extension

{a} is not naive, because its superset {a, c} is a cf-extension too. Therefore

na(F ) = {{a, c}; {b}}. The set of skeptically accepted arguments is still empty

in this special case, but suppose an additional argument existed that is not in

conflict with a, b, c, d or itself, then any naive extension had to contain it and it

would be accepted skeptically. The following proposition shows that limiting cf-

semantics to its maximal extensions does not impact credulous acceptance, so no

accepted argument is ”lost” by limiting ourselves to maximal extensions.

Proposition 2.18. Let F = (A,R) be an AF. An argument a ∈ A is creduously

accepted by the cf-semantics, a ∈ext cf(F ) iff a ∈ext na(F ) that is a is creduously

accepted by naive semantics.

Proof. a ∈ext cf(F ) means there exists some E ∈ cf(F ) such that a ∈ E. Now

either E is already maximal or some D ∈ na(F ), D ⊃ E exists, then a ∈ D. So

either way a ∈ext na(F ).

2.2 Classic defense and Dung-style semantics

In this section we will recapitulate the core definitions and results from [Dung,

1995]. There Dung introduces five semantics which are based on two simple prin-

ciples: A set of arguments is acceptable if it has no inner conflicts among its

members (1) and defends itself against all attackers from the outside (2). Conflict-

freeness (1) was already introduced in the previous section. What Dung precisely

means by defense is stated in the following definition.

Definition 2.19 (c-defense). Let F = (A,R) be an AF, E ⊆ A and a ∈ A. a

is classically(c) defended by E iff for any attacker b ∈ {a}− an e ∈ E exists such

that e→ b.

The classic Defense-Operator Γ : 2A → 2A maps each argument set E in F to the

set Γ(E) := {a ∈ A | E c− defends a} of arguments it classically defends.

Defense by attack, to put it simply. That makes sense in a formalism where the

only relation is an attack relation. The notable achievement here lies in describing

this concept with an operator. Now c-defense can be characterized in terms of

operator properties like the following.
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Proposition 2.20 (monotonicity). Let F = (A,R) be an AF. Then Γ is mono-

tonic on 2A that is for any E,D ⊆ A if E ⊆ D then Γ(E) ⊆ Γ(D).

Proof. Let a ∈ A be an argument c-defended by E, then any attacker b ∈ {a}−

is attacked by some e ∈ E. Since E ⊆ D, we have e ∈ D so a is c-defended by

D.

Together with conflictfreeness we get the c-admissible semantics.

Definition 2.21 (c-admissibility). The classic Dung-style admissible semantics

adc : UF → 22Uarg is defined for any AF F = (A,R) as follows: Let E ⊆ A then

E ∈ adc(F ) iff E is conflictfree and E ⊆ Γ(E) (E c-defends at least itself).

Note that the empty set is always c-admissible because it has no arguments that

could be attacked. We will now demonstrate the relationship between c-defense

and c-admissibility with an example.

Example 2.22.

a

b

c d

In the AF above {a} c-defends itself and d, so both {a} and {a, d} are c-admissible,

while {d} is not, because it cannot defend itself against c. In contrast the set {a, b}
does c-defend itself, but is not c-admissible because it is not conflictfree. The set

of all c-admissible extensions is adc(F ) = {∅; {a}; {a, d}; {b}; {b, d}}

It turns out conflictfreeness is preserved under the addition of c-defended argu-

ments to a c-admissible extension, for example {a} is conflictfree and so is {a, d}.
This useful property of c-defense is described by the following Lemma which is

considered one of the central results of [Dung, 1995].

Theorem 2.23 (Fundamental Lemma). Let F = (A,R) be an AF and E ⊆ A

a c-admissible extension of F (E ∈ adc(F )) and let a, b ∈ Γ(E) be arguments

c-defended by E. Then E ∪ {a} ∈ adc(F ) and b is c-defended by E ∪ {a}.

Proof. After showing that E ∪ {a} is conflictfree the rest follows from Prop. 2.20.

Suppose E ∪ {a} is not conflictfree, then because E is conflictfree some e ∈ E

exists such that either e→ a (1) or a→ e (2). If (1) then because a is c-defended
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by E some d ∈ E must exist that attacks e. This contradicts the presupposed

conflictfreeness of E. If (2) e is c-defended by E against a because E ⊆ Γ(E).

Therefore some d ∈ E exists which attacks a. This results in a repetition of (1).

Now that we know adding c-defended arguments to a c-admissible extension causes

no harm, it is only a small step to a semantics where the extensions include all

arguments they defend.

Definition 2.24 (c-complete and c-grounded). The Dung-style complete seman-

tics is defined for any AF F = (A,R) as the set

coc(F ) := {E ∈ adc(F ) | E = Γ(E)}

of c-admissible fixpoints of the classic Defense-Operator Γ and the set of all ⊆-

minimal fixpoints of Γ is

grc(F ) := {E ∈ coc(F ) | ∀D ∈ coc(F ) : D ⊆ E ⇒ E = D}

the Dung-style grounded semantics.

Applying these semantics to our example has the following results.

Example 2.25. Example 2.22 continued. Because a c-defends d, {a} is not c-

complete. The c-complete extensions are {a, d}, {b, d} and the empty set, of

which the empty set is c-grounded.

Note that the empty set is not always c-complete, for a non-trivial c-grounded ex-

tension consider Example 2.2, where a is unattacked and thus {a} is c-grounded,

while ∅ is c-admissible but not c-complete. One could equivalently define c-

complete extensions to be conflictfree fixpoints of Γ as fixpoints of Γ always c-

defend themselves. From this point of view their existence seems no longer trivial.

The following proposition is a consequence of the Fundamental Lemma.

Proposition 2.26. Let F = (A,R) be an AF. (I) For any c-admissible extension

E ∈ adc(F ) exists an E ′ ∈ coc(F ) such that E ⊆ E ′.

(II) The c-grounded extension always exists, is unique and is G =
⋂
E∈coc(F )E.

Proof. By iterating Γ over E (I) follows from the Fundamental Lemma because A

is finite.

(II) follows from the fact that the empty set is c-admissible and a subset of any

c-complete extension. Thus the fixpoint G resulting from iterating Γ over ∅ is

c-complete by the Fundamental Lemma and a subset of any other fixpoint by

Prop.2.20.
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The existence and uniqueness of the grounded extension can also be concluded from

applying the Knaster-Tarski Fixpoint-Theorem to the monotonic Γ-Operator on

the poset (2A,⊆).8 On the other hand there is no unique maximal c-complete

extension in general, because the maximal fixpoint of Γ on an AF F is usually not

conflictfree(for Example 2.2 it is {a, c, d}). The maximal c-complete extensions co-

incide with the maximal c-admissible extensions and constitute yet another classic

semantics, the c-preferred semantics.

Definition 2.27. (c-preferred) Let F = (A,R) be an AF and E ⊆ A. E is

a Dung-style preferred extension of F , E ∈ pref c(F ) iff E ∈ adc(F ) and E is

maximal w.r.t. set inclusion in adc(F ) that is for any D ∈ adc(F ) it holds that if

E ⊆ D then E = D.

Example 2.28. {a, d} and {b, d} are the two c-preferred extensions of Example

2.22.

Proposition 2.29. Let F = (A,R) be an AF. Then the c-preferred extensions of

F are exactly the maximal c-complete extensions of F which means pref c(F ) =

{E ∈ coc(F ) | ∀D ∈ coc(F ) : E ⊆ D ⇒ E = D} .

Proof. Follows directly from Prop.2.26(I).

The last of Dungs five semantics was designed with the stable models of logic

programming in mind. The idea is to decide for every! argument whether it is

accepted or rejected. A c-stable extension thus has to attack every argument it

does not contain. In terms of labelings this amounts to having only the two values

in or out, like in classic binary logic.

Definition 2.30 (c-stable). Let F = (A,R) be an AF. The set of all Dung-style

stable extensions of F is

stbc(F ) = {E ∈ adc(F ) | E ∪ E+ = A}

the set of all c-admissible extensions which attack any argument they do not

contain.

Example 2.31. Example 2.22 continued. {a, d} is a c-stable extension, because

a attacks both remaining arguments b, c.

8 [Tarski, 1955], see also Section 4.2
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C-stable extensions are always c-preferred,9 while the reverse is not true. For

example {a} is a c-preferred extension of Example 2.2 but neither attacks c nor

d. The c-stable semantics is also missing a useful property the other c-semantics

have - directionality.10

Definition 2.32. An extension-based semantics ς satisfies directionality iff

ς(F↓U) = U ∩ ς(F )

for any F = (A,R) ∈ UF and any unattacked argument set U ⊆ A, U− ⊆ U .11

Proposition 2.33. adc, coc, grc and pref c satisfy directionality, stbc does not.12

2.3 Various weak semantics and their respective

underlying concepts

The classic concept of defense by attack grasps very well the dialogical form argu-

mentation between humans often takes, but sometimes it is considered too strict.

For instance, some researchers argue c should be acceptable in Example 2.2 and

others that it should also be acceptable in Example 2.22. Semantics which solve

such problems are commonly referred to as weak semantics because in order to

do so they have to accept more arguments than c-semantics so their criteria for

accepting arguments have to be ”weaker” than c-admissibility. It is important to

note that THE weak argumentation semantics does not exist. The various weak

semantics in existence were developed with different intentions and focus on dif-

ferent problematic aspects of c-semantics so the name weak semantics has become

misleading. The term ”weakly complete” for example is by now used for two

different semantics, the weakly complete semantics of [Dondio and Longo, 2021]

and the weakly complete semantics of [Baumann et al., 2020b]. In order to avoid

confusion we refrain from using ”weak” in the name of any semantics in this work

and decided to name them after the principles motivating them instead. The great

structural differences in the design of weak semantics and their sheer number made

it impossible to integrate all weak semantics from the works we mentioned in the

introduction, so we limited ourselves to three different semantics families for a

comparative study under the new defense notion, to which a fourth, new one, is

added in Chapter 3.

9for proof see [Dung, 1995]
10This property becomes relevant in the proofs of Section 5.2 but as it is also satisfied by the

majority of the semantics in this work, we decided to introduce it early on
11 [Baroni and Giacomin, 2007]
12 [Baroni and Giacomin, 2007]



18

2.3.1 The relative defense of Bodanza and Tohmé

The first weak semantics we would like to introduce here is the cogent semantics

proposed by [Bodanza and Tohmé, 2009]. Motivated by dialogue games, they took

a very unique approach on the issue of self-attackers and interpreted sets of argu-

ments as argumentation strategies. The idea behind this is to compare extensions

directly with each other and determine admissibility relative to a potential op-

posing extension. This is done by reducing a given AF to the two extensions in

question and checking them for classic admissibility in the reduced AF.

Definition 2.34 (cogent semantics). Let F = (A,R) be an AF and E,D ⊆ A

argument sets. E is at least as cogent as D iff E is c-admissible in F ↓E∪D. An

E ⊆ A is a cogent extension, E ∈ cog(F ) iff E is at least as cogent as D for every

D ⊆ A that is at least as cogent as E.

E is a sustainable extension iff E is maximal w.r.t. set inclusion in cog(F ).

Basically admissibility is weakened at the extension-level while classic admissibil-

ity is still applied on argument level during the process. As a result these two

semantics, cogent and its preferred form sustainable semantics, are much closer to

c-semantics than other weak semantics and show a very similar behavior. We will

go in more detail about this in the following chapters, for now we only demonstrate

how cogency impacts admissibility with a simple example.

Example 2.35. The set of all cogent extensions for Example 2.2 is

cog(F ) = {∅; {a}; {a, c}; {c}}, of which {a, c} is the only sustainable extension.

{a} and the empty set are cogent because they are c-admissible.

{c} is a cogent extensions of F because {d} is not c-admissible in F↓{c,d} so {d}
is not at least as cogent as {c}. In F↓{b,c} both singletons are c-admissible, so {c}
is at least as cogent as {b}. The same goes for other argument sets, unless d is

contained, {c} is always at least as cogent as the other set, and if d is contained,

the other set cannot be at least as cogent as {c}. This also holds true for {a, c}.
{b} on the other hand is not cogent, as {a} is c-admissible in F ↓{a,b} and {b} is

not. {d} is not cogent because the empty set is c-admissible in F↓{d} and {d} is

not.

Two other weak semantics are given in [Bodanza et al., 2014], the so called lax

and tolerant semantics.13 We will not include these two in the following chapters

due to the reasons already mentioned. Nevertheless, we decided to introduce

tolerant semantics at least, since it solves an aspect of weak argumentation other

13Tolerant semantics were already introduced in the original paper [Bodanza and Tohmé, 2009]
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approaches do not investigate. While lax semantics is simply a further weakened

form of cogent semantics, the tolerant semantics is based on the peculiar concept

of cyclic cogency.

Definition 2.36. Let F = (A,R) be an AF and E ⊆ A. E is cyclically cogent iff

every D ⊆ A satisfies at least one of the following conditions:

1. D is not at least as cogent as E

2. E is at least as cogent as D

3. A chain of arguments sets D1 = D,D2, ..., Dn = E, Di ⊆ A exists such that

Di+1 is at least as cogent as Di but Di not at least as cogent as Di+1 for all

i ∈ (1, ..., n).14

E is tolerant iff E is a maximal cyclically cogent extension w.r.t. set inclusion.

The idea is for an extension to defend itself over a chain of extensions that each

defeat their predecessor, in the sense that the predecessor is not c-admissible in

the resp. restriction. This is an attempt to solve the problem of non-admissibility

in odd cycles. A cycle is a closed chain of arguments attacking each other. A

self-attacker, for example, is a cycle of length one. The philosophy behind cyclic-

cogency is that arguments in cycles should be treated the same no matter whether

the cycle is odd or even. C-semantics, however, only accepts arguments in even

cycles (like a in Example 2.22). Cyclic-cogency tries to fix this, with mixed results,

as the following example shows.

Example 2.37. We explain only one example of a cyclically cogent extension for

this AF, the extension {c}.

a b c d

e

{c} is at least as cogent as any of the sets ∅, {a}, {d}, {a, d}, {a, c}. For the sets

{b}, {e}, {b, d}, {b, e} and {a, e} we need the cyclic cogency criterion. The rest

is not conflictfree and therefore not at least as cogent as {c}.
For {e} the chain ({c}, {d}, {e}) satisfies Def. 2.36, this also works for {a, e}.
For {b} use ({c}, {a, d}, {b}). For {b, d} it gets slightly more complicated with

({c}, {d}, {e}, {a, c}, {b, d}) and for ({b, e}) the chain ({c}, {a, d}, {b, e}) does the

trick. So {c} is cyclically cogent.

14The tuple (1, ..., n) is used to denote the set {i ∈ N | 1 ≤ i ≤ n} for a natural number n ∈ N
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While c can defend itself against e with this approach as planned, it can also

defend itself against b despite b not being in a cycle with c. On top of that c

could not defend itself against b if it did not attack anything. Even so (and exactly

because) this semantics succeeds in solving the original problem, the side effects

of this unique defense need some further investigation.

2.3.2 The undecidedness blocking of Dondio and Longo

Motivated by their research in ambiguity blocking P.Dondio and L.Longo followed

a different approach to weak semantics. They focused on the behavior of the

undecided-status in labelings. Their reasoning is that undecidedness should not be

hereditary as it is the case with Dung-style semantics. To counter the propagation

of the undecided-label they developed a set of liberal labeling rules leaving open

the possibility to accept arguments only attacked by undecided (and out) labeled

arguments or not. The result was the following family of liberal undecidedness-

blocking(lub)-semantics from [Dondio and Longo, 2021]. 15

Definition 2.38. (lub-labelings) Let F = (A,R) be an AF. lab : A→ {in, out, undec}
is a lub-complete labeling on F iff for every argument a ∈ A:

(1) If lab(a) = in then lab(b) 6= in for every attacker b ∈ {a}−

(2) If lab(a) = out then lab(b) = in for at least one attacker b ∈ {a}−

(3) If lab(a) = undec then lab(b) 6= in for every attacker b ∈ {a}− and for at

least one attacker lab(b) = undec

lab is lub-preferred iff lab ∈ colub(F ) and the set of all in-labeled arguments in(lab)

is maximal w.r.t. ⊆ among all lub-complete labelings on F .

In addition to these two semantics the c-grounded and c-stable semantics can

be used as the respective lub-grounded and lub-stable semantics, which has been

shown in [Dondio and Longo, 2021]. Lub-semantics do not only accept extensions

with self-attacking attackers but also those with conflicting attackers, like the

attackers a and b of c from Example 2.22. Let us explain this in detail.

15As the name ub-complete is taken by the SCC-recursive variant and the name weakly com-

plete is misleading, I will refer to the weakly complete semantics from [Dondio and Longo, 2021]

as the lub-semantics.
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Example 2.39. Example 2.22 continued. Apart from the c-complete labelings,16

the labelings lab1 with lab1(c) = in, lab1(d) = out, lab1(a) = lab1(b) = undec and

lab2 with lab2(d) = in and lab2(a) = lab2(b) = lab2(c) = undec are lub-complete

because the in-labeled argument c ( d resp.) is only attacked by undecided ar-

guments. a and b can only be labeled one in and one out or both undecided

according to rule (3) of Def. 2.38. In the latter case their undecided-status can

then be blocked at c (lab1) or propagated to it (lab2).

lab1 is also lub-preferred. The other lub-preferred labelings are those with in(lab) =

{a, d} and in(lab) = {b, d} resp..

One can say that the lub-semantics succeed in maintaining most of the features of

Dung-style-semantics, like reinstatement and directionality, while forsaking their

core - the principle of admissibility. This becomes evident in the missing lub-

admissible semantics. It leaves open the question what concept of defense re-

places admissibility in lub-semantics. In order to investigate this, we conduct a

translation to extension-based semantics here. This task is simplified thanks to

lub-complete semantics satisfying the rejection property.17

Proposition 2.40 (lub-complete extensions). Let F = (A,R) be an AF, E ⊆ A.

For E exists an lub-complete labeling lab ∈ colub(F ) such that E = in(lab) iff E is

conflictfree and Γ(E) ⊆ E.

To put it simply, an extension of this semantics does not have to defend itself

against attackers, but it has to contain any argument that it does actually defend.

For example we have Γ({c}) = ∅ ⊆ {c} in Example 2.22 for which lab1 from

Example 2.39 with in(lab1) = {c} is an lub-complete labeling. It follows the proof

for the general case.

Proof. (⇒) Let lab be an lub-complete labeling for F = (A,R). Then in(lab) is

conflictfree because of (1) in Def. 2.38 and for any a ∈ A with lab(b) = out for

all b ∈ {a}− (3) implies that lab(a) 6= undec and (2) that lab(a) 6= out, therefore

lab(a) = in for any a ∈ Γ(in(lab)).

(⇐) Let E be a conflictfree extension of F = (A,R) with Γ(E) ⊆ E. Then the

labeling lab defined by in(lab) = E, out(lab) = E+ and undec(lab) = A\ (E∪E+)

satisfies condition 1, because E is conflictfree. It satisfies condition 2, because

only arguments attacked by E are labeled out. And it satisfies condition 3, as

all arguments attacked by E are labeled out, not undec, and all arguments only

attacked by out arguments are elements of Γ(E) ⊆ E, therefore in, not undec.

16All labelings lab where in(lab) = E is a c-complete extension(see Example 2.25)
17The rejection property for lub-labelings is a result from [Dondio and Longo, 2021], it follows

directly from the labeling-rules in Def. 2.38
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Example 2.22 is also an excellent demonstration why the lub-preferred semantics

does not satisfy directionality while the lub-complete does.18 The intersection of

the lub-preferred extension {c} with the unattacked set U = {a, b} is empty, but

the emptyset is not an lub-preferred extension of U . We chose the name liberal

ub-semantics based on another, related property of lub-semantics the developers

are aware of themselves and which they demonstrate in [Dondio and Longo, 2021]

by the following example. It has two lub-admissible extensions, {d} and {e}.

Example 2.41.

b c

a

d e

In a situation like this d appears to have a much stronger reason to be accepted

than e because d is only attacked by arguments locked in a contradiction which

therefore are not part of any lub-complete extension. In contrast e is attacked

by said d that is lub-complete. The liberal rule of blocking the propagation of

the undecided-label at any point of a chain of undecided arguments leads to an

unintuitive result here. This concern would become even more obvious if we had

a self-attacker attacking d instead of an odd cycle. Accepting an argument d only

attacked by a self-contradicting argument, like cogent semantics does, makes sense,

but accepting arguments attacked by d, too, seems inconsistent.

The authors of [Dondio and Longo, 2021] propose an elaborate solution for this

problem, the SCC-recursive ub-grounded,-complete and -preferred semantics. One

of their goals is to block undecidedness ”as early as possible” and in order to do

this they use the natural order of SCCs in an AF. Introducing SCC-theory would

require a way longer introduction than we have already given here, so in order

to focus on our main objective, the generalization of weak defense concepts and

their comparison, we will not discuss their solution in detail here. Instead we want

to propose a different solution for Example 2.41 in the form of a reduct-based

semantics, which we define in Section 3.5.

18For a proof of this statement see [Dondio and Longo, 2021]



23

2.3.3 The recursive semantics of Baumann, Brewka and

Ulbricht

In [Baumann et al., 2020b] the authors formalize what I would describe as a concept

of no admissible attacker (naa). The idea is to have an extension defend itself only

against attackers, that could be part of an acceptable extension themselves. The

problem of self-attackers is tackled directly by this, since self-attackers and any

extension containing them are not conflictfree. As plausible as this approach may

sound, its formalization requires some groundwork. The first step is to identify all

attackers which classic defense cannot handle.

Definition 2.42 (reduct). Let F = (A,R) be an AF and E ⊆ A. The reduct of

F w.r.t. E is the AF FE := {a ∈ A | a /∈ (E ∪E+)} with the respective restricted

attack relation.

The reduct is best understood as the set of arguments independent from E, the

arguments out of its range.19 If E is attacked by an argument from the reduct it

cannot classically defend itself against it. In some but not all cases we want to

accept E despite this, so we now need a criterion stating which of the attackers

from the reduct we can ignore and which not.

Definition 2.43 (naa-admissible). Let F = (A,R) be an AF and E ⊆ A. E is an

naa-admissible extension, E ∈ adnaa(F ) iff E is conflictfree and for every attacker

b ∈ E− one of the following holds:

• b is attacked by E, that is b ∈ E+

• b is not naa-admissible in FE, that is b /∈ext adnaa(FE).

In order to develop an understanding how naa-admissibility discriminates between

dangerous and harmless attackers the following example from [Dauphin et al.,

2021] will prove useful. Its only c-admissible extension is the empty set.

Example 2.44. The reduct of the following AF w.r.t. {b} is F {b} = {a, x1, x2}
the upper 3-cycle of arguments in black, while the range of {b} (in blue) consisting

of b itself and {b}+ = {x3} is deleted.

a

b

x1

x2

x3

19in both the literal and the formal meaning of the word
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The argument set {b} is naa-admissible because its only attacker x1 is not naa-

admissible in F {b}. To see this, the next reduct F {b}
{x1} = {x2} has to be con-

sidered. Its only argument x2 is naa-admissible in F {b}
{x1} as it is unattacked.

It attacks x1 in F {b}, so {x1} is not naa-admissible in F {b}. Any other argu-

ment set containing x1 in F {b} is not conflictfree, therefore x1 /∈ext adnaa(F {b}), so

{b} ∈ adnaa(F ).

With the same argumentation {a} is naa-admissible, while {a, b} is not, because

x1 is unattacked and therefore naa-admissible in F {a,b} = {x1}. The total set of

naa-admissible extensions for this AF is adnaa(F ) = {∅; {a}; {b}}.

Naa-admissibility is build around the property of odd cycles to have no c-admissible

extensions (because there is always this one remaining attacker). It works espe-

cially good against self-attackers rendering them completely irrelevant for the ac-

ceptability of other arguments.20 Another group of attackers that pose no threat

under naa-admisibility are those attacked by naa-admissible supersets of an exten-

sion. In Example 2.22 {d} is an naa-admissible extension because c cannot defend

itself against a (or b) in the reduct F {d}. Like for any of the other semantics intro-

duced so far, the ⊆-maximal naa-admissible extensions form their own semantics,

the naa-preferred semantics. For Example 2.44 the extensions {a} and {b} are

naa-preferred.

Definition 2.45 (naa-preferred). Let F = (A,R) be an AF. The set of naa-

preferred extensions of F is

prefnaa(F ) := {E ∈ adnaa | ∀D ∈ adnaa(F ) : E ⊆ D ⇒ E = D}

the set of all ⊆-maximal naa-admissible extensions.

The difference between the naa-semantics from [Baumann et al., 2020b] and the

other weak semantics is not so much its recursive schema (in a sense SCC-recursive

semantics are recursive too), but that a proper concept of weak defense for naa-

semantics is formulated in [Baumann et al., 2020b].

Definition 2.46 (naa-defense). Let F = (A,R) be an AF. An argument set

E ⊆ A naa-defends another set X ⊆ A iff for every y ∈ X− attacker of X one of

the following holds:

1. E → y

20Because self-attackers are not conflictfree, they are never naa-admissible and thus also never

impact the admissibility of any attacker in any reduct
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2. y /∈ E, y /∈ext adnaa(FE) and some superset X ′ ⊇ X exists which is naa-

admissible in the original AF (X ′ ∈ adnaa(F )).

A complication of computing admissibility recursively with the reduct is that de-

fended arguments can no longer be simply added to an extension like it was the case

with c-defense. The following example serves to illustrate this problem. Therefore

naa-defense was defined on set-level instead of argument-level and defense option

(2) of Def. 2.46 explicitly requests that naa-admissibility is satisfied (in the original

AF!) by the defended set to begin with.

Example 2.47. Example 2.44 continued. The empty set naa-defends {a} and {b}
as both are (subsets of) naa-admissible extensions and their only attacker x1 is not

naa-admissible in F ∅ = F , but it does not defend {a, b}, because no naa-admissible

extension containing both a and b exists.

As demonstrated the Fundamental Lemma is not valid for naa-defense, so naa-

completeness had to be described differently. Instead of containing all arguments

or, to be correct, all argument sets it defends under naa-defense, an naa-complete

extension E only has to contain those sets it is compatible with, in simpler terms,

the naa-defended sets of which E is a subset.

Definition 2.48 (naa-complete and naa-grounded). Let F = (A,R) be an AF.

An E ⊆ A is naa-complete iff E ∈ adnaa(F ) and E contains every superset X ⊇ E

it naa-defends.

It is naa-grounded iff E ∈ conaa(F ) and additionally no proper naa-complete subset

D ⊂ E exists that is if E is ⊆-minimal in conaa(F ).

For our running example that means:

Example 2.49. Example 2.44 continued. Because the empty set naa-defends a

superset of itself, e.g. {a}, it is not naa-complete.

Since no naa-admissible supersets of them exist,21 the remaining naa-admissible

extensions {a} and {b} are both naa-complete and, since the empty set is not

naa-complete, naa-grounded.

As the example proves, there is no unique naa-grounded extension in general. From

the definition of naa-defense and naa-completeness it is not clear at all whether naa-

complete extensions exist for every AF. This question can be answered positively

thanks to the following important result.

21Option 1 of Def. 2.46 does not require an naa-admissible superset but there are also no

supersets of {a} that can be defended solely with this option, for example {a, x1} is attacked by

x3 which is not attacked by a
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Proposition 2.50. Let F = (A,R) be an AF. Then

prefnaa(F ) = {E ∈ conaa(F ) | ∀D ∈ conaa(F ) : E ⊆ D ⇒ E = D}

the naa-preferred extensions of F coincide with the ⊆-maximal naa-complete ex-

tensions of F .22

Instead of providing the already known proof for this we want to use the remaining

space for some notable results related to naa-semantics. First, adnaa and prefnaa

satisfy directionality, while conaa and grnaa do not [Baumann et al., 2020a,Dauphin

et al., 2020]. Next, we want to introduce the property that replaces the Funda-

mental Lemma for naa-semantics, namely modularization, from [Baumann et al.,

2020a].

Definition 2.51 (modularization). A semantics ς satisfies modularization iff for

any AF F = (A,R) and any E,D ⊆ A the following holds: If E ∈ ς(F ) and

D ∈ ς(FE) then E ∪D ∈ ς(F )

Modularization explains under which circumstances an argument a can be added to

an naa-admissible extension E without loosing naa-admissibility. It has to be naa-

admissible in the reduct and one of the naa-extensions of the reduct D containing

it has to be added as a whole to E. This is always possible in naa-semantics

according to the following proposition that has already been proven in [Baumann

et al., 2020a].

Proposition 2.52. adnaa, conaa, grnaa and prefnaa satisfy modularization.

Modularization itself is already a powerful property but it also has the following

useful consequence.

Proposition 2.53 (persisting non-admissibility). Let F = (A,R) be an AF, ς a

semantics satisfying modularization and a /∈ext ς(F ). Then a /∈ext ς(FE) for any

E ∈ ς(AF ).

An argument that is not naa-admissible in the main AF is also not naa-admissible

in the reduct of any naa-admissible extension of this AF. This persisting non-

admissibility will become a great help in some proofs later in this work.

Proof. By contradiction. Suppose some D ∈ ς(FE) existed with a ∈ D, then

E ∪D ∈ ς(F ) because of modularization, so a would be in a ς-extension of F to

begin with.

22for a proof see Theorem 5.3 of [Baumann et al., 2020b]
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The works of Dauphin et al. have successively contributed to the understanding

of naa-semantics and introduce a number of other weak semantics inspired by it:

the qualified and semiqualified semantics found in [Dauphin et al., 2020] as well

as the three alternative weak defense forms build on naa-admissibility and their

corresponding semantics families in [Dauphin et al., 2021]. Although we do not

include any of these semantics in the later chapters for reasons already stated,

we want to use the opportunity to give an answer to one of the open questions

from [Dauphin et al., 2021].

Naa-defense does not request naa-admissibility from the defended set, it only has

to be contained in an naa-admissible extension. This hinders an naa-admissible ex-

tension from being naa-complete in some cases where certain arguments belonging

to an extension are defended but not all, so completeness is only reached by adding

more than one does defend. The ∃-defense was designed to deny such problematic

sets the status of being defended.

Definition 2.54 (∃-defense). Let F = (A,R) be an AF. An argument set E ⊆ A

∃-defends another set X ⊆ A iff for every y ∈ X− attacker of X one of the

following holds:

1. E → y

2. y /∈ext adnaa(FE) and E ∪X ∈ adnaa(F )

E is ∃-complete iff E ∈ adnaa(F ) and E contains every supersetX ⊇ E it ∃-defends

and it is ∃-grounded iff it is ⊆-minimal in co∃(F ).23

Where ∃-defense makes a difference, shows the following example from [Dauphin

et al., 2021].

Example 2.55. In the AF below {d} is naa-defended but not ∃-defended by the

empty set.

a b c d

e

It was conjectured in [Dauphin et al., 2021] that both the ∃-complete and the

∃-grounded semantics satisfy directionality. We will now prove this is only true

for co∃.

23 [Dauphin et al., 2021]
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Theorem 2.56. The ∃-complete semantics satisfies directionality, the ∃-grounded

does not.

Proof. Let F = (A,R) be an AF, U ⊆ A an unattacked set and E ⊆ A.

Suppose first E is ∃-complete on F , but E ∩ U is not on U . Because the naa-

admissible semantics satisfies directionality by Prop. 4.16 of [Baumann et al.,

2020a], E ∩ U is naa-admissible. So if E ∩ U is not ∃-complete, then some X ⊃
E ∪ U in U exists, which is naa-admissible in U and naa-defended by E ∪ U
in U . By Prop. 4.11 of [Baumann et al., 2020a] X \ E is naa-admissible in

UE∩U and because of Prop. 4.16 X \ E is also naa-admissible in FE. Because of

modularization (Cor. 4.2) E ∪X \ E is therefore an naa-admissible superset of E

in F and since all attackers y of X are in U and E ∩ U naa-defends X in U, we

have by directionality y /∈ext adnaa(FE) ⇔ y /∈ext adnaa(UE∩U) so E naa-defends

E ∪X which is a proper superset of E that is naa-admissible. Therefore E is not

∃-complete in F . Contradiction.

Suppose now E ⊆ U is ∃-complete on U . Then either E is ∃-complete on F too,

or some superset X ⊃ E in F exists, which is naa-admissible and naa-defended

by E. We know (X \ E) ∩ U = ∅, because otherwise E would not be ∃-complete

in U (directionality with regard to X ∩ U . Therefore X satisfies X ∪ U = E and

is naa-admissible in F . If X is ∃-complete in F we are done, if not we can repeat

this argument for the then existing superset X ′ ⊃ X which is by the conditions

of ∃-completeness again naa-admissible and satisfies X ′ ∪ U = E. Since we only

consider finite AFs this extending procedure terminates at an ∃-complete extension

of F . This concludes the proof of directionality for the ∃-complete semantics.

Counterexample 2.57. Let F = (A,R) be the AF below and U = {a, b} the

unattacked set, then gr∃(U) = {∅}.
But {a, d} is ∃-grounded in F and U ∩ {a, d} 6= ∅.

b

a c

d

x1

x2

x3



Chapter 3

Generalizing defense

From an early point on we started looking for a common ground of weak semantics,

a basic concept they can be traced back to. Instead of asking ourselves what the

ideal weak semantics looks like, we wanted something that describes the individual

”weakness” of any semantics in a way that allows an impartial comparison and

a categorization of different approaches. The strongly varying methods of the

semantics in Section 2.3 should give the reader an idea of the dimension such a

project has. So what is ”weakness” in terms of abstract argumentation? Weakness

can concern a variety of attributes, but when it comes to weak semantics it means

the defense of the accepted arguments is weak. And what is defense, generally

speaking? Our answer to this question is that defense is about deflecting rsp.

rejecting rsp. neutralizing incoming attacks. Therefore the defense notion of a

semantics should be able to exactly specify which attacks can be rejected and

which not. The formalization of this idea leads us back to the roots - the classic

defense by Dung.

3.1 Rethinking classic defense

The more time we spent on other defense concepts - like the three introduced in

Section 2.3 - the higher we valued Dungs classic defense. Not only is defense by

attack an intuitive principle, it was also formalized as an operator which makes it

possible to analyze his semantics in terms of algebra and lattice theory. Another

important feature of defense in the context of abstract argumentation is complete-

ness. The introduction of c-complete extensions as fixpoints is the most elegant

way of defining completeness we have come across so far. It is also invaluable for

embedding classic semantics into related research like logic programming where

fixpoint theory is held in high regard.

29
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If the Γ-Operator has one flaw it is defending too much. A self-attacker defends

itself against itself with this operator but this kind of defense cannot be considered

successful in argumentation. In case of a successful defense no threat for the

defended arguments should be left. So instead of the Γ-Operator consider the

following operator for classic defense.

Definition 3.1. (refined c-defense) Let F = (A,R) be an AF. We define an

alternative classic defense operator χc : 2A → 2A with

χc(E) := {a ∈ A \ E+ | a unattacked in F↓A\E+}

for any E ⊆ A.

The difference between the two operators lies in excluding arguments attacked by

an extension from being defended by it, too. The following example serves to

illustrate this point.

Example 3.2. In Example 2.2 the singleton {d} c-defends itself by the classic

notion as d attacks its only attacker, d, itself. Therefore Γ({d}) = {a, d}. For

the refined c-defense on the other hand d can only defend arguments in A \ {d}+,

so d /∈ χc({d}). The arguments d does not attack are a and b of which only a is

unattacked, thus χc({d}) = {a}.

With this operator conflictfreeness is no longer a separate criterion. While the Γ-

Operator allows for sets with conflicts to defend themselves and only satisfies the

Fundamental Lemma, the new operator χc satisfies E ⊆ χc(E) only for conflictfree

sets of arguments in the first place.

Proposition 3.3. Let F = (A,R) be an AF. Then for any conflictfree argument

set E ⊆ A it holds that χc(E) = Γ(E) and any! E ⊆ A is Dung-style-admissible

iff E ⊆ χc(E).

Proof. For the first part supppose a ∈ Γ(E). Then all attackers of a are in turn

attacked by E and therefore elements of E+. Since E is conflictfree, a /∈ E+ by

the Fundamental Lemma. Therefore a ∈ A \ E+ and all of its attackers not, so a

is unattacked in A \ E+. The other direction is trivial.

For any set of arguments E it holds that E not conflictfree implies E * χc(E)

because in this case some e ∈ E exists that is not in A \E+ and χc(E) is a subset

of the arguments of A \ E+. The rest follows from Γ(E) = χc(E).



31

Note that the equality of the Γ- and χc-Operator for conflictfree sets of arguments

includes the identity of their fixpoints (among conflictfree sets). This means the

c-complete semantics is compatible with the new defense notion, the same holds

for pref c and grc.

Corollary 3.4. For any AF F = (A,R) we have coc(F ) = {E ⊆ A | E = χc(E)}
and pref c and grc are the maximal rsp. minimal fixpoints of χc.

We now have a defense operator for classic semantics which guarantees the con-

flictfreeness of defended sets while preserving completeness in form of fixpoints.

This was achieved by dividing the defense by attack principle into two steps.

1. Delete all arguments that are attacked by an argument set E (Attack)

2. Determine which of the remaining arguments are now unattacked(Defense)

3.2 Defense by defeat - generalizing the defense

operator

Defense is no primary feature of Dungs argumentation formalism. All we have

is the attack relation, so defense can only be defined w.r.t. it, how is left open.

In order to generalize defense we turn this dependency on its head and say an

argument is defended if all its attackers are defeated. Now we have a fixed concept

of defense and leave open how defeat is defined instead. In order to describe

e.g. naa-defense in terms of defeat an argument-level relation no longer suffices.

Therefore we formalize defeat as an operator on set-level.

Definition 3.5 (defeat operator). Let U+
F := {(F,E) |F = (A,R) ∈ UF , E ⊆ A}

be the set of all pairs of finite AFs F = (A,R) with any of their resp. argument

subsets E ⊆ A.

A defeat operator is a mapping δ : U+
F → 2Uarg that assigns to each such pair

(F,E) an argument set δ((F,E)) ⊆ A of arguments defeated by E in F . If F is

clear, we can simplify δ to the unary operator δ : 2A → 2A on F .

We can now apply the defense concept of Section 3.1 to a given defeat operator δ.

1. Delete all arguments a ∈ δ(F,E) that are defeated by an argument set E

according to δ.(Defeat)

2. Determine which of the remaining arguments are now unattacked(Defense)

The result of this process is a generalized form of defense operators.
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Definition 3.6 (defense operator). Let δ be a defeat operator. The defense oper-

ator χδ : 2A → 2A induced by δ on an AF F = (A,R) is defined for every E ⊆ A

by

χδ(E) := {a ∈ Freeδ | a unattacked in Freeδ}

where Freeδ := F↓A\δ(E) is the restriction of F to all arguments not defeated by

E .

Let us demonstrate this concept with the new defense operator for classic semantics

we introduced in the previous section.

Proposition 3.7. For any AF F = (A,R) χc is the defense operator induced by

Defc : 2A → 2A, Defc(E) := E+ for any E ⊆ A.

Proof. Let F = (A,R) be an AF and E ⊆ A. Then the set of all arguments not

defeated by E is Freec(E) = A\Defc(E) = A\E+. The defense operator induced

by Defc according to Def. 3.6 now assigns to E the set of all arguments unattacked

in Freec(E) which is exactly the set {a ∈ A \ E+ | a unattacked in F ↓A\E+} =

χc(E) of arguments defended by E according to Def. 3.1.

Admissibility can now be generalized as the property of an extension to defend at

least itself under a given defense operator.

Definition 3.8 (defeat-based admissibility). Let F = (A,R) be an AF and δ a

defeat operator. An argument set E ⊆ A is δ-admissible iff e ∈ χδ(E) for every

argument e ∈ E that is E defends at least itself under the defense operator χδ

induced by δ. Define the δ-admissible semantics as adδ := {E ⊆ A | E ⊆ χδ(E)}
the set of all δ-admissible extensions of F .

Independently from the defeat operator this concept of admissibility comes with

some intrinsic properties.

Proposition 3.9. Let F = (A,R) be an AF and let δ be a defeat operator. Then

the following holds:

I. ∅ ∈ adδ(F )

II. χδ(E) is conflictfree for all E ⊆ A

Proof. (I) The empty set is a subset of any other argument set. Even if χδ(∅) = ∅
(I) holds true. (II) χδ(E) is defined as the set of all unattacked arguments in a

certain restriction of F . But if all its elements are unattacked there can be no

conflicts among them.



33

Like under our new defense operator for c-semantics, the admissible extensions

derived from a defeat operator are always conflictfree (even if the defeat opera-

tor in question does not defeat arguments attacked by an extension). They are

also conflictfree with regard to the defeat operator used for generating them, a

huge advantage when discussing weak semantics. Because even if an extension is

conflictfree there could be indirect conflicts among arguments if a defense concept

includes defeating more than one attacks. This cannot happen with our defeat-

based defense.

Theorem 3.10 (direct and indirect conflictfreeness). Let F = (A,R) be an AF and

E ⊆ A. If there exists a defeat operator δ such that E is δ-admissible (E ∈ adδ(F ))

then E is conflictfree and E ∩ δ(E) = ∅.

Proof. A δ-admissible E satisfies E ⊆ χδ(E) which is conflictfree by Prop.3.9. For

the indirect conflictfreeness suppose some e ∈ E ∩ δ(E) exists, then e /∈ Freeδ(E)

by Def.3.6 and thus e /∈ χδ(E). But then E * χδ(E).

We need not stop at admissibility. Any argumentation semantics based on c-

admissibility can be generalized to a defeat-based semantics. This includes, most

importantly, a generalized complete semantics in form of fixpoints.

Definition 3.11 (defeat-based semantics). An extension-based semantics ςδ is

based on a defeat operator δ iff ςδ(F ) ⊆ adδ(F ) for all F ∈ UF .

Definition 3.12 (generalized semantics family). Let δ be a defeat operator. Define

the δ-complete semantics as the set coδ(F ) := {E ⊆ A | E = χδ(E)} of all

fixpoints of χδ

the δ-grounded semantics grδ(F ) as the set of all ⊆-minimal E in coδ(F ).

the δ-preferred semantics pref δ(F ) as the set of all ⊆-maximal E in adδ(F ).

the δ-stable semantics as the set stbδ(F ) := {E ∈ adδ(F ) | E ∪ δ(E) = A} of all

extensions which defeat every argument they do not contain

for any F = (A,R) ∈ UF .
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To give a simple and useful example of this besides c-semantics, consider cf-

semantics.

Definition 3.13 (conflictfree defeat operator). The conflictfree defeat operator

Defcf : U+
F → 2Uarg is defined for any AF F = (A,R) ∈ UF and any E ⊆ A by

Defcf (F,E) := A \ E

and the induced cf-admissible semantics is adcf (F ) := {E ⊆ A | E ⊆ χcf (E)}

This is the perfect example to see how defeat-based defense realizes conflictfreeness

during the second step. The defeat operator of cf-semantics ensures no outside

arguments matter by defeating(deleting) them all in the first step(Defeat). The

remaining conflicts can only be internal and if they exist, they hinder the extension

to be unattacked as whole in the second step(Defense). So an argument set only

cf-defends itself if it is conflictfree.

Example 3.14. Example 2.2 continued. For the argument set E = {b, c} the

set of cf-defeated arguments is Defcf (E) = {a, d}, so in Freecf (E) = E only c

and b remain which are both not unattacked. Therefore χcf (E) = ∅ so E is not

cf-admissible.

Proposition 3.15. Let F = (A,R) be an AF. Then cocf (F ) = adcf (F ) = cf(F ),

pref cf (F ) = na(F ) and grcf (F ) = {∅} for the resp. semantics based on the defeat

operator Defcf defined above.

Proof. This can be shown with reasonable effort by applying Prop. 3.9 and the

relevant definitions from Section 2.1.

In the following sections of this chapter we redefine the three semantics (families)

from Section 2.3 as defeat-based semantics by proposing a defeat operator for each

of them and demonstrate how a new semantics family can be constructed easily

by modifying a defeat operator.



35

3.3 Naa-complete extensions as natural fixpoints

We start with naa-semantics since the defeat operator we need is basically already

given in the definition of naa-admissibility (Def. 2.43).

Definition 3.16 (naa-defeat operator). For every AF F = (A,R) and every set

of arguments E ⊆ A in F the naa-defeat operator Defnaa is defined as follows:

Let a ∈ A. Then a ∈ Defnaa(F,E) iff a ∈ E+ or a ∈ FE and a /∈ext adnaa(FE).

Naa-admissibility is defined recursively and the same applies to this defeat opera-

tor. Only by knowing the naa-admissible extensions of the reduct we are able to

compute the set of defeated arguments for a certain extension. Because defeat-

based naa-admissibility can be directly derived from the naa-defeat operator and

since the reduct is a real subset for any nonempty set of arguments, this description

of naa-admissibility is as well-defined as the original naa-admissible semantics.

We will now prove that not only the naa-defeat operator describes naa-admissibility

correctly but that the naa-complete extensions are exactly the fixpoints of the

induced naa-defense operator.

Theorem 3.17. Let F = (A,R) be an AF and χnaa the defense operator induced

by Defnaa on F . Then χnaa satisfies for any E ⊆ A:

I. E is naa-admissible iff E ⊆ χnaa(E)

II. E is naa-admissible ⇒ χnaa(E) =
⋃
{X ⊇ E | E naa− defends X}

III. E is naa-complete iff E = χnaa(E)

Proof. (I) Because of E+ ⊆ Defnaa(E) it follows again that E has to be conflictfree

for E ⊆ χnaa(E) to hold. If E is naa-admissible then by Def. 2.43 and 3.16 all its

attackers are elements of Defnaa(E) so E is unattacked in Freenaa(E) and vice

versa.

(II) (⊆) Suppose a ∈ χnaa(E) then a ∈ Freenaa(E) so a is not attacked by E

and there exists an extension D ∈ adnaa(FE) with a ∈ D. By modularization

(Def. 2.51) we have E∪{a} ⊆ E∪D ∈ adnaa(F ), so an naa-admissible superset of

E∪{a} exists. Now since a is unattacked in Freenaa(E) for every attacker y of a it

holds y ∈ Defnaa(E) = E+∪{y ∈ FE | y /∈ adnaa(FE)} so either condition 2) or 1)

of naa-defense is satisfied for every attacker of {a} and since E is naa-admissible

the same holds for E. Therefore for every element a of χnaa(E) E ∪ {a} is an

naa-defended superset of E.

(⊇) Suppose X is an naa-defended superset of E, then by proposition 4.11 of
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[Baumann et al., 2020a] the set X \ E has an naa-admissible superset in FE, so

X ⊆ Freenaa(E). Since X is naa-defended by E all of its attackers are defeated

by E. Therefore X is unattacked in Freenaa(E), so X ⊆ χnaa(E).

(III) Suppose E is naa-complete. Then E has no proper superset that is naa-

defended by E, so E =
⋃
{X ⊇ E | E naa − defends X} and since E has to be

naa-admissible in order to be naa-complete we can apply (II) so E = χnaa(E).

For the other direction we can again apply (II) because if E = χnaa(E), E is

naa-admissible according to (I).

Both the fact that naa-defense had to be defined on set-level and the fact that

the naa-complete and -grounded semantics do not satisfy directionality made naa-

defense look like a different matter from naa-admissibility. But it turns out naa-

complete extensions are the natural fixpoints of a defeat operator directly derived

from the definition of naa-admissibility. We have proved that the naa-semantics

family was well-defined as a whole to begin with. In this new light Prop. 2.50,

the coincidence of maximal naa-complete and naa-preferred extensions, becomes a

surprising result. This coincidence was thought to be a design choice embedded in

defense condition (2) of Def. 2.46. Now we know that naa-defense has nothing to

do with this, because the naa-defeat operator is based on naa-admissibility only.

The discussion of this topic is continued in Section 4.3. We conclude this section

with the introduction of the naa-stable semantics which, as to be expected because

of modularization, coincides with the naa-preferred semantics.

Proposition 3.18. Let F = (A,R) be an AF. Then stbnaa(F ) = prefnaa(F ).

Proof. Suppose E is naa-preferred. Then adnaa(FE) = {∅} because if some

nonempty D ∈ adnaa(FE) existed, E ∪ D ∈ adnaa(F ) by modularization, so E

would not be maximal. Now if there are no naa-admissible arguments in the reduct

of E, then E defeats all arguments in FE, so A = E ∪FE ∪E+ = E ∪Defnaa(E),

thus E is naa-stable. For the other direction this argumentation can be re-

versed.
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3.4 Admissibility under undecidedness blocking

At first glance it looks like lub-semantics are not concerned with defense at all,

in Prop. 2.40 we show that instead of defending itself an lub-complete exten-

sion only needs to contain the arguments it c-defends. And yet a certain basic

principle of defense is still at work here. By closer inspection none of the lub-

complete extensions are attacked by unattacked arguments. This is a consequence

of unattacked arguments being defended by any extension, so being attacked by

them would result in an inner conflict. It seems the combination of c-completeness

with conflictfreeness is enough to make some attackers, like unattacked arguments,

undefeatable for lub-complete extensions. The following example outlines another

type of attacker that cannot be ignored.

Example 3.19. In Example 2.55 {c} is not an lub-complete extension because it

does not contain e which is c-defended by c. The reason why e is a problematic

attacker is easier to see if one tries to construct an lub-complete labeling. If we

set lab(c) = in, lab(d) = out is inevitable and as a consequence lab(e) = in which

leads to a conflict among in-arguments. b on the other hand, the other attacker

of c, causes no such problem, because it is attacked by a so both can simply be

labeled undecided. The difference between the two attackers seems to be that e is

unattacked in F {c} while b is not.

The reduct is our best option to identify both types of problematic attackers. If

an argument is unattacked in the reduct FE of an extension E then either it is

unattacked in the original AF, too, or all its attackers are in turn attacked by

E, meaning it is c-defended by E. If such an argument attacks E, E cannot be

lub-complete. But excepting those unattacked arguments of the reduct from being

defeated is not enough, because they in turn can c-defend arguments which also

have to be included for lub-completeness and can therefore not be defeated. This

closure of unattacked arguments under c-defense is known as the c-grounded ex-

tension, in this case the c-grounded extension of the reduct. From the information

which types of attackers are not defeated by lub-complete extensions we can de-

duce which are actually defeated - the rest. The defeat operator for lub-semantics

we arrived at is thus:

Definition 3.20. Let F = (A,R) be an AF. We define the lub-defeat operator

Deflub for any E ⊆ A to be Deflub(E) := {a ∈ A | a /∈ grc(FE) ∪ E}.1

1Remember that there exists exactly one c-grounded extension, so we use a /∈ grc(FE) ∪ E

as a short version for a /∈ G ∪ E with G ∈ grc(FE) = {G}
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Note that this defeat operator is not recursive. To determine the defeated argu-

ments the reduct and its c-grounded extension have to be computed only once.

We will now prove that the lub-complete extensions are indeed the fixpoints of the

defense operator induced by Deflub.

Proposition 3.21. Let F = (A,R) be an AF and E ⊆ A. E is an lub-complete

extension of F iff E = χlub(E).

Proof. (1) Suppose E is lub-complete. By definition E is conflictfree. Since Γ(E) ⊆
E, E contains all arguments unattacked in A\E+, so grc(FE) = ∅. It follows that

all arguments not in E are in Deflub(E). Therefore Freelub(E) = χlub(E) = E.

Suppose now E = χlub(E) then E is conflictfree. We know Γ(E) \E is unattacked

in the reduct and therefore contained in its grounded extension. Since all attackers

of Γ(E) are attacked by E, Γ(E) is unattacked in Freelub(E), so Γ(E) ⊆ χlub(E) =

E.

The existence of a defeat operator which has the lub-complete semantics as its

induced complete semantics makes it possible to define an admissible version of

lub-semantics.

Definition 3.22 (lub-admissible). Let F = (A,R) be an AF and E ⊆ A.

E is lub-admissible iff E ⊆ χlub(E).

By defining an lub-admissible semantics the defense behavior of lub-semantics is

successfully isolated and the completeness part of the original semantics can fulfill

its intended purpose of realizing the reinstatement property. We are now able to

differentiate between an argument set that is not lub-complete because it is missing

some arguments (but is still lub-admissible) and one that is neither lub-complete

nor lub-admissible because it has an attacker it cannot lub-defend itself against.

Take the following example for this.

Example 3.23. In Example 2.2 the singleton {c} is an lub-admissible extension

that is not lub-complete. The reduct F {c} consists of arguments a and d. Since

d is a self-attacker but a is unattacked, the c-grounded extension of the reduct

is {a}, so d and b, which is attacked by c and is therefore also no member of

grc(F {c}), are defeated. The remaining arguments c and a are both unattacked,

so {c} ⊂ χlub({c}) is lub-admissible but not a fixpoint, so it is not lub-complete.
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Like their classic counterparts, lub-admissible extensions can be completed. In

contrast to them only one step is needed here.

Proposition 3.24. Let F = (A,R) be an AF and E ⊆ A lub-admissible. Then

χlub(E) is an lub-complete extension containing E.

Proof. If E is lub-admissible then it is contained in χlub(E) by definition. Because

E is lub-admissible it is known to be unattacked in Freelub(E) = E ∪ grc(FE)),

thus E is conflictfree. By definition the c-grounded extension of FE is conflictfree,

too, and (since E is unattacked in Freelub(E)) it does not attack E, so

Freelub(E) = χlub(E) = E ∪ grc(FE) is conflictfree.

According to Prop. 2.40 it is only left to show that Γ(χlub(E)) ⊆ χlub(E). Now let

a ∈ Γ(χlub(E)), then a /∈ E+, because χlub(E) is conflictfree. If a ∈ E it is also in

χlub(E) because E is lub-admissible. Suppose now a ∈ FE. Since a is c-defended

by χlub(E) every attacker y of a is either attacked by E, and thus y /∈ FE or

attacked by some g ∈ grc(FE) but then by the c-completeness of the c-grounded

semantics a is a member of grc(FE), so a ∈ grc(FE) ⊆ χlub(E).

We now conduct a short, informal principle-based analysis of the lub-admissible

semantics with the principles from [Dondio and Longo, 2021]. adlub satisfies con-

flictfreeness and, since it is extension-based, rejection. It probably satisfies direc-

tionality and abstention, we leave the proof for that for future work. It does not

satisfy naivity, admissibility, I-maximality or cycle-homogeneity.2 Reinstatement is

a property reserved for complete semantics and is not satified by the lub-admissible

semantics (on purpose), making this the only notable difference between it and the

rest of the family regarding the criteria from [Dondio and Longo, 2021].3

Since any lub-admissible extension has an lub-complete extension for a superset,

the lub-preferred semantics introduced in Section 2.3.2 coincides with the preferred

semantics induced by Deflub that is the set of maximal lub-admissible extensions.

This completes the embedding of the lub-admissible semantics in the lub-semantics

family.

Corollary 3.25. pref lub(F ) = {E ∈ adlub(F ) | E ⊆ −maximal in adlub(F )}
holds for any AF F ∈ UF .

Proof. Follows directly from Prop. 3.24

2For those properties that are not satisfied see [Dondio and Longo, 2021], as every lub-

complete extension is lub-admissible
3At least at the moment, as mentioned, some proofs are still missing
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3.5 A new defeat-based recursive semantics

Naa-defense is significantly stricter than lub-defense, which can already be guessed

from the resp. defeat operators. While Deflub defeats every argument with a

controversial status in the reduct, Defnaa only defeats arguments that are not

naa-admissible in the reduct. The following example demonstrates this difference.

Example 3.26. In Example 2.22 c is lub-admissible, because its attackers are

in conflict with each other and therefore not c-grounded, but not naa-admissible,

because both attackers defend themselves against each other and thus are naa-

admissible in the reduct.

One can argue naa-defense is too strict in cases like this. On the other hand there

are cases like Example 2.41 in which lub-defense is too liberal. As we said in

Section 2.3.2 we will now propose a reduct-based alternative to the SCC-recursive

ub-semantics in [Dondio and Longo, 2021] which produces the desired outcomes

for both cases.

With the general defense notion introduced in Section 3.2 all we have to do for that

is to choose the right defeat operator. So the question is which attackers should

be defeated under our semantics and which should not. Of course all arguments

defeated under naa-semantics should be defeated by the new operator, too, which

means we have to include the defeat conditions from Def. 3.16 and thus inherit

recursiveness. Additionally we would want to defeat conflicting attackers like a

and b from Example 2.22. What we want to avoid is defeating arguments with only

non-admissible attackers, like d from Example 2.41. This can be summarized as a

principle of no uncontroversial attackers (nua) and is accomplished by defeating

only those admissible arguments where every extension containing them is under

attack by another admissible extension. Our new defeat operator therefore has

the following three defeat conditions.

Definition 3.27 (nua-defeat operator). Let F = (A,R) be an AF and E ⊆ A.

We define Defnua(E) to be the set of all a ∈ A that satisfy one of the following

conditions:

1. a ∈ E+ (a is attacked by E)

2. a /∈ adnua(FE) (a is not part of any nua-admissible extension in the reduct)

3. ∀D ∈ adnua(FE), a ∈ D ∃C ∈ adnua(FE) ∃c ∈ C : c → D (for every nua-

admissible extension containing a in the reduct exists another extension in

the reduct that attacks it)
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Like with naa-defeat and -admissibility, nua-defeat is defined recursively over the

reduct. So this definition presupposes the term nua-admissibility which is defined

below. It is well-defined, since the reduct is a proper subset for any E 6= ∅ and the

empty set is nua-admissible trivially. The corresponding defense operator χnua to

Defnua is used to generate the nua-semantics family.

Definition 3.28 (nua-semantics family). Let F = (A,R) be an AF and E ⊆ A.

E is nua-admissible iff E ⊆ χnua(E).

E is nua-complete iff E = χnua(E).

E is nua-preferred iff E is maximal w.r.t. ⊆ in adnua(E).

E is nua-grounded iff E is minimal w.r.t. ⊆ in conua(E).

The reader may convince herself that Example 2.22 is handled by the different

nua-semantics in the same way as by the resp. lub-semantics. We will apply

nua-semantics to the other motivating example here instead.

Example 3.29. Example 2.41 continued. The set of all nua-admissible extensions

is adnua(F ) = {∅, {d}} with {d} being the only nua-preferred,-complete and -

grounded extension.

The nua-semantics family solves all our motivational examples but apart from that

these semantics are missing some important properties. They are the first defeat-

based semantics family where the preferred extensions are not necessarily complete

which proves that this coincidence is not a property of defeat-based semantics in

general.

Proposition 3.30. There exists an AF F = (A,R) such that not every nua-

preferred extension of F is nua-complete.

Counterexample 3.31. For the AF below {e} is nua-preferred but not nua-

complete, because χnua({e}) = {a, b, e}.

ax1

x2

x3 b c

d

e
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This feature of nua-semantics leads to some difficulties. The existence of nua-

complete and nua-grounded extensions has become an open question. In order to

investigate the performance of our new semantics family more thoroughly we con-

duct a principle-based analysis. For comparison we use the criteria from [Baumann

et al., 2020a].

Proposition 3.32 (principle-based analysis of nua-semantics).

I. Naivety, c-admissibility and strong admissibility are not satisfied by any of

the four nua-semantics.

II. Reinstatement is satisfied by conua, grnua and prefnua but not by adnua.

III. I-maximality is satisfied by grnua and prefnua but not by conua and adnua.

IV. Directionality is satisfied by adnua but not by prefnua.

V. Modularization and meaningless reduct are not satisfied by any nua-semantics.

VI. Unattack inclusion is satisfied by adnua and prefnua.

VII. grnua is not unique.

Proof. (I), (V) Example 2.22 with the extension {c} can serve as a counterexample

for adnua, prefnua and conua. For grnua consider Counterexample 3.31 which has

the two nua-grounded extensions: {a, c} and {b, d}(it therefore also proves (VII)).

(II) Since E+ ⊆ Defnua(E) any c-defended argument a is unattacked in FE and

thus a ∈ χnua(E). So the fixpoint semantics conua and grnua have to include such

an a in their extensions. For prefnua note that any argument b attacked by such

an a in the reduct is not nua-admissible, so E ∪ a is nua-admissible, because only

ineffective attackers are erased from FE.

(III) Follows directly from the minimality resp. maximality w.r.t. set inclusion.

(IV) Proof by induction over size of F , trivial base case. Suppose U ⊆ A

unattacked, then for any nonempty E ∈ adnua(U) the reduct FE satisfies the

induction hypothesis, so all nua-admissible arguments of UE are nua-admissible

in FE and the other way around. Therefore E still defeats all of its attackers

from UE in FE and thus E is nua-admissible in F . For the other direction we

can argue again that every nua-admissible extension attacking E ∩ U in UE has

an nua-admissible counterpart in FE that attacks E by the induction hypothesis.

The only thing nontrivial here is the question if any extension containing such an

attacker is always attacked by another nua-admissible extension in U. But in the

first part of the proof we have already shown that an nua-admissible extension of

an unattacked set has not only a counterpart in F but is itself nua-admissible in

F , so the attack that defeats it and makes E nua-admissible in F must come from
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an argument of the unattacked UE.

For prefnua the nua-preferred extension {c} of Example 2.22 can serve as a coun-

terexample, because its intersection with the unattacked set U = {a, b} is empty

and not nua-preferred in U because {a} is an nua-admissible superset of the empty

set in U .

(VI) The set of all unattacked arguments is always nua-admissible and thus has

an nua-preferred superset.

The loss of the modularization property is an unavoidable consequence of further

weakening naa-defeat according to Theorem 4.4 from [Baumann et al., 2020a]. The

nua-admissible semantics now serves as a ”living” example for this. How much of a

difference modularization makes will be discussed further in Chapter 5. A number

of results are still missing here, mainly because there is no proof for the existence

of nua-complete and nua-grounded extensions in general yet.

Conjecture 3.33. I. conua(F ) is not empty for any AF F ∈ UF .

II. Unattack inclusion is satisfied by conua and grnua.

III. Directionality is satisfied by conua and grnua.

Nua-defense was meant to be a compromise between the strict naa-defense and the

liberal lub-defense. However, the nua-complete semantics is not well understood

yet and at this point it is already clear that the nua-semantics family is missing an

important property the other two have.4 The benefits from having a second recur-

sive semantics family comparable to naa-semantics have made the construction of

nua-semantics worthwhile though. To sum up this section, it is easy to construct

a new semantics family by modifying an existing defeat operator but not that easy

to guarantee specific properties are still satisfied by the induced semantics.

4Namely the coincidence of preferred with maximal complete extensions
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3.6 Neutralizing self-attackers with cogent de-

feat

The relative defense condition of cogent semantics seems to require the defeat of

sets of arguments instead of single arguments. But the cogent semantics is not

as complicated as it looks. Before we give the defeat operator for it, we will first

prove that Def. 2.34 is just an interesting way of adding self-attackers to the set

of attackers that can be ignored by an extension.

Proposition 3.34. Let F = (A,R) be an AF and E ⊆ A. Then E is cogent iff

E is conflictfree and ∀ a ∈ E− : a ∈ E+ ∨ a→ a

Proof. (⇒) Suppose E is cogent. Then E has to be conflictfree or it would not be

c-admissible in F ↓E∪∅. For any attacker a of E we have to consider F ↓E∪{a}. If

a is a self-attacker, then {a} is not c-admissible and thus not at least as cogent as

E.5 If not E has to be c-admissible in F ↓E∪{a} so E attacks a.

(⇐) We need to show that such an E is at least as cogent as any D ⊆ A that is

at least as cogent as E. If D is not conflictfree, it is not c-admissible in F ↓E∪D
and therefore not at least as cogent as E. If D is conflictfree, then it contains no

self-attackers, so any attacker d of E in D is attacked by E. But then, since E is

conflictfree, E is c-admissible in F ↓E∪D and thus at least as cogent as D.

This proof demonstrates that, while cogent semantics makes modifications to c-

semantics on extension level, the relevant mechanisms can still be broken down to

the behavior of single arguments. It is now possible to express the cogent semantics

in terms of our general defense notion. The defeat operator is easily derived from

Prop 3.34 - it defeats all attacked arguments and all self-attackers.

Definition 3.35 (cogent defeat). Let F = (A,R) be an AF. Define the cogent

defeat operator Defcog for any E ⊆ A as Defcog(E) := {a ∈ A | E → a ∨ a→ a}
the set of all arguments that are either self-attackers or attacked by E.

Proposition 3.36. For any AF F = (A,R) and any E ⊆ A it holds that E is

cogent iff E ⊆ χcog(E) for the defense operator χcog induced by the cogent defeat

operator Defcog.

Proof. Follows directly from Prop.3.34.

5and the same applies to any set of arguments D containing such an a
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If the admissible extensions of Defcog coincide with the original cogent extensions,

the cog-preferred semantics is the sustainable semantics. We have thus succeeded

in describing all three weak semantics families from Section 2.3 with our general

defense notion.

Corollary 3.37. Let F = (A,R) be an AF. Then the set of all cogent-preferred

extensions pref cog(F ) coincides with the set of all sustainable extensions of F .

With the cogent defeat operator known we can expand the cogent semantics family

by adding the corresponding complete and grounded semantics.

Definition 3.38. Let F = (A,R) be an AF. The sets of cog-complete and cog-

grounded extensions on F are given by cocog(F ) = {E ∈ adcog(F ) |χcog(E) = E}
and grcog(F ) = {E ∈ cocog(F ) | E ⊆ −minimal in cocog(F )} respectively.

For a quick demonstration of these semantics consider our first running example

again.

Example 3.39. In Example 2.2 {a, c} is the only cog-complete and cog-grounded

extension, because the empty set and {c} both cog-defend a and a cog-defends c.

We will leave the conduction of a principle-based analysis of these two semantics for

future work and only include a proof for the coincidence of maximal cog-complete

extensions with sustainable (cog-preferred) extensions here.

Proposition 3.40. Let F = (A,R) be an AF. Then

pref cog(F ) = {E ∈ cocog(F ) | E ⊆ −maximal in cocog(F )}

Proof. Follows from Prop. 4.21 and Cor. 4.25. The reasoning is that χcog(E) is

cog-admissible if E itself is cog-admissible, because none of the defended arguments

attack each other.

In conclusion it can be said that the cogent semantics family is very close to Dungs

semantics, probably the closest among all weak semantics considered here. While

ignoring self-attackers might seem simple compared to e.g. naa-semantics, the

cogent semantics are nonetheless a valuable and well designed option to refine

classic admissibility with close to no deficits when it comes to classic behavior. In

the next chapter, where the properties of the classic defense operator are examined

for the general case, this will become even more obvious.



Chapter 4

Analyzing semantic properties via

defeat operators

4.1 Comparing defeat operators

One important factor in our motivation for a unified defense notion was the formal-

ization of a weaker-as-relation between the defense concepts of different semantics.1

With cogent semantics having only an admissible, lub-semantics only a complete,

and naa-semantics having a complete semantics which seemed very far apart from

its admissible semantics, the standard way of checking for containment of each

other was insufficient for this. By isolating the defense behavior in the defeat

operators and generalizing the construction of a semantics family we managed to

close these gaps and can now directly compare defeat operators instead of their

induced semantics. Nonetheless, we decided to start our comparison with contain-

ment between the different admissible semantics for a smooth transition from the

standard approach and the inclusion of known results.

Definition 4.1 (weakness relation). Let δ, ε be defeat operators. δ is at least as

weak as ε, δ ≤w ε iff adε(F ) ⊆ adδ(F ) for all F ∈ UF .

δ is strictly weaker than ε, δ <w ε iff δ is at least as weak as ε and there exists

some F = (A,R) ∈ UF , E ⊆ A such that E ∈ adδ(F ) but E /∈ adε(F ).

The admissible semantics is the generic type of defeat-based semantics, while the

other semantics are subsets of their resp. admissible semantics. One can thus

argue the admissible semantics exhibits the defense behavior under a certain defeat

1A more general proposal for the comparison of argumentation semantics can be found in

[Amgoud and Prade, 2009]
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operator in its purest form. The resp. complete semantics would be another viable

choice for further investigations.

Proposition 4.2 (weakenings of c-admissibility). Defδ is strictly weaker than

Defc for δ ∈ {naa, lub, nua, cog}.

This was already noted for naa-semantics in [Baumann et al., 2020b], for cogent

semantics it follows directly from Prop. 3 and Def. 4 in [Bodanza and Tohmé,

2009]. For the other two semantics we will give the proof after the introduction of

a direct relation between defeat operators.

Definition 4.3 (aggressiveness). Let δ, ε be defeat operators. δ is at least as

aggressive as ε, δ ≤a ε iff ε(E) ⊆ δ(E) for all E ∈ A, F = (A,R) ∈ UF .

δ is strictly more aggressive than ε, δ <a ε iff it is at least as aggressive as ε and

some E with δ(E) \ ε(E) 6= ∅ exists.

Both aggressiveness and weakness are partial-orders on the set of all defeat opera-

tors (since they are based on set-inclusion, which is a partial order itself). The set

of all defeat operators together with aggressiveness even forms a complete lattice,

e.g. the greatest lower bound of two defeat operators is δ ∨ ε (F,E) := δ(F,E) ∪
ε(F,E) the least aggressive defeat operator which is at least as aggressive as δ

and as ε. Being more aggressive does not imply being weaker, so the completeness

under the ≤w-relation is an open question at this point. For example, the most

aggressive defeat operator always defeats everything, which makes the empty set

its only admissible extension. So while on the one hand this operator is strictly

more aggressive than Defc, Defc is strictly weaker than it on the other hand.

In order to accept more arguments we therefore cannot simply make defeat more

aggressive. The following property solves this problem and will come in handy in

other contexts, too.

Definition 4.4 (selfdefeatfree). A defeat operator δ is selfdefeatfree iff for any AF

F = (A,R) and any E ∈ cf(F ) it holds that E ∩ δ(E) = ∅ .

δ is strictly selfdefeatfree iff E ∩ δ(E) = ∅ for any E ⊆ A.

As already mentioned in the context of Theorem 3.10 a weak semantics should

ideally only accept selfdefeatfree extensions. For the weak semantics introduced

her this was realized by making their defeat concept selfdefeatfree to begin with.

The reduct is one way to hardcode the exclusion of selfdefeat, the defeat operator

for lub-semantics another. With Theorem 3.10 defeat operators which are not

trivially selfdefeatfree have become a safe option for designing weak semantics.

This widens the possibilities for choosing efficient defeat criteria without the risk

of selfdefeating extensions.
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Proposition 4.5. Defcf and Deflub are strictly selfdefeatfree. Defδ is selfdefeat-

free for any δ ∈ {c, naa, nua, cog}.

The proof is omitted, the statements can be deduced from the respective defini-

tions of the defeat operators with reasonable effort. For selfdefeatfree operators

aggressiveness coincides with weakness, because they only defeat potential threats

for some E while E itself is guaranteed to be included in Freeδ(E). Note that it is

enough for the more aggressive operator to be selfdefeatfree in order to be weaker

because an operator which is less aggressive than a selfdefeatfree operator has to

be selfdefeatfree, too.

Proposition 4.6. Let δ, ε be defeat operators. If δ is selfdefeatfree and at least as

aggressive as ε then δ is at least as weak as ε.

Proof. Let F = (A,R) and E ⊆ A. If E ∈ adε, E is conflictfree. Since δ is

self-defeat free, E ⊆ Freeδ(E) and since δ is at least as aggressive as ε it follows

that Freeδ(E) ⊆ Freeε(E). Therefore if E is unattacked in Freeε(E) it is also

unattacked in Freeδ(E) so E ⊆ χδ.

With Defcf being the most aggressive strictly selfdefeatfree defeat operator we now

have a formal account for the statement that the conflictfree semantics adcf has

the weakest defense concept. The minimal weakness of Defcf also follows directly

from the conflictfreeness of admissible extensions in general (Theorem 3.10). The

c-admissible semantics on the other hand has been shown to be weaker than total

defeat. Classic defense is therefore just one defense concept among others. The

nonetheless important containment of adc in adnua and adlub can be shown as a

consequence of Prop 4.6.

Proof for weakenings of c-admissibility. Since both Deflub and Defnua are selfde-

featfree, it follows from Prop. 4.6 that Defnua and Deflub are at least as weak as

Defc because Defc(E) = E+ ⊆ Defnua for any E ⊆ A of any F = (A,R) ∈ UF .

In case of Deflub we can consider the strictly selfdefeatfree version of classic defeat

instead, Defc′(E) = E+ \E. For any conflictfree E we have Defc′(E) = Defc and

since admissible extension are always conflictfree it follows that adc
′
(F ) = adc(F )

for any F ∈ UF . But for Defc′ it clearly holds that Defc′(E) = (E+ \ E) *
(grc(FE) ∪ E) so Defc′ is at least as weak as Deflub by Prop. 4.6 and thus

adc(F ) ⊆ adlub(F ) for all F ∈ UF .

Both semantics are strictly weaker because for F = ({a, b}, {(a, a), (a, b)}) we have

{b} ∈ adlub(F ) and adnua(F ) but not in adc(F ).
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We conclude this section by providing the <w-order among the defeat operators

from Chapter 3.

Theorem 4.7. Defcf <w Deflub <w Defnua, Defnaa <w Defcog <w Defc

Proof. With Prop. 4.5 this amounts to comparing aggressiveness. All operators

defeat E+(at least for conflictfree E), so we can focus on the defeat within the

reduct. Defcf ≤w Deflub is trivial, because all defeat-based semantics are con-

flictfree. Self-defeaters are not conflictfree and therefore not naa-admissible so

Defcog(E) ⊆ Defnaa(E) for all E ∈ cf(F ), F = (A,R) ∈ UF , the same applies to

Defnua. Defcog ≤w Defc was already shown in Prop. 4.2.

(Deflub ≤a Defnua) The c-grounded extension of the reduct is always nua-admissible

and the arguments attacked by the c-grounded extension cannot be nua-admissible

because the c-grounded extension is recursively constructed from unattacked argu-

ments. Therefore no attacker of grc(FE) could nua-defend itself in the reduct, so

the arguments of grc(FE) are never nua-defeated. Since Deflub defeats everything

except for grc(FE), it is thus at least as aggressive as Defnua. A similar argument

can be used to show Deflub ≤a Defnaa.
Example 2.41 can serve for the strictly weaker part in the first 3 cases, Example

2.2 for Defcog <w Defc.

As the following counterexample shows, the two recursive defeat operators Defnaa

and Defnua are incomparable. On the one hand the singleton {c} is nua-admissible

but not naa-admissible. On the other hand the singleton {x} is naa-admissible

because both {t1} and {t1, c} have attackers they cannot naa-defeat in F {x}, so

x has no naa-admissible attacker. Under nua-defeat, however, the singleton {t1}
can defeat t3, because t3 is attacked by the nua-admissible c in F {x}

{t1} , so t1 is

a nua-admissible attacker. Its only attacker t3 is not nua-admissible because it

cannot be defended against t2. Therefore t1 is not nua-defeated by {x} so {x} is

not nua-admissible.

Counterexample 4.8.

t1 t3

t2 a b

cx
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4.2 Monotonicity

The following sections each examine a property of the Γ-Operator for the general

case - monotonicity, the Fundamental Lemma and additivity of defeat. We start

with monotonicity because the monotonicity of a defense operator implies the

generalized Fundamental Lemma under our defense notion (since defended sets

are always conflictfree). Monotonicity originates from the mathematical field of

Analysis. In the context of lattice theory it is defined for any function on a poset2

as the following property.

Definition 4.9. Let (P,≤) be a poset. A unary Operator op : P → P on P is

monotonic iff ∀ x, y ∈ P : x ≤ y ⇒ op(x) ≤ op(y)3

The poset in question is in our case (2A,⊆), the powerset of the set of arguments

for an AF F = (A,R) with set inclusion as a partial order. We already noted

that the Γ-Operator is monotonic on this poset for any F . Other examples include

some of our defeat operators.

Example 4.10. Let F = (A,R) be an AF. Then Defc and Defcog are monotonic

on (2A,⊆).

Monotonic defeat operators are interesting but not exactly delivering when it comes

to the properties of the resulting semantics. For one thing monotonicity tends to

get in conflict with being selfdefeatfree. The bigger the argument set the less

options for structurally motivated defeat are left. Monotonicity backwardly limits

the defeat options for all subsets of such a big argument set which is why it

only makes sense for stronger semantics to be monotonic. Lub-defeat for example

allows extensions to defeat arguments they could also take in - a direct clash

between monotonicity and selfdefeatfreeness. However, monotonicity is highly

relevant when it comes to the defense operators. The reason behind this is the

Knaster-Tarski-Theorem which guarantees the existence and uniqueness of both

a minimal and a maximal fixpoint for monotonic operators on complete lattices4

and with set inclusion as our partial order completeness is given for (2A,⊆) with

the standard cut and union operations on sets as the upper and lower bounds.

Theorem 4.11 (Knaster-Tarski-Theorem). For any monotonic op : P → P on a

complete lattice (P,≤) the set of all fixpoints Fop(P ) := {p ∈ P | p = op(p)} is a

complete lattice, too.5

2more generally also between posets
3 [Tarski, 1955]
4A complete lattice is a poset where every subset has a least upper and greatest lower bound
5This theorem has been proven by Tarski in [Tarski, 1955]
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So under a monotonic defense operator the existence and uniqueness of a grounded

extension is guaranteed, like for the classic Γ-Operator, and by implication the ex-

istence of complete extensions in general is assured. Moreover, a monotonic defense

operator also yields a unique maximal fixpoint because, unlike the classic approach,

conflictfreeness is not a seperate criterion under the new defense notion. We will

therefore now examine under which conditions a defense operator is monotonic.

Proposition 4.12. Let F = (A,R) be an AF and let δ be an arbitrary defeat

operator. Then χδ is monotonic iff for any E,E ′ ∈ 2A with E ′ ⊆ E:

1. (χδ(E
′))− ⊆ δ(E).

2. δ(E) ∩ χδ(E ′) = ∅

We want E to defend χδ(E
′) so χδ(E

′) has to stay unattacked in Freeδ(E). To-

wards this end two conditions have to be fulfilled, (2) guarantees χδ(E
′) is con-

tained in Freeδ(E) and (1) that it is unattacked. On the defeat level these condi-

tions come down to the following:

Proposition 4.13. Let F = (A,R) be an AF and let δ be an arbitrary defeat

operator. Then χδ is monotonic iff for any E,E ′ ∈ 2A with E ′ ⊆ E and for any

argument a ∈ A: If {a}− ⊆ δ(E ′) ∧ a /∈ δ(E ′) then {a}− ⊆ δ(E) ∧ a /∈ δ(E)

Proof. Both propositions follow from χδ(E
′) = {a ∈ A | {a}− ⊆ δ(E ′) ∧ a /∈

δ(E ′)}.

As the proof says, we need to protect exactly those arguments from defeat through

E which are not defeated by E ′ while having all their attackers defeated by it. Note

that δ does not have to be monotonic and that at the same time monotonicity of δ

is not sufficient for this. For example χc is not monotonic because the conflictfree

subsets of a set E may defend themselves while the set E might end up defeating

them e.g. in the case E = {a, b} in Example 2.22. As just demonstrated the classic

defense operator under the new defense notion is no longer monotonic and classic

defense is no special case in this regard. It turns out monotonicity of χδ imposes

a strong limitation on the resulting semantics in general, namely:

Theorem 4.14. Let F = (A,R) be an AF and let δ be a defeat operator satisfying

χδ(E
′) ⊆ χδ(E) for all E,E ′ ∈ 2Awith E ′ ⊆ E for the corresponding defense

operator. Then
⋃
E∈adδ(F )E is conflictfree.

Proof. By Theorem 3.10 we know that χδ(A) is always conflictfree. Now for any

extension E ∈ adδ(F ) it holds that, E ⊆ A, so χδ(E) ⊆ χδ(A) and since E is

admissible we have E ⊆ χδ(E) ⊆ χδ(A). So all admissible extensions are subsets

of the conflictfree χδ(A) and thus their union is, too.



52

In short the set of credulously accepted arguments under a monotonic defense

operater χδ is always conflictfree, which also means no two extensions under χδ are

in conflict with each other. If that holds it is no longer surprising to have a unique

maximal complete extension. But the resulting semantics end up being trivial.

Semantics induced by constant defeat operators for example, like the following.

Example 4.15. The empty defeat operator Def∅(F,E) = ∅ induces a constant

and thus monotonic defense operator, χ∅(E) = {a ∈ A | a unattacked} the set of

all unattacked arguments for any E ∈ A, F = (A,R) ∈ UF . This set is then the

only complete, preferred and grounded extension.

So monotonicity of the defense operator leaves no room for ambiguity in complete

extensions (and also not in admissible extensions). A consequence of this is that

the Knaster-Tarski Fixpoint-Theorem does not apply to any defense operator that

yields conflicting extensions under our defense notion which includes the classic

semantics and all four weak semantics investigated here. To obtain similar results

to Knaster-Tarski for semantics which allow conflicting extensions it makes sense

to ask for a monotonic Freeδ.

Proposition 4.16. Let F = (A,R) be an AF and let δ be an arbitrary Defeat

Operator. Then Freeδ is monotonic iff δ is antimonotonic i.e. for all E,E ′ ∈ 2A

with E ′ ⊆ E it holds that δ(E) ⊆ δ(E ′).

Proof. Follows directly from the definition of Freeδ(E) := A \ δ(E).

Antimonotonic defeat mashes well with selfdefeatfree operators but not so well with

classic defeat which is included in one form or another in all four weak semantics

considered in this work (see the counterexample below). So far the only reasonable

example for an antimonotonic defeat operator is the cf-semantics.

Example 4.17. Freecf is monotonic because Defcf (E) = A \ E, the cf-defeat

operator, is clearly antimonotonic.

Proposition 4.18. Freeδ is not monotonic for δ ∈ {naa, lub, nua, cog}

Counterexample 4.19. Example 2.2 is a counterexample for this.

Freeδ(b) = {a, b} + {a, c} = Freeδ(∅) for δ ∈ naa, lub, nua. For cogent semantics

we even have Freecog(∅) = {a, b, c}.

Conclusively one can say that monotonicity is too restrictive in combination with

our defeat notion to be a valuable property for any of the operators involved. We

will therefore investigate another option to guarantee the existence of complete

extensions in the next section - the Fundamental Lemma.
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4.3 Generalizing the Fundamental Lemma

If lattice theory cannot guarantee the existence of complete extensions, an iteration

algorithm is our alternative of first choice. In the classic case the Fundamental

Lemma (Prop. 2.23) is the foundation of iterating the Γ-Operator on admissible

extensions. It can be generalized to the following property for defeat-based defense

operators:

Definition 4.20 (General Fundamental Lemma). A defeat operator δ satisfies the

generalized Fundamental Lemma iff E ⊆ E ′ ⊆ χδ(E) implies χδ(E) ⊆ χδ(E
′) for

all E,E ′ ⊆ A, F = (A,R) ∈ UF .

The conclusion of our generalized Fundamental Lemma is actually twofold. Ob-

viously all arguments defended by E are still defended by E ′. Indirectly, that

includes E ′ being defended by E ′ so the δ-admissibility of E ′ is also guaranteed

by the conclusion. These conclusions correspond to the two conclusions of the

original lemma, both admissibility and defended arguments are maintained under

adding defended arguments to an extension. Integrating conflictfreeness in our

defense notion has again simplified things. Once a fixpoint is reached by iterating

the defense operator that fixpoint is guaranteed to be a complete extension even

for non-classic defeat. This is not trivial because under an arbitrary defeat notion

conflictfreeness of E ′ cannot be reduced to the conflictfreeness of E like in the

classic case where attack is defeat. The generalized Fundamental Lemma divides

the semantics introduced in two groups. The non-recursive semantics satisfy it,

the recursive do not.

Proposition 4.21. Defc, Defcog and Deflub satisfy the generalized Fundamental

Lemma, while Defnaa and Defnua do not.

Proof. Let E,E ′ ⊆ A, F = (A,R) ∈ UF such that E ⊆ E ′ ⊆ χδ(E).

(δ = Defc) Any a ∈ χc(E) is unattacked in Freec(E) and since E ′ ⊆ Freec(E)

a is not attacked by E ′ in particular, so χc(E) ⊆ Freec(E
′). Because E ⊆ E ′

and Defc is monotonic Freec(E
′) ⊆ Freec(E) so every unattacked argument in

Freec(E) is unattacked in Freec(E
′).

(δ = Defcog) The same as the classic case, because all self-attackers are defeated

by any E.

(δ = Deflub) For an lub-admissible E the set Freelub(E) = E ∪ grc(FE) is con-

flictfree, so E ′ ∩E ′+ = ∅. Because E ′ \E ⊆ grc(FE) it follows by the definition of

c-grounded that grc(FE) \ (E ′ \ E) = grc(FE′
). But then χlub(E) = χlub(E

′), so

the generalized Fundamental Lemma is satisfied.



54

For Defnaa resp. Defnua Example 2.44 with E = ∅ and E ′ = {a, b} suffices as a

counterexample.

For defeat operators satisfying the generalized Fundamental Lemma we can al-

ways construct a complete superset for any admissible extension by iterating the

corresponding defense operator. Since the empty set is always admissible, this

guarantees the existence of at least one complete extension for any AF F ∈ UF ,

so the grounded semantics is well-defined.

Proposition 4.22. Let F = (A,R) be an AF. If δ satisfies the generalized Fun-

damental Lemma coδ(F ) is not empty and for any E ∈ adδ exists a δ-complete

superset.

Proof. If E ′ ⊆ χδ(E) and χδ(E) ⊆ χδ(E
′) then also E ′ ⊆ χδ(E

′) so E ′ is δ-

admissible. Since the generalized Fundamental Lemma holds for all admissible

E this argument can be repeated for a proper superset of E ′ in χδ(E
′) until a

fixpoint E ′ = χδ(E
′) is reached. For finite AFs the existence of such a fixpoint

is guaranteed. As the empty set is always δ-admissible, at least one δ-complete

extension must therefore exist.

Note that the generalized Fundamental Lemma does not imply the single-status of

the resp. grounded semantics. A counterexample for this is what we call reverse

defeat.

Definition 4.23 (reverse defeat). The reverse defeat operator is defined for any

F = (A,R) ∈ UF and any E ⊆ A by

Defrev(F,E) := {a ∈ A | a→ E}

The unique semantics family induced by reverse defeat is very similar to conflictfree

semantics but has a nontrivial complete semantics and its grounded semantics is

not single-status.

Proposition 4.24. For all F ∈ UF it holds that adrev(F ) = adcf (F ) and pref rev(F ) =

na(F ), but there exist some AF such that corev(F ) ⊂ adrev(F ) and in some cases

grrev(F ) 6= {∅} and rev-grounded extensions are not always unique.

Proof. If E is not conflictfree it defeats the attacking arguments it contains, so

E * Freerev(E) and thus not rev-admissible. If E is conflictfree, it defeats all

outer attackers, so it is unattacked in Freerev(E). The rev-preferred extensions

are thus the maximal conflictfree sets. For a rev-admissible extension that is

not rev-complete consider Example 2.2. where the empty set is conflictfree but

defeats no arguments and therefore defends a. So {a} is rev-grounded. Since {b}
is conflictfree and defeats a, {b} is another rev-grounded extension.
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The reverse defeat operator satisfies the generalized Fundamental Lemma because

E ⊆ E ′ implies E− ⊆ E ′− and thanks to the conflictfreeness of χrev(E) (Theorem

3.10) there are no conflicts among E ′ to be feared so defense is maintained. But

Example 2.2 shows there can be multiple rev-grounded extensions. So unlike

the Knaster-Tarski-Theorem the generalized Fundamental Lemma is not sufficient

to guarantee the single-status of the grounded semantics although it guarantees

the existence of grounded extensions. Another consequence from the generalized

Fundamental Lemma is that preferred extensions are always complete because all

admissible extensions have complete supersets.

Corollary 4.25. Let δ be a defeat operator. If δ satisfies the generalized Funda-

mental Lemma then pref δ(F ) = {E ∈ coδ(F ) | E ⊆ −maximal} for all F ∈ UF .

Proof. On the one hand a δ-complete extension is always δ-admissible, so it has

a δ-preferred superset if it is not δ-preferred itself. On the other hand by Prop.

4.22 a δ-preferred E extension is δ-admissible, so it has a δ-complete superset.

Since preferred extensions cannot have proper admissible supersets, E has to be

δ-complete itself.

The interesting part about this Corollary is that the generalized Fundamental

Lemma is not necessary for it. Both Defnaa and Defnua do not satisfy the lemma.

Nonetheless Defnaa has only complete preferred extensions. In contrast there

exist nua-preferred extensions which are not nua-complete like for Example 3.31,

so completeness of preferred extensions does not hold for any defeat operator.

This hints at the existence of a weaker condition for the equality in Cor. 4.25. It

probably has to do with the modularization property but up to this point the true

nature of such a condition remains unclear.
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4.4 Singleton-additivity

Computational complexity is yet another topic which did not fit in the limited

scope of this work. The complexity of a defeat-based semantics of course depends

on the resp. defeat operator. Thus, without going into detail, the complexity

of defeat operators makes a huge difference under the new defense notion. A

convenient property in this regard is singleton-additivity.

Definition 4.26 (singleton-additivity). Let F = (A,R) be an AF, op : 2A → 2A

an operator on the set of argument sets. op is singleton-additive iff for all E ⊆ A6

op(E) =
⋃
a∈E op({a})

Defeat operators satisfying this property can be defined on argument-level. The

defeated arguments by a set E are exactly those defeated by its members. This is

yet another property inherent to the classic concept defense by attack. Singleton-

additivity also applies to cogent defeat, if the empty set is handled as an exception.

If our goal is ignoring self-attackers on top of classic defeat, cogent semantics

therefore can most likely not be topped efficiency-wise.

Proposition 4.27. Defc is singleton-additive, Defcog is singleton-additive for

nonempty sets only and Defnaa, Deflub and Defnua are not singleton-additive.

Proof. Defc(E) = E+ =
⋃
a∈E{a}+ and for cogent semantics the self-attackers

are defeated by any argument on its own so they are included in the union of

all Defcog({a}). But since the epmty set also defeats all selfattackers, we have

Defcog(∅) 6= ∅ =
⋃
a∈∅Defcog({a}), so Defcog is not singleton-additive for the

empty set.

For the other three semantics think of the following counterexample.

Counterexample 4.28. Example 2.44 continued. There {a, b} no longer defeats

b for any of these defeat operators, while {a} alone does.

Singleton-additivity is not only relevant when it comes to complexity. On a more

conceptual level it also demonstrates how much a defeat operator takes the struc-

ture of the remaining AF A \E into consideration when determining the defeated

arguments. Recursive semantics are very meticulous in this regard, any little

change of the reduct can have an impact on e.g. the arguments defeated under

nua-defeat. As already demonstrated with the generalized Fundamental Lemma

6The range of applications is widened if the condition E 6= ∅ is added, from a practical point

of view this should not cause any major problems
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this makes adding arguments while maintaining admissibility very difficult. In

case of naa-semantics modularization provides a certain degree of partitioning.

The generalization of modularization for arbitrary defeat operators might be help-

ful to gain a better understanding of such structure-sensitive defeat operators in

the future. In contrast singleton-additivity for defense operators leads us right

back to our monotonicity problem of allowing no conflicting extensions.

Proposition 4.29. Let F = (A,R) be an AF and op : 2A → 2A an operator.

If op is singleton-additive it is also monotonic.

Proof. The union of sets is monotonic.



Chapter 5

Defense-related principles for

weak semantics

The original purpose of this thesis was to find principles suited for weak argumen-

tation and to probe existing semantics for them. Chapter 5 is dedicated to this

task. The focus of our new principles shall again be the defense behavior and the

accepted arguments instead of characterizing the form of the semantics with prop-

erties like single-status, reinstatement or I-maximality. Relevant principles already

in existence are directionality, modularization and unattack inclusion. Their focus

is an intuitive interpretation of the AF-structure by a semantics. Directionality

for instance grasps the intuition that the acceptability of an argument a is only

influenced by arguments with a path to a.

5.1 Acceptance by default

Dondio and Longo take up the in dubio pro reo principle as their motivation to

construct weak semantics based on Undecidedness Blocking over SCC-recursive

algorithms in [Dondio and Longo, 2018]. Although other approaches to weak

semantics do not directly mention in dubio pro reo they, too, are motivated by

accepting arguments whenever no good reason for their rejection is available. The

idea is something akin to stable semantics, but on the semantics level instead of

single extensions. Arguments which are not creduously accepted by a semantics

should at least be attacked by accepted arguments. We summarize this line of

thinking as default acceptance. Default acceptance can be considered the central

objective in the construction of weak semantics. In order to conduct a comparative

study of weak semantics a formalization of this principle is therefore desirable.

58
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As a first proposal, we translate the principle as is: An argument should be ac-

cepted if none of its attackers are acceptable.

Definition 5.1 (primitive acceptance by default). A semantics ς satisfies the

principle of primitive acceptance by default iff for any AF F = (A,R) and any

argument a ∈ A: If b /∈ext ς(F ) for all attackers b ∈ {a}− of a then a ∈ext ς(F ).

The problem with this direct approach becomes obvious from the reverse state-

ment.

Proposition 5.2 (acceptance by default over attacks). A semantics ς satisfies

the principle of primitive acceptance by default iff for any AF F = (A,R) and any

argument a ∈ A: If a /∈ext ς(F ) then there exists an E ∈ ς(F ) such that E → a.

Example 5.3. In Example 2.41 a is not accepted by, for instance, lub-semantics

despite having only c as an attacker which is also not accepted.

In cases like Example 5.3 acceptance leads to a contradiction. An argument ends

up being inacceptable not due to a legitimate attacker but due to the structure

of its conflicts with other arguments. Dondio and Longo solve this dilemma by

demanding that the inacceptance of an attacker b of a is only legit if it is not

related to a and consequently proceed with SCC-recursive semantics.

We need not make limitations like this if the semantics can be defined over a defeat

operator. Instead of working with direct attacks on a we argue it suffices to show

that a is defeated by an accepted extension.

Definition 5.4 (acceptance by default over defeat). A semantics ς satisfies the

principle of acceptance by default iff for any AF F = (A,R) and any argument

a ∈ A: If a /∈ext ς(F ) then there exists an E ∈ ς(F ) such that a ∈ Def ς(E).

This generalization can be justified by the intuitive principle of rejecting arguments

that one can successfully defend against. If and only if an accepted extension con-

siders an argument defeated we have a good enough reason to reject that argument.

All arguments not satisfying this condition should be accepted. Note that we do

not ask for the reverse to be true, that is, we do not want all defeated arguments

to be inacceptable.

We will now examine the four weak semantics introduced, as well as classic and

conflictfree semantics for reference, on whether they satisfy defeat-based default

acceptance. It makes little sense to ask this property of a grounded semantics.

The other non-classic semantics in this work mostly satisfy default acceptance,

except for cogent semantics. Since cogent semantics only rejects self-attackers and
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arguments directly attacked by the extension in question it cannot explain why

the arguments in Example 5.3 are not acceptable. And of course classic semantics

does not satisfy the principle for the same reason.

Proposition 5.5.

I adnaa, conaa, prefnaa, adnua, all four lub- and all four cf-semantics satisfy

the principle of acceptance by default.

II grnaa and all four c- as well as all four cog-semantics do not.

III prefnua, conua and grnua are an open question.

Proof. For adnaa and adnua every argument a /∈
⋃
E∈ς(F )E is an element of Defς(∅)

and since ∅ is always admissible, a is defeated by an admissible extension. For naa-

semantics the status of not being naa-admissible is hereditary in the reducts of

naa-admissible extensions, so conaa and prefnaa satisfy the principle too. In more

detail: First consider that all naa-admissible arguments are also naa-complete and

naa-preferred, because naa-preferred extensions are the maximal naa-admissible

extensions and are proven to be naa-complete. Now any argument that is not naa-

admissible is either directly attacked by or not naa-admissible in the reduct of any

naa-admissible extension (that includes naa-complete and -preferred extensions as

special cases) because of the modularization property. Because if a non-admissible

argument a would be naa-admissible in the reduct of an naa-admissible E, the

join of E and the naa-admissible extension containing a in the reduct would be

naa-admissible in the original AF. Contradiction.

For lub-semantics we know that the empty set defeats every argument that is not

in grc(F ) and that grc(F ) is lub-admissible. The lub-grounded semantics is the

classic grounded, but with a different defeat operator. If grlub(F grc(F )) was not

empty, grc(F ) would not be complete, so grlub satisfies the principle. Since the

lub-grounded extension is complete, colub satisfies the principle too.

In case of conflictfree semantics we defeat every argument that is not a member

of the extension in question, so Defcf (∅) = A, i.e. the empty set defeats all

arguments. For naive semantics every argument which is not a self-attacker is

contained in at least one naive extension and every self-attacker is defeated by any

naive extension.

Counterexample 5.6. For classic and cogent semantics consider Example 2.41.

For grnaa consider Example 2.22 as a counterexample, where the only naa-grounded

extension ∅ does not defeat neither a nor b.
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The difference defining default acceptance with defeat instead of attack makes

can be seen in the lub-grounded semantics. It yields the same extensions as the

classic grounded semantics but in contrast to it grlub satisfies default acceptance

because it defeats more arguments. The tendency is the weaker the semantics

the easier it is to satisfy default acceptance with cf-semantics implementing the

principle as it is in Defcf . The two recursive semantics are striking a tough balance

between defeating and accepting arguments e.g. the naa-grounded semantics is

skeptical enough not to satisfy default acceptance, while conaa proves to be a

proper completion of adnaa in this regard, too. conua and grnua would satisfy the

principle if such extensions always existed (which is an open question) because

an nua-complete extension must include every argument it does not defeat. To

see this consider an nua-admissible extension D in the reduct of an nua-complete

extension E. If D is attacked by another nua-admissible extension in the reduct

it is defeated, if not, it is unattacked in Freenua(E). The positive results for the

weaker semantics in particular make default acceptance a principle for how weak

a semantics implementing weak argumentation should be at least.

5.2 The separation property

Default acceptance demands that unaccepted arguments have no influence on the

acceptance of arguments they attack. The separation property takes this on a

structural level and demands a reverse directionality in case unaccepted argu-

ments are the link between an unattacked set and the rest of an AF. In short a

semantics satisfying the separation property should treat the rest of the AF as if

those unaccepted attackers did not exist. What we mean by this will become clear

with the following example.

Example 5.7. Example 2.41 continued. If a semantics ς does not accept the

arguments a, b, c of the 3-cycle, d should be treated by ς the same way as an

unattacked argument and e as if it was attacked by an unattacked argument.

Lub-semantics for instance do not treat the arguments d, e as if the 3-cycle did

not exist and in Section 2.3.2 we describe this unintuitive behavior of unaccepted

arguments influencing the acceptance of others. We now formalize this intuition by

defining a weak and a strong version of immunity against attacks from unaccepted

members of an unattacked argument set.
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Definition 5.8 (SEP-I). A semantics ς satisfies the Separation Property I if for

any AF F = (A,R) and any unattacked subset F1 ⊆ A with ς(F1) = {∅} it holds

that ς(F \ F1) = ς(F ).

Definition 5.9 (SEP-II). A semantics ς satisfies the Separation Property II if for

any F = (A,R) and any unattacked subset F1 ⊆ A the following holds: If for

every a ∈ F1 with a→ (F \ F1) it holds that a /∈ext ς(F1), then

ς(F \ F1) = {E ∩ (A \ F1) | E ∈ ς(F )}

Note that SEP-II implies SEP-I, because when all members of the unattacked set

are unacceptable this includes the arguments attacking the rest of the AF. The

parallels to directionality(see Def. 2.32) are easy to see and intended. For exam-

ple, to make sure that the unacceptability of the arguments in F1 is independent

from the rest of the AF we apply the semantics in question directly on F1. By

doing this we can check if the semantics in question handles the setting of an un-

acceptable unattacked set (unacceptable attackers from this set resp.) as if it was

directional even if it is not. Indeed there exist semantics which satisfy separation

but not directionality, e.g. the naa-complete semantics. This is partly due to the

directionality of adnaa and partly due to modularization. Let us start with proving

both separation properties hold for the naa-admissible semantics.

Proposition 5.10. adnaa satisfies both SEP-II and SEP-I.

Proof. This will be proven for SEP-II by induction over the size of F2 := F \ F1,

SEP-I is then included. The base case F2 = ∅ is trivial.

Let #(F2) = n+ 1. The case E = ∅ is trivial too, so suppose E 6= ∅.Suppose first

E ∈ adnaa(F2).

Then FE together with F2
E satisfy the induction hypothesis, since F1 is not at-

tacked by F2. For any attacker a of E it now holds that either

a ∈ F1, then a /∈ext adnaa(FE) because of the directionality of adnaa

or a ∈ F2, then a /∈ext adnaa(FE) iff a /∈ext adnaa(F2
E) by the induction hypothesis

Therefore E ∈ adnaa(F ).

Suppose now E ∈ adnaa(F ). The case E ∩ F2 = ∅ is trivial, so suppose this is not

the case. The precondition of SEP-II implies both that E does not attack F2 and

that every a ∈ adnaa(F1
E) does not attack F2, because by Prop.2.53 all attackers

of F2 in F1 are still not naa-admissible in F1
E. So again FE and F2

E∩F2 satisfy the

induction hypothesis. Now because of modularization E ∩ F2 is naa-admissible in

FE∩F1 and because of the induction hypothesis it is therefore also naa-admissible

in F2.
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It is no surprise that the naa-admissible semantics satisfies separation because an

unattacked set remains unchanged in the reduct of extensions from the rest of the

AF. The interdefinition of naa-defeat and naa-admissibility carries this result on to

the naa-complete and naa-preferred semantics while the naa-grounded semantics

is too sceptical to satisfy separation.

Corollary 5.11. The naa-complete and naa-preferred semantics satisfy both SEP-

II and SEP-I, the naa-grounded satisfies neither.

Proof. Note first that the arguments credulously accepted under adnaa are precisely

the arguments accepted under prefnaa and conaa because naa-preferred extensions

are⊆-maximal in adnaa and always complete. For naa-preferred SEP-II now follows

directly from Prop.5.10, because ⊆-maximality is preserved under cuts.

Since adnaa satisfies SEP-II, Defnaa satisfies it too, in the sense that

Defnaa(E) ∩ (F2) = Defnaa(E ∩ F2) on F and on F2 respectively for any naa-

admissible E ∈ adnaa(F ), and if the defeat operator is the same so is the defense

operator. So if E is naa-complete on F then E∩F2 is naa-complete on F2. Suppose

now E is naa-complete on F2. Then by modularization E can be combined with

any naa-complete extension E ′ of F1 and E∪E ′ will be naa-complete (see in detail

in the proof of Cor.5.12).

For the naa-grounded semantics take Example 2.22 as a counterexample, the naa-

grounded extension of the unattacked F1 = {a, b} is the empty set, but c is not

naa-grounded in F even though it is unattacked in A \ F1.

The naa-grounded semantics would satisfy both properties if their condition was

for the naa-admissible extensions of F1 to be the empty set (contain no attackers

of F \ F1 resp.) instead. For defeat-based semantics this would be a reasonable

weakening, however we would like the separation property to stay as general as

possible, especially to make a comparison of naa-semantics with the SCC-recursive

semantics from [Dondio and Longo, 2021] possible in the future. The above proof

also demonstrates a limited directionality of the naa-complete semantics, namely:

Corollary 5.12. Let F = (A,R) be an AF, F1 ⊆ A unattacked and suppose no

attacker a ∈ F1 of F2 is naa-admissible.1 Then conaa(F1) = conaa(F ) ∩ F1.

So as long as no naa-complete argument of the unattacked set attacks the rest of

the AF conaa is directional. The core of the proof for this is the modularization

property. One could say the non-admissible arguments function as a barrier be-

tween the unattacked set and the rest of the AF and thus enable the combination

1Equivalently one can require a to not be naa-complete
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of the complete extensions of the unattacked set with admissible extensions of the

rest through modularization.

Proof. (⊇) can be proven with reasonable effort, use directionality of adnaa. For

the other direction suppose E ∈ conaa(F1) and let F2 = F \F1. F2 has at least one

naa-complete extension, because the empty set is naa-admissible and every naa-

admissible extension has an naa-preferred superset which is always naa-complete,

choose any such naa-complete extension E ′. Because of Prop.2.53 and 5.10 E ′ is

naa-admissible in FE. Suppose now E ′ was not naa-complete in FE. Then some

a ∈ χnaa(E ′) \ E ′ would exist. Because FEE
′

satisfies SEP-II too and E ′ is naa-

complete in F2, a /∈ F2. But because of directionality a cannot be in F1 either, or

E would not be naa-complete. So E ′ is naa-complete in FE and therefore E ∪ E ′

is naa-complete in F .

The separation property or the intuition behind it was part of our motivation for

introducing nua-semantics. It turns out adnua satisfies only SEP-I. This proves the

distinction between SEP-I and SEP-II is significant. As with default acceptance the

nua-complete semantics has to remain as an open question because the existence

of nua-complete extensions is not proven.

Proposition 5.13. adnua and prefnua satisfy SEP-I but none of the nua-semantics

satisfies SEP-II, grnua satisfies neither.

Proof. Since F1 is unattacked, for any E ⊆ F2 = A\F1 we have F1 ⊆ FE and F1 is

unattacked in this reduct. By directionality of adnua therefore F1 ∩ adnua(FE) = ∅
so all arguments of F1 are defeated by E, thus E ∈ adnua(F2) implies E ∈ adnua(F ).

For the other direction by the precondition of SEP-I, if E ∈ adnua, then E ⊆ F2

and FE now satisfies SEP-I by induction over the size of F2, so Defnua(E) on F

is F1 ∪Defnua(E) on F2, so E ∈ adnua(F2).

For prefnua we can apply ⊆-maximality like for prefnaa and Example 2.22 serves

again as a counterexample for grnua.

Next, let us provide a counterexample for SEP-II. Just like lub-semantics, nua-

semantics accept too much. The problem here though is not so much the propa-

gation of undecidedness but the missing modularization or, more specifically the

missing persistent non-admissibility resulting from it (Prop. 2.53). An argument

which is not nua-admissible might become nua-admissible in some reduct and this

interferes with the separation as the example demonstrates.
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Counterexample 5.14. In the following AF {c, f} is nua-admissible(and -complete,

and -preferred), while {f} is not in F↓{e,f}. The reason for this lies in {b} being

nua-admissible in F {c,f} and thus nua-defeating the attacker e of f .

a b

c

d

e f

SEP-I and SEP-II formalize concepts of non-interference which are not reached

neither by too strong nor too weak semantics. C-semantics do not satisfy them

because non-admissible attackers cannot be ignored, they accept too little. Neither

do Lub-semantics, because they also ignore attackers attacked by non-admissible

arguments and end up accepting too much. Therefore the separation property

may become a cornerstone for developing a balanced weak semantics.

Proposition 5.15. ad∗, co∗ gr∗ pref ∗ do not satisfy neither of the separation

properties for ∗ ∈ {c, cog, lub}

Proof. Example 2.41 serves as a counterexample, for c- and cog-semantics do not

accept d and as mentioned before lub-semantics accepts e, while all three semantics

reject the arguments of the unattacked 3-cycle a, b, c and would accept d and reject

e in F↓{d,e}.

5.3 Minimal acceptance and minimal rejection

If the separation property is about the right balance between ignoring and accept-

ing arguments, this section is about extremes. We discuss which arguments a weak

or more generally speaking a defense-oriented semantics has to accept no matter

what and which should always be rejected. A first approach towards this can be

found in [Baumann et al., 2020a]. There the authors propose a property called

unattack inclusion in order to characterize the c-grounded semantics in terms of

modularization.

Definition 5.16 (unattack inclusion). A semantics ς satisfies unattack inclusion

iff a unattacked implies a ∈ext ς(F ) for all a ∈ A, F = (A,R) ∈ UF .

ς satisfies skeptic unattack inclusion iff a unattacked implies a ∈ E for all E ∈ ς(F ).

Skeptic unattack inclusion was added by us as a form of minimal completeness (the

name strict is already used differently in [Baumann et al., 2020a]). It is hard to
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argue against the necessity for an argumentation semantics to accept unattacked

arguments. An unattacked argument is defended by default since it has no at-

tackers. Therefore it should at least be credulously accepted and any semantics

claiming to be complete defense-wise should include unattacked arguments in all

of its extensions because they are defended under any circumstances. We dare say

this intuition is shared by the majority of argumentation scientists. The question

now is how to guarantee unattack inclusion. Incase of defeat-based semantics a

simple criterion is sufficient for unattack inclusion (although not necessary) for

admissible semantics and a more specific criterion for sceptic unattack inclusion

suffices for defeat-based complete semantics.

Proposition 5.17. Let δ be a defeat operator.

I. If δ is selfdefeatfree, adδ satisfies unattack inclusion.

II. adδ never satisfies skeptic unattack inclusion.

III. If δ(E) ∩ {a ∈ A | a unattacked} = ∅ for all E ⊆ A, F = (A,R) ∈ UF , then

coδ satisfies skeptic unattack inclusion.

Proof. Let F = (A,R), a ∈ A. If a is unattacked than {a} is conflictfree and there-

fore by Def. 4.4 {a} ⊆ Freeδ({a}) for any selfdefeatfree δ. Since a is unattacked,

it follows {a} ⊆ χδ({a}), so a ∈ext adδ. The general admissiblity of the empty

set(3.9) is enough to disprove skeptic unattack inclusion. The condition of the sec-

ond statement ensures a unattacked implies a ∈ Freeδ(E) and unattacked there,

which in turn implies a ∈ χδ(E) = E for all E ∈ coδ.

Basically we only need to exclude unattacked arguments from defeat for the rele-

vant extensions. For simple unattack inclusion a selfdefeatfree operator is enough,

so it comes as no surprise the four weak admissible semantics investigated in this

work all satisfy unattack inclusion.2

Corollary 5.18.

I. adnaa, adlub, adnua, adcog satisfy unattack inclusion but not skeptic unattack

inclusion.

II. conaa, grnaa, prefnaa, colub, grlub, pref lub, cocog, grcog, pref cog satisfy skeptic unattack

inclusion.

Proof. (I) follows from Prop. 5.17 and Prop. 4.5.

(II) Since all semantics here are either complete or subsets of the resp. complete

2for the naa-semantics family this was already proven in [Baumann et al., 2020a]
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semantics, it is sufficient that the defeat operators in question satisfy Prop. 5.17

which can be seen from their resp. definitions.

Apart from the nua-complete and nua-grounded with their open existential issues

as well as the nua-preferred semantics with the missing completeness, the other

semantics with fixpoint extensions all satisfy skeptic unattack inclusion. We have

reasons to believe the same holds for the three nua-semantics but the proof for

this has to be left open at this point.

If we accept unattacked arguments why should we reject the arguments c-defended

by them? Whether all c-accepted arguments have to be accepted under a seman-

tics with a different defense concept might be open to discussion, but c-grounded

arguments are something one cannot reason against in a real discussion. We there-

fore argue they should receive the same treatment as unattacked arguments, at

least from semantics which aim to weaken c-defense.

Definition 5.19 (c-grounded inclusion). A semantics ς satisfies c-grounded inclu-

sion iff a ∈ext grc(F ) implies a ∈ext ς(F ) for all a ∈ A, F = (A,R) ∈ UF .

ς satisfies skeptic c-grounded inclusion iff a ∈ext grc(F ) implies a ∈ E for all

E ∈ ς(F ).

The four weak semantics in question here have no problem with this additional

restriction, the proof for the three nua-semantics has to wait, again. We also expect

the SCC-recursive semantics from [Dondio and Longo, 2021] to satisfy c-grounded

inclusion.

Proposition 5.20.

I. adnaa, adlub, adnua, adcog satisfy c-grounded inclusion but not skeptic c-grounded

inclusion.

II. conaa, grnaa, prefnaa, colub, grlub, pref lub, cocog, grcog, pref cog satisfy skeptic c-

grounded inclusion.

Proof. (I) follows from Prop. 4.2 as the c-grounded extension is c-admissible.

(II) We know all these semantics satisfy skeptic unattack inclusion and that the

defeat operators in question all defeat at least E+ for any E ∈ ς(F ), F = (A,R)

an AF, ς one of the above semantics. So unless they are defeated all arguments

which are c-defended solely by unattacked arguments are unattacked in Freeδ(E)

and therefore included in E if E is δ-complete. This can be repeated for every

iteration step of the c-grounded semantics. Suppose a ∈ext grc(F ) such that E

contains c-grounded attackers for each attacker of a. Then E cannot attack a
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because E is conflictfree, so a in FE and unattacked there. But then a ∈ χδ(E)

for the defeat operators of all the above semantics so a ∈ E because all are complete

semantics.

As important as it is to include indisputable arguments is it not to include indis-

putably defeated arguments. The question in which cases an argument has to be

rejected is not as straightforward as acceptance. We just made a strong case that c-

grounded arguments are as strongly defended as unattacked arguments. By doing

this we already commit ourselves to reject arguments attacked by unattacked or

c-grounded arguments and we deem this reasonable. A defense against unattacked

attackers in particular we find rather absurd, it undermines the integrity of the

attack relation as our basis for reasoning about a given AF. And for the same rea-

son for which we argued that c-grounded inclusion is a better option of minimal

acceptance we now propose c-grounded rejection as a minimal rejection criterion

for weak semantics (and unattack rejection as a weaker alternative).

Definition 5.21 (rejection). A semantics ς satisfies c-grounded rejection(unattack

rejection) iff for every F = (A,R) ∈ UF and every a ∈ A such that a is attacked

by some b ∈ext grc(F ) (b unattacked) it holds that a /∈ext ς(F ).

Note that this is the first property of Chapter 5 which is not satisfied by conflictfree

semantics (besides skeptic unattack/c-grounded inclusion). Default Acceptance,

Separation Property, unattack inclusion - conflictfree semantics do exceedingly

well as weak semantics. Their main fault lies exactly within rejection, they simply

accept too many arguments. The four weak semantics between cf- and c-semantics

on the other hand respect c-grounded rejection just as rigorously as they respect

c-grounded inclusion.

Proposition 5.22. All semantics based on the defeat operators Defc, Defcog, Deflub,

Defnaa and Defnua satisfy c-grounded (and unattack) rejection.

Proof. It is enough to show this for the resp. admissible semantics. Note first

that none of the defeat operators defeat unattacked arguments(for nua-semantics

this follows from any unattacked argument being an unattacked nua-admissible

extension by itself in any reduct), so unattack rejection is guaranteed. For c-

grounded rejection we use the strong admissibility of the c-grounded semantics.

Let F = (A,R), E ∈ ςδ(F ) where δ is one of the defeat operators above. Suppose

E is attacked by some a ∈ext grc(F ). Since such an a is no self-attacker, for E to

be c- or cog-admissible E has to attack a back. Strong admissiblity now implies

the existenc of some b ∈ext grc(F ), b 6= a that defends a by attacking E, so E has to
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defeat b too and then by strong admissibility some c ∈ext grc(F )\{a, b} exists that

attacks E and so on until E can no longer attack, ultimately till an unattacked

u ∈ext grc(F ) is reached. So E cannot be c- or cog-admissible if it is attacked by a

c-grounded argument. In case E ∈ adlub/adnaa/adnua(F ) if E is attacked by some

a ∈ext grc(F ), because of strong admissibility some c-grounded attacker b of E

will always remain in the reduct unless E is not conflictfree but then it is rejected.

Strong admissibility guarantees the existence of such a c-grounded attacker b that

is also c-grounded in the reduct. For naa-semantics and lub-semantics this suffices

to show the proposition. For nua-semantics we need an induction over the size of

F . The c-grounded extension of the reduct FE of any nonempty E ∈ adnua(F )

cannot be attacked by any nua-admissible extension in the reduct, because c-

grounded rejection is satisfied in the reduct according to the induction hypothesis

and c-admissibility states that the c-grounded extension of the reduct attacks every

argument it is attacked by. So E cannot defeat a c-grounded attacker that is also

c-grounded in the reduct, so E is not nua-admissible. Contradiction.

5.4 On the influence of defeated arguments

Our defense notion introduced in Chapter 3 relies heavily on the (correct) choice

of the defeat operator. Classic admissibility is a simple case in this regard, since

defeat coincides with attack. Weaker semantics have to make complex situational

rulings about which extensions are to be accepted and which not. Defense is not

always considered separately but together with other conditions extensions have to

satisfy (e.g. the original definition of lub-complete semantics). In these cases the

following criterion can be used to identify the defeated arguments under a certain

semantics as well as to validate potential/suggested defeat operators.

Definition 5.23 (defeat criterion). Let F = (A,R) be an AF and let ς be a

semantics. An argument a is defeated by an extension E ∈ ς(F ) w.r.t. ς iff

E ∈ ς(F ′) for any F ′ = (A,R ∪ add) with an additional set of attacks add ⊆
{(a, e) | e ∈ E} from a to E.3

3We presuppose that a is not part of the extension itself because otherwise this condition

would always lead to a violation of conflictfreeness. Since the extensions of a defeat operator

based semantics never defeat their own arguments(3.10) and since it would be strange for a

semantics to allow defeat within an extension, we believe this restriction is reasonable.
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The intuition behind this defeat criterion is that adding attacks from defeated

arguments should no longer be able to cause any damage to the extension they are

defeated by. This can be taken one step further by requesting that no attacks by

a defeated argument to whatever other argument cause a problem.

Definition 5.24 (irrelevance criterion). Let F = (A,R) be an AF and let ς be

a semantics. An argument a is rendered irrelevant by an extension E ∈ ς(F )

w.r.t. ς iff E ∈ ς(F ′) for any F ′ = (A,R ∪ add) with an additional set of attacks

add ⊆ {(a, b) | b ∈ A}.

While reduct-based semantics have no problem with the former, only cf-, c- and

cog-admissible semantics satisfy the later criterion. Again cogent semantics can

shine as a very stable weakening of classic defense.

Proposition 5.25. Let F = (A,R) be an AF and let δ ∈ {c, cf, naa, lub, nua, cog}.
Then for any E ∈ ςδ(F ), where ς ∈ {ad, co} and any a ∈ A it holds that a ∈ δ(E)

iff a satisfies the defeat criterion.

If δ ∈ {c, cf, cog} the irrelevance criterion can be used instead.

Proof. (⇐) Suppose a /∈ δ(F,E) for any of these defeat operators, then a ∈
Freeδ(E) and adding a single attack from a to E in F ′ would result in E being no

longer unattacked in Freeδ(E) and thus no longer δ-admissible (-complete, etc.).

Because adding an attack from a to E would not change the status of a in the

reduct the only cases in which no F ′ exists such that a /∈ δ(F ′, E) still holds are

those where a is the only member of E and the only way to add an attack is for

a to attack itself, but then E is no longer conflictfree and therefore also no longer

δ-admissible. Adding more options for F ′ with the irrelevance criterion does not

change anything for this direction of the proof.

(⇒) Suppose now a ∈ δ(F,E). Note that this implies a /∈ E by Theorem 3.10.

Then as long as δ(F,E) = δ(F ′, E) the δ-admissibility does not change, no matter

how many attacks from a are added, because E stays unattacked in Freeδ. So

the question is whether a and the other defeated arguments stay defeated in any

F ′. Starting with the semantics satifying irrelevance, Defcf asks only whether

a ∈ E or not and if a ∈ Defcf (E) then a /∈ E(same holds for any other defeated

argument b) and no amount of added attacks in F ′ can change that. The same

holds for Defc if a ∈ E+, adding attacks will not help, and for Defcog because

adding attacks from a neither change E+ nor the set of self-attackers (except that

a may become a self-attacker, but that does not change anything because then a

was in E+ to begin with).
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The cf-complete are cf-admissible extensions and the empty set is always the cf-

grounded extension. As for naive semantics, adding attacks outside of E can only

turn a conflictfree extension in a naive extension but not the other way around.

For c-complete the set of c-defended arguments depends only on E+ and since E is

c-admissible we can conclude from a ∈ Defc(E) that a is not c-defended by E, so

attacks from a will not change the completeness of E. The same applies to cocog.

For the other three semantics adding attacks wildly can cause a change in the

reduct F ′E and therefore in δ(F ′, E). Adding attacks on E, however, does not

change the reduct at all, whether a ∈ E+ or a ∈ FE. And if the reduct does not

change, δ(F,E) = δ(F ′, E) for any δ ∈ {naa, lub, nua} (and thus also E being or

not being a fixpoint does not change.)

We leave the respective grounded and preferred semantics as future work. The

two criteria demonstrate how helpful it is to distinguish between arguments that

are no threat to an extension and arguments that are actually defeated by it when

studying the behavior of (weak) semantics. In particular if one wants a concept of

not only admissibility but also defense this difference is of the utmost importance.

After reading the proof of Prop. 5.25 one might wonder if it is even possible to

not satisfy the defeat criterion with a defeat-based semantics. The answer is yes,

an intuitive example for this is the reverse-defeat semantics family introduced in

Def. 4.23.

An example of a not (yet) defeat-based semantics that violates the defeat criterion

is the c-grounded semantics when it is based on strong admissibility instead of

classic defense.4 SCC-semantics in general seem to be vulnerable in this regard

because their evaluation of an AF relies on the structural property that attacks

from one SCC to the other are unidirectional.

5.5 Duplication

Weak semantics take the structure of an AF into account when determining defeat

and acceptance. It therefore becomes nontrivial to check whether certain struc-

tures are handled consistently by them. Directionality or the separation property

are examples of structural properties we would intuitively expect from a (weak)

semantics. The property we introduce now examines how well-defined a semantics

is. The strength of the underlying defeat, if it exists, does not matter. We want

to investigate in this section if a semantics accepts arguments equally under equal

circumstances.

4see Def. 13 and 14 in [Baroni et al., 2011]
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In order to do this we introduce the notion of an argument double. A double of an

argument a has the same attack relations to other arguments as a. The result is

an AF with two (or more if wished) arguments in the exact same positions.

Definition 5.26 (argument double). Let F = (A,R) be an AF, a ∈ A. A double

of a is an argument db(a) such that for all b ∈ A, b 6= a:

1. b→ db(a) iff b→ a

2. db(a)→ b iff a→ b

3. db(a) attacks itself iff a attacks itself

We define Db(F, a) to be the AF resulting from adding a double of a to F .

Example 5.27. The AF Db(F, c) resulting from adding a double of c and the

according attacks to Example 2.22 is

a

b

c

db(c)

d

We now naturally would expect an argument and its double to defeat and defend

the same arguments, to belong to the same or at least symmetrical extensions and

so on. Most importantly the rest of the AF should not be evaluated differently

no matter how many doubles of an argument are added because argumentation

is about the relations between arguments not their numbers. For example with

c-grounded semantics it does not matter how many arguments you attack with, if

all those arguments are defeated by the same unattacked argument they carry no

weight. The behavior we would expect from a well-defined semantics confronted

with doubles can be summed up as follows.

Definition 5.28. A semantics ς is stable under duplication iff

ς(Db(F, a)) = {E | E ∈ ς(F ), a /∈ E} ∪ {E ∪ {db(a)} | E ∈ ς(F ), a ∈ E}.

holds for every F = (A,R) ∈ UF , a ∈ A.

We limit ourselves to the case where a and db(a) have to be in the same extensions

and leave the investigation of symmetric extensions for later work. With the

definition as it is we can only expect complete semantics and/or their subsets

to satisfy it. An adequate criterion for the defeat operator of such a complete

semantics is given below.
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Proposition 5.29. Let δ be a defeat operator. coδ is stable under duplication iff

δ(Db(F, a), E) =

{
δ(F,E) a /∈ δ(F,E)

δ(F,E) ∪ {db(a)} a ∈ δ(F,E)

for all E ⊆ A, F = (A,R) ∈ UF .

Proof. If db(a) is defeated iff a is defeated, then the unattacked set χδ(E) in

Freeδ(E) does not change for Db(F, a) except that db(a) might be included. Since

db(a) is attacked by the same arguments as a it is unattacked in Freeδ iff a is, so

a δ-complete extension has to contain it if it contains a.

As one would expect classic and cogent semantics have no problem with these

conditions. The three naa-semantics make the cut, too, because a double is only

defeated if the original is defeated under naa-defeat. This does not hold true for

colub or conua so both of them are not stable under duplication.

Corollary 5.30. coδ, pref δ and grδ are stable under duplication for δ ∈ {c, cog, naa},
colub and conua are not.

Proof. Let F = (A,R) and a ∈ A. Defcog satisfies Prop. 5.29, because db(a) is

attacked by the same arguments as a and is a self-attacker if a is, so it is defeated

(resp. defended) by some E if a is. This proof suffices for Defc too.

For Defnaa note that, since db(a) and a attack the same arguments, db(a) does not

attack any argument in Db(F, a){a} and the same holds for any E containing a but

not db(a). So for such an E we have Db(F, a)E
{db(a)}

= FE and E is naa-admissible

iff {db(a)} is naa-admissible in Db(F, a)E. So while Defnaa does not satisfy the

condition of Prop.5.29 (since a ∈ E is not defeated but db(a) is if both are attacked

by an naa-admissible attacker of the reduct) the result in this case is nonetheless

that db(a) is unattacked in Freenaa(E) if E is and therefore db(a) is included in any

naa-complete E containing a. For a /∈ E we have already demonstrated with the

previous case that db(a) is naa-admissible in Db(F, a)E iff a is not naa-admissible

in FE. Since both attack the same arguments in the reduct, E is a fixpoint in

Db(F, a) if it is in F .

Since minimality and maximality do not change by adding an argument to all

complete extensions containing a, the above argumentation applies to the resp.

preferred and grounded semantics too.

Example 5.27 can serve as a counterexample for conua and colub.

Counterexample 5.31. In Example 5.27 E = {c} is a da/lub-complete extension

that contains c but not db(c) because db(c) is da/lub-defeated by E.
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The problem with these two semantics is that their extensions defeat arguments

they could also take in. This can be solved by requesting maximality.

Proposition 5.32. grlub, pref lub and prefnua are stable under duplication.

Proof. In the proof for conaa we have shown that adding db(a) to E does not

impact the defeat status of the other arguments in the reduct, so adding db(a) to

an lub/nua-complete extension results in an lub/nua-complete extension which is

preferred to the original. On the other hand any E that cannot take a in, cannot

take db(a) in also. For grlub the proposition follows from grlub = grc.5

As always, an nua-semantics remains an open question, in this case grnua. Stability

under duplication suits semantics with little structural dependency in their defeat,

of course. The real challenge is to define a semantics as weak as possible under this

condition. Naa-semantics satisfy it, the SCC-recursive semantics of [Dondio and

Longo, 2021] are promising candidates. For future research this property could be

formulated in terms of symmetric extensions to examine admissible semantics. An

expansion of the concept to duplicating sets of arguments instead of arguments may

lead to even stricter restrictions on the operation of semantics or their operators on

structures and has the potential to deepen our understanding of recursive defense

concepts.

5see Section 5.2 of [Dondio and Longo, 2021]



Chapter 6

ASPIC and the rationality of

weak semantics

A lot of the discussed topics related to weak semantics circles around the ratio-

nality of ignoring attackers under certain circumstances. As mentioned at the

beginning of Section 2.3 the fortitude of Dung-style argumentation lies in its close

resemblance to the reasoning process of a human confronted with e.g. conflicting

information. The role of argumentation semantics is to model the evaluation of

these conflicts as closely as possible. The weak semantics introduced in this pa-

per have a case in point here by yielding results closer to intuitive reasoning than

c-semantics. The question is if these semantics can uphold the high standard of

soundness one expects from an argumentation system for a real world application.

For example, is a knowledge base derived with weak semantics consistent? When

it comes to testing semantics for rationality the rationality postulates introduced

in [Caminada and Amgoud, 2007] for the ASPIC Framework have received lots of

positive attention.

The basic idea of the ASPIC Framework is to model formulas of a logical language

as arguments and represent inconsistencies between them through the attack rela-

tion. Applying an argumentation semantics on the resulting AF shall then yield a

set of acceptable conclusions from the given formulas. In principle, the modeling

process with ASPIC follows three steps:

Input: A set of strict and a set of weak inference rules as well as a set of premises

1. Construct the AF from the given rule sets

2. Apply an argumentation semantics

3. Generate the set of acceptable conclusions from the acceptable arguments

Output: A set of conclusions

75
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In order for these conclusions to be of any use we need them to satisfy certain

criteria, e.g. consistency. The rationality postulates by [Caminada and Amgoud,

2007] propose three such criteria which are by now widely recognized. This chap-

ter investigates ways in which the weak semantics introduced in this work may

satisfy those postulates for ASPIC Frameworks and asks the question how they

can contribute to the formalism. In order to do this Section 6.1 first gives a formal

description of the ASPIC modeling process following [Modgil and Prakken, 2014].

Section 6.2 is dedicated to the rationality postulates from [Caminada and Am-

goud, 2007], how they were realized for c-semantics with ASPIC+ there and why

this approach fails for weak semantics. Section 6.3 then introduces a relatively

new ASPIC variation called Deductive ASPIC−, which was proposed in [Cramer

and Bhadra, 2020], and concludes this chapter by demonstrating how some of the

weak semantics can satisfy the postulates under this formalism and why some of

the others cannot.

6.1 ASPIC−

We start with some specifications a logical language we want to model with ASPIC

has to satisfy.

Definition 6.1 (logic prerequisites). Let L be a fixed (defeasible) logic with L the

set of all well-formed formulas under L and let L be closed under some (monadic)

negation ¬. An instance of a strict inference rule is denoted by p1, p2, ..., pn → q

with pi, q ∈ L for all i ∈ (1, ..., n), n ∈ N,1 an instance of a defeasible inference rule

by p1, .., pn ⇒ q. We use p = q to say that p and q represent the same well-formed

formula from L (syntactic equivalence).

ASPIC is intended for defeasible reasoning(there is no need for argumentation in

case of purely strict reasoning). The difference between defeasible inference rules

and strict ones is crucial for the definition of attacks between conflicting formulae.

A conclusion reached by applying defeasible rules may be doubted, one we arrived

at with strict rule applications only is indisputable. At most, one could question

the premises in the second case. For the formalism introduced here we refrain

from this and consider a given set of premises set in stone. The premises and the

formulae we derive from them are obvious candidates for arguments. In order to

define attacks between them we need our logic L to have some sort of negation,

a syntactic concept for conflicting formulae. For an easier and clearer handling of

these conflicts, a symmetric notation for negation is used.

1(1, ..., n) := {i ∈ N |1 ≤ i ≤ n} is the (ordered) set of the natural numbers from 1 to n
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Definition 6.2 (symmetric negation). For p, q ∈ L we define the symmetric nega-

tion function − : L→ L by −p := q and −q := p iff p = ¬q or q = ¬p.

We will now describe how to translate given formulae and inference rules of a logic

L into an AF with ASPIC−. We start with the arguments. In ASPIC arguments

have an inner structure, they do not only contain a formulae derived from the

given premises, but all steps of the inference process leading to said conclusion.

Arguments are constructed inductively, we start with the premises and then apply

the given strict and defeasible rules to successively generate all formulae resulting

from our premises.

Definition 6.3 (argument construction). Let P ⊆ L be a set of premises, S a set

of (instantiated) strict rules and D a set of (instantiated) defeasible rules. Then

for (P, S,D) the set of arguments A and the function Conc : A→ L which returns

for each argument its conclusion are inductively constructed by:

For p ∈ P , xp = [p] is an argument with conclusion Conc(xp) = p.

Let s ∈ S with s = p1, p2, ..., pn → c. If there are arguments x1, x2, ... ∈ A

such that Conc(xi) = pi, then xs = [x1, x2, ..., xn → c] is an argument with

Conc(xs) = c.

Let d ∈ D with d = p1, p2, ..., pn ⇒ c. If there are arguments x1, x2, ... ∈ A

such that Conc(xi) = pi, then xd = [x1, x2, ..., xn ⇒ c] is an argument with

Conc(xd) = c.

We say p, s or d is the top-rule of the resp. argument xp, xs or xd.

Note that, depending on S and D, this construction method may lead to an infinite

set of arguments.2 We will limit ourselves to finite ASPIC frameworks since some

of our weak semantics are well-defined on finite AFs only. For every argument

x ∈ A constructed the following properties are defined:

Definition 6.4 (argument structure). Let A be a set of arguments constructed

from a tuple (P, S,D). The functions Sub, StrictRules and DefRules are defined

by

Sub : A→ 2A with Sub(xp) = {xp} for any premise argument xp = [p],

Sub(xs) = xs ∪
⋃

1≤i≤n Sub(xi) for any argument xs = [x1, ..., xn → c]

Sub(xd) = xd ∪
⋃

1≤i≤n Sub(xi) for any argument xd = [x1, ..., xn ⇒ c]

2An input (P, S,D) with P = {q}, S = {s1 = q → p}, D = {d1 = p ⇒ q} has such an effect

since the rules s1 and d1 can be applied on each others conclusions in an infinite loop
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StrictRules : A→ 2S with StrictRules(xp) = ∅ for xp = [p]

StrictRules(xs) = s ∪
⋃
i StrictRules(xi) for xs = [[x1, ..., xn → c]

StrictRules(xd) =
⋃
i StrictRules(xi) for xd = [x1, ..., xn ⇒ c]

DefRules : A→ 2D with DefRules(xp) = ∅ for xp = [p]

DefRules(xs) =
⋃
iDefRules(xi) for xs = [[x1, ..., xn → c]

DefRules(xd) = d ∪
⋃
iDefRules(xi) for xd = [[x1, ..., xn ⇒ c]

We now provide a simple example of an argument construction under ASPIC−.

Example 6.5. Let P = {q}, S = {p → ¬p} and D = {q ⇒ p, q ⇒ t}. Then the

tuple (P, S,D) yields the arguments

[q], [[q]⇒ t], [[q]⇒ p], [[[q]⇒ p]→ ¬p]

E.g. for argument x = [[[q] ⇒ p] → ¬p] the top-rule is p → ¬p, its subarguments

are Sub(x) = {[q], [[q] ⇒ p], [[[q] ⇒ p] → ¬p]} and the strict/defeasible rules are

StrictRules(x) = {p→ ¬p} and DefRules(x) = {q ⇒ p} respectively.

In order to define the attack relation on such an argument set, the following dis-

tinction is needed:

Definition 6.6. (defeasible argument) An argument x is said to be strict iff

DefRules(x) = ∅, otherwise it is defeasible.

This allows us to restrict incoming attacks to the set of defeasible arguments, since

an argument consisting only of strict rules shall not be doubted. An attack from

an argument x to a defeasible argument y may now take one of two forms - Rebut

or Undercut.3 Informally x rebuts y if the conclusion of any subargument of x

conflicts with the conclusion of any subargument of y. Undercut on the other

hand is defined over a naming function.

Definition 6.7. (naming function) Let D be a set of instantiated defeasible rules.

A partial naming function n : D → L assigns to some defeasible rules d ∈ D

a formula p ∈ L as a name. The notation q : p1, ..., pn ⇒ c is used instead of

q = n(d) for d = (p1, ..., pn ⇒ c) ∈ D.

The idea is that a defeasible rules d is only applicable as long as the corresponding

formula n(d) has not been disproven. By reaching the conclusion ¬n(d) in a

subargument, x undercuts the application of the defeasible rule d in argument y.

We can now formulate the definition of attacks in ASPIC.

3We will exclude undermining attacks from the scope of this work, for details see [Modgil and

Prakken, 2014]
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Definition 6.8. (attack relation) Let (P, S,D(n)) be a tuple of premises, strict

rules, defeasible rules and a naming function and let A be the argument set con-

structed from them. For any x, y ∈ A we say x attacks y, (x, y) ∈ R iff y is a

defeasible argument and one of the following conditions applies:

Conc(x′) = −Conc(y′) for some x′ ∈ Sub(x), y′ ∈ Sub(y) (Rebut)

Conc(x′) = −n(d) for some x′ ∈ Sub(x) and some d ∈ DefRules(y) (Undercut)4

Let us generate the attack relation for our previous example with this definition.

Example 6.9. Let (P, S,D) be the same as in Example 6.5 and let a partial

naming function n be added to D: D(n) = {q ⇒ p, p : q ⇒ t} The resulting

ASPIC− framework F = (A,R) is then

[q]

[[[q]⇒ p]→ ¬p] [[q]⇒ p]

[[q]⇒ t]

The idea of weak semantics to enable an extension to defend itself against for

example self-attackers can become relevant for ASPIC frameworks too. In the

above example a self-attacker undercuts an otherwise acceptable defeasible argu-

ment ruling it unacceptable. We might want to avoid this, since the conclusion

¬p of the argument attacking the name p = n([[q]⇒ t]) is not acceptable, so one

could argue the defeasible rule q ⇒ t should not be rejected yet. The usefulness of

weak semantics in ASPIC lies exactly in those cases of unreasonable undercut. In

an AF with only rebut attacks on the other hand an argument can counterattack

such an unreasonable attacker, thus c-defending itself.5.

4In [Caminada and Amgoud, 2007] the attack relation is introduced by defining attacks first

and then defeat in terms of successful attack as the actual attack relation. Since the term defeat

is already used in the context of defeat operators in this work, successful attacks are introduced

directly as attacks here.
5It cannot defend itself in all cases under ASPIC+, but for reasons we will explain later, we

might not want it to defend itself in those cases anyway
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6.2 The rationality postulates

In [Caminada and Amgoud, 2007] the authors propose three properties for a se-

mantics used on ASPIC frameworks - the so called rationality postulates. Their

objective is to ensure certain logical standards for reasoning with ASPIC. Thus,

their main concern are the conclusions derived from the accepted arguments.

Definition 6.10. (conclusions) Let (P, S,D(n)) be a tuple of of premises, strict

and def. rules with a naming function and let F = (A,R) be the resulting ASPIC

framework. For a semantics ς we define the set of conclusions from some E ∈ ς(F )

to be Concs(E) = {Conc(x) | x ∈ E}.

The conclusions themselves are logical formulas again, so we need some logical

background first.

Definition 6.11. (closure) Let P ⊆ L be a set of formulas and S be a set of

(instantiated) strict rules. The closure ClS(P ) of P under S is recursively defined

as follows:

1. P ⊆ ClS(P )

2. If s = (p1, ..., pn → c) ∈ S and p1, ..., pn ∈ ClS(P ) then c ∈ ClS(P ).

P is closed under S iff P = ClS(P ).

Definition 6.12. (consistency) Let P ⊆ L, S a set of strict rules. P is consistent

iff p 6= −q for all p, q ∈ P .

S is consistent w.r.t. P iff P is indirectly consistent w.r.t. S iff ClS(P ) is consistent.

The rationality postulates themselves now simply apply these two principles to the

set of conclusions.

Definition 6.13. (rationality postulates) Let ς be a semantics and F = (A,R)

the ASPIC framework for some given (P, S,D(n)).

1. ς satisfies Direct Consistency iff Concs(E) is consistent for any extension

E ∈ ς(F ) and for E =
⋂
D∈ς(F )D the set of skeptically accepted arguments.

2. ς satisfies Closure iff Concs(E) = ClS(Concs(E)) for all E ∈ ς(F ) and for

E =
⋂
D∈ς(F )D.

3. ς satisfies Indirect Consistency iff ClS(Concs(E)) is consistent for all E ∈
ς(F ) and for E =

⋂
D∈ς(F )D.
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The ideal semantics for ASPIC according to the rationality postulates generates

consistent conclusions which are closed under strict rules and produce only consis-

tent formulas under them. From a logical perspective asking for these properties

makes a lot of sense. The representation of formulas with ASPIC and reasoning on

it with argumentation semantics amounts to applying a formal semantics to a given

logical syntax and of course we want a semantics satisfying soundness(consistency)

as well as completeness(closure). So in order to adequatly represent defeasible

reasoning with ASPIC frameworks the rationality postulates have to be respected.

Note that both forms of consistency usually require the set S to be consistent in

the first place, because strict arguments cannot attack each other in ASPIC. We

include some simple consequences of the postulates for later reference:

Proposition 6.14. Let ς be a semantics and F = (A,R) the ASPIC framework

for some given (P, S,D(n)).

I. If Concs(E) is consistent\closed\indirectly consistent for all E ∈ ς(F ) then

Concs(E) is directly consistent\closed\indirectly consistent for E =
⋂
D∈ς(F )D.

II. If ς satisfies Direct Consistency and Closure, it also satisfies Indirect Con-

sistency.

III. If ς is a conflictfree semantics and S is consistent w.r.t. P , ς satisfies Direct

Consistency.6

In [Caminada and Amgoud, 2007] it is shown, that none of the standard Dung-

style semantics satisfy Closure and Indirect Consistency in ASPIC−. We will

demosntrate this with the following counterexample for adc and most of the other

semantics examined in this work.7

Example 6.15. Consider again Example 6.9. The argument set E = {[q], [[q] ⇒
t], [[q]⇒ p]} is a c-,cog-,naa-,lub- and nua-preferred extension (and complete and

admissible for all these semantics as well as grounded for naa-, nua- and cog-

semantics). It does however not satisfy Closure, because the conclusion ¬p of the

strict rule p → ¬p is not included in Concs(E) while p is. And since ¬p = −p ∈
ClS(Concs(E)), E also violates Indirect Consistency.

For the c-grounded semantics a simple additional condition can be added to guar-

antee Closure and thus by Prop. 6.14 (II) also Indirect Consistency.

6The proof for these statements can be found in [Caminada and Amgoud, 2007]
7For a counterexample for grc(= grlub) see Example 4 in [Caminada and Amgoud, 2007]



82

Proposition 6.16. Given some (P, S,D(n)) the c-grounded extension of the re-

sulting ASPIC− framework F = (A,R) satisfies all three rationality postulates if

S is consistent w.r.t. P and closed under transpositions that is for any strict rule

s = (p1, ..., pn → c) ∈ S the set of its transpositions

Ts := {ti = (¬c, p1, ..., pi−1, pi+1, ..., pn → ¬pi) | 1 ≤ i ≤ n}

is included in the set of strict rules (Ts ⊆ S).

The solution proposed for c-semantics in general was to limit attacks to the direct

conclusions of defeasible rules. The idea is for certain arguments to be no longer

able to c-defend themselves. This was accomplished by refining the notion of

Rebut.

Definition 6.17 (Restricted Rebut). Let (P, S,D(n)) be the respective sets of

premises, strict and def. rules and let A be the resulting set of arguments. An

argument x ∈ A attacks an argument y ∈ A, (x, y) ∈ R iff y is a defeasible

argument and either x undercuts y or there exist a subargument of y with a

defeasible top-rule y′ = (p1, ..., pn ⇒ c) ∈ Sub(y) and a subargument x′ ∈ Sub(x)

such that Conc(x′) = −Conc(y′) then x restrictedly rebuts y.

So Rebut is further to only applied directly on an instance of a defeasible rule. Let

us apply this modification to our running example.

Example 6.18. Let (P, S,D(n)) be the same as in Example 6.9. Then the attack

from [[q]⇒ p] to [[[q]⇒ p]→ ¬p] is no longer allowed under Restricted Rebut.

[q]

[[[q]⇒ p]→ ¬p] [[q]⇒ p]

[[q]⇒ t]

illegal rebut

This restriction was adapted into the - by now widely acknowledged - ASPIC+

formalism, which succeeded ASPIC−. While it works nicely for c-semantics to

reduce the number of attacks, Restricted Rebut does not solve any part of the

problem for weak semantics as Example 6.18 shows. Even if the attack from

[[q] ⇒ p] to [[[q] ⇒ p] → ¬p] is deleted, [[q] ⇒ p] is still accepted under naa- and

any of the other weak semantics, because its only attacker is a self-attacker. It

becomes clear that, in order to accept [q]⇒ t but not [q]⇒ p, we need a different

approach to the problem of indirect inconsistency in extensions for weak semantics.
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6.3 Deductive ASPIC−

One part of the idea to realize closure for e.g. complete semantics in ASPIC+

was to close the set S of strict rules under transposition. This has only a limited

effect, since those transposition rules may not become arguments due to missing

premises. In [Cramer and Bhadra, 2020] a more direct approach is chosen. Its

central objective is to represent the indirect conflicts between formulas in the

ASPIC framework. As a first step the logical requirements the postulates make

for conclusions are translated into direct requirements for the arguments accepted

by a semantics.

Definition 6.19 (deductive semantics). A semantics ς is said to be deductive iff

for the ASPIC− framework F = (A,R) of any (P, S,D(n)) and for any E ∈ ς(F ):

If x = [x1, ..., xn → c] ∈ A is an argument with strict top-rule

and xi ∈ E for all i ∈ (1, ..., n) then x ∈ E.

The deductive property can be understood as Closure on argument level. If the

arguments for the premises of a strict rule are part of an extension, the argument

implementing the strict rule must be part of the extension too. It was shown

in [Cramer and Bhadra, 2020] that for a deductive semantics the rationality pos-

tulates follow automatically for consistent sets of strict rules.

Proposition 6.20. Let ς be an argumentation semantics. If ς is deductive then

ς satisfies Closure on the ASPIC− framework F = (A,R) of any (P, S,D(n)) and

in case the set of strict rules S is consistent w.r.t. P , it also satisfies Direct and

Indirect Consistency.

Proof. Def. 6.3 guarantees that from any strict rule s = (p1, ...pn → c) ∈ S for

which arguments with the premises p1, ..., pn as conclusions exist an argument xs

with s as its top-rule exists. So if some E ∈ ς(F ) violates Closure then there

exists a rule s ∈ S and argument xs such that xs is not included in E, so ς is not

deductive. The second statement follows from the first and Prop. 6.14(I,II).

A deductive semantics does not accept arguments if it rejects an argument strictly

derived from them. With the ASPIC formalism as it is, none of our weak semantics

satisfies this, remember Example 6.9, where the self-attacker is a strict consequence

of an argument it attacks. The second step towards integrating inconsistencies is

the introduction of additional arguments. They directly represent the relevant

transpositions and apply the consequences of conflicts among strictly inferenced
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arguments backwards through the attack relation on the arguments they were

derived from.8

Definition 6.21 (deductive completion). Let F = (A,R) be the ASPIC− frame-

work for some given (P, S,D(n)). The deductive completion9 DC(F ) of F is

constructed according to the following rules.

(A) For each argument x = [x′ → c] ∈ A having a strict top-rule with a single

premise the argument dc(x) and the attacks (dc(x), x′), (x, dc(x)) are added

to F in DC(F ).

(B) For each argument x = [x1, ..., xn → c] ∈ A with a strict top-rule with

multiple premises the arguments dci(x), tci(x) for every i ∈ (1, ..., n) are

added to F in DC(F ), and for each i the following attacks:

1) (x, tci(x)) (conclusion attacks transposition)

2) (tci(x), xi) (transposition attacks premise)

3) (xi, dci(x)) (premise attacks negated premise)

4) (dci(x), tcj(x)) for every j ∈ (1, ..., n), j 6= i (negated premise attacks

any other transposition)

The deductive completion succeeds at establishing a link between an argument and

the arguments that strictly depend on it. It does so by putting the dc-argument

between them, which can be read as ”suppose the conclusion c of x is wrong, then

the conclusion of x′ is wrong, too”. It therefore attacks x′ and is in turn attacked

by argument x, which states named c as its conclusion. The same idea, namely

transpositions, is applied to arguments with more then one premise, where we

need a dc-argument for each premise and the pc-arguments in order to adequatly

simulate transpositions like ¬cx, cx1 , ..., cxn → ¬cxi .

Note that the additional attacks in DC(F ) do not fall under the categories rebut

and undercut and may by definition attack strict arguments as well. Far from

causing problems this could even make it possible to satisfy the rationality pos-

tulates with an inconsistent set S of strict rules,10 albeit some strict arguments

might become unacceptable this way. Let us check how this concept changes the

situation for our running example.

8The original idea in [Cramer and Bhadra, 2020] is to first introduce a support relation for

cases of deductive dependencies and then transform it into additional arguments, but we want

to focus on the effect of the additional arguments here.
9The name deductive completion was chosen because the original flat(F ) is too much out of

context here.
10hypothesis, proof for this is not contained in [Cramer and Bhadra, 2020]
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Example 6.22. The deductive completion of Example 6.9 is

[q]

[[[q]⇒ p]→ ¬p] [[q]⇒ p]

[[q]⇒ t]

dc([[q]...¬p])

Before we get started on semantics for the deductive completion, we provide a

slightly modified version of our example. This time a strict rule with two premises

is included.

Example 6.23. Let P,D(n) as in Example 6.9 but S ′ = {q, p → ¬p}. The

deductive completion of the ASPIC− framework of (P, S ′, D(n)) then is

[q]

[[q]⇒ p][[q], [[q]⇒ p]→ ¬p]

[[q]⇒ t]

tcp([[q]...¬p])

tcq([[q]...¬p]) dcp([[q]...¬p])

dcq([[q]...¬p])

The last step comes as no surprise - we apply our argumentation semantics on

the deductive completion of our ASPIC framework instead. Afterwards we simply

accept those arguments of the original AF which are part of an extension from the

deductive completion.

Definition 6.24. Let ς be a semantics, F = (A,R) the ASPIC− framework for

some (P, S,D(n)). The corresponding dc-semantics

supς(F ) := {E ∩ A|E ∈ ς(DC(F ))}

takes the ς-extensions of the deductive completion DC(F ) and returns their inter-

sections with the original ASPIC− framework F .

Applying this definition on our weak semantics now finally yields some results

w.r.t. the rationality postulates. For c-semantics, of course, the desired results are

already demonstrated in [Cramer and Bhadra, 2020] and for cogent semantics the

deductiveness of the corresponding semantics follows analagously.
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Proposition 6.25. supadc and supadcog are deductive.

Proof. The proof for supadc is given in [Cramer and Bhadra, 2020]. Now let

F = (A,R) be the ASPIC− framework of some (P, S,D(n)). Since the addi-

tional arguments are no self-attackers we can argue analogously to the proof for

classic semantics. An extension of the deductive completion E ∈ adcog(DC(F ))

containing x′ for some argument x = [x′ → c] must defeat dc(x) in order to be

cogent. But since x is the only attacker of dc(x) and E only defeats E+ and self-

attackers, it follows that x ∈ E.

For arguments with multiple premises x = [x1, ..., xn → c] an extension with

x1, ..., xn ∈ E must defeat all the transposition arguments tci(x) which are at-

tacked only by x and dcj(x) for j 6= i. But the dcj(x) are attacked by the xj

themselves, so dcj(x) /∈ E for all j and thus tci is not defeated by some dcj. The

only remaining attacker is x, so x ∈ E.

Since x is an argument of the original framework F , x ∈ E ∩ A so x ∈ext supadcog(F ).

Because naa-defeat rules out arguments attacked by unattacked arguments the

naa-admissible semantics is too weak to be deductive, not all defended arguments

have to be included after all. But the naa-complete semantics and its two subsets

work with deductive completion.

Proposition 6.26. supprefnaa, supconaa and supgrnaa are deductive, supadnaa is not.

Proof. Let (P, S,D(n)) be some sets of premises, strict and def. rules, F = (A,R)

the corresponding ASPIC− framework and E ∈ prefnaaDC(F ).

(Case 1) Suppose x′ ∈ E for some x = [x′ → c] ∈ A. Then dc(x) is naa-defeated

by E so either E → dc(x) or dc(x) /∈ext adnaa(DC(F )E). The only attacker

of dc(x) is x, so if E → dc(x) then x ∈ E.

Now suppose dc(x) /∈ext adnaa(DC(F )E). Since dc(x) is no self-attacker

by definition, it follows that for its only attacker, x, there exists a D ∈
adnaa(DC(F )E

{dc(x)}
) with x ∈ D. dc(x) attacks only x′ so the set DC(F )E \

{dc(x)} = DC(F )E
{dc(x)}

is unattacked in DC(F )E. By directionality of

prefnaa11 it follows that D ∈ adnaa(DC(F )E). Then because of modular-

ization D ∪ E ∈ adnaa(DC(F )). But that contradicts the maximality of E

because we assumed E is naa-preferred. So D is already a subset of E and

dc(x) ∈ E+ to begin with.

11see [Baumann et al., 2020a]
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(Case 2) Suppose x = [x1, ..., xn → c] ∈ A and xi ∈ E for every i ∈ (1, ..., n).

Then dci(x) /∈ DC(F )E for all i ∈ (1, ..., n), because xi → dci(x). So the

only remaining attacker for the transposition arguments tci(x) is x. For E

to defeat tci(x) now either tci(x) ∈ E+ is satisfied, then x ∈ E, or tci(x) /∈ext
adnaa(DC(F )E) which leads to the same contradiction with the maximality

of E as in Case 1.

Since x is an argument of the original framework F in both cases we have x ∈
E ∩ A, so x ∈ext supprefnaa(F ).

For E ∈ conaa(DC(F )) we can argue that in both cases x is the only attacker left to

make dc(x) (resp. tci(x)) not naa-admissible in the reduct and that DC(F )E
{dc(x)}

(resp. DC(F )E
{tci(x) | i∈(1,...,n)}

) is unattacked in DC(F )E. Now if x was attacked

by some naa-admissible extension D ∈ adnaa(DC(F )E
{dc(x)}

), then because dc(x)

is only attacked by x ∈ D+ it follows that D∪{dc(x)} ∈ adnaa(DC(F )E) so dc(x)

would be a legal attacker of E. Therefore no attacker of x in the reduct is naa-

admissible, so x ∈ χnaa(E). But then E is not naa-complete unless x ∈ E. The

same applies to Case 2.

Since grnaa(DC(F )) ⊆ conaa(DC(F )) the proof for supconaa applies to supgrnaa ,

too. For supadnaa consider the following counterexample.

Counterexample 6.27. Let P = {q}, S = {s → t,¬t → t}, D(n) = {q ⇒
s, q ⇒ ¬t} with DC(F ) for the corresponding F = (A,R) as below. Then E =

{[[q]⇒ s]} is naa-admissible but does not include [[[q]⇒ s]→ t].

[q] [[q]⇒ s] [[q]⇒ ¬t]

[[[q]⇒ s]→ t] [[[q]⇒ ¬t]→ t]

dc([[[q]⇒ s]→ t]) dc([[[q]⇒ ¬t]→ t])

Lub-semantics and nua-semantics on the other hand are too weak to be deductive.

The lub-grounded semantics is a special case, of course, because it coincides with

the c-grounded semantics which is deductive. It is also likely that the nua-grounded

semantics is deductive, although we cannot present a proof for this yet. Our

reasoning is that nua-defeat defeats a lot of arguments so minimal nua-complete

extension do not have to include that much.
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Proposition 6.28. supς is not deductive for ς ∈ {adlub, colub, pref lub, adnua, conua, prefnua}.

Proof. Let P = {q}, S = {s → ¬p, t → p}, D(n) = {q ⇒ s, q ⇒ t} with the

deductive completion DC(F ) of the corresponding ASPIC− framework as below.12

Then E = {[q], [[q]⇒ s], [[q]⇒ t]} is an extension of ς(DC(F )) for all the seman-

tics in Prop. 6.28 but does not contain e.g. [[[q]⇒ s]→ ¬p], so none of the above

semantics are deductive.

[q] [[q]⇒ s] [[q]⇒ t]

[[[q]⇒ s]→ ¬p] [[[q]⇒ t]→ p]

dc([[[q]⇒ s]→ ¬p]) dc([[[q]⇒ t]→ p])

Conjecture 6.29. supgrnua is deductive.13

We now have an ASPIC formalism, namely Deductive ASPIC−, for which two of

our four weak semantics are deductive and thus by Prop. 6.20 satisfy the rationality

postulates.

Corollary 6.30. For ς ∈ {adcog, cocog, grcog, pref cog, conaa, grnaa, prefnaa} it holds

that supς satisfies Closure on the ASPIC− framework F = (A,R) of any (P, S,D(n))

and in case the set of strict rules S is consistent w.r.t. P , it also satisfies Direct

and Indirect Consistency.

The direct implementation of deductive dependencies in the argument structure

in Deductive ASPIC− works in favor of thinking in terms of weak admissibility.

It addresses the issue of indirect inconsistency more thoroughly than the transpo-

sition solution in [Caminada and Amgoud, 2007] by ensuring that inconsistencies

between arguments have an impact on the defense of their premise arguments as

well. Furthermore, the clear distinction between the original AF and its deductive

completion simplifies generating only the conclusions asked for compared to trans-

positions within the given rule sets. In addition, the logical relations are reflected

12This example is analogous to Example 4 in [Caminada and Amgoud, 2007]
13This is based on the observation that having an nua-admissible attacker in the reduct often

means an extension also has an nua-admissible attacker in the overall AF, so the empty set

defeats such an extension.
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more clearly in the arguments with Deductive ASPIC−, making it a valuable

graphic representation. To conclude, while introducing a support relation might

seem appaling at first (and is not necessary for the framework behind it to work,

as has been shown here), the issue of representing indirect inconsistencies in AS-

PIC is solved by this approach in a direct and reasonable manner that opens the

ASPIC formalism to other semantics beside the classic Dungstyle-semantics.



Chapter 7

Conclusion

7.1 On principles for weak semantics

[Baroni and Giacomin, 2007] and [Caminada and Amgoud, 2007] have a great

influence on the field of argumentation because they propose useful standards

an argumentation semantics should live up to. Weak semantics violate some of

these principles on purpose, others, like I-maximality, are not relevant for the

defense behavior of a semantics. Nonetheless, the analysis of weak semantics under

known principles conducted in [Dondio and Longo, 2021], [Dauphin et al., 2020]

and [Baumann et al., 2020a] contributed greatly to this work. While we do conduct

a short principle-based analysis for our newly introduced nua-semantics, a lot of

open questions remain about the properties of nua-semantics and the other new

semantics our defense notion yielded, e.g. cocog or adlub. We decided to focus on

principles which are specialized for weak semantics in this work, but conducting

a standard analysis for nua- as well as cogent semantics would be valuable to

conclusively compare those two approaches with lub- and naa-semantics.

A number of principles particularly suited for weak semantics are introduced

in [Baumann et al., 2020a], notably modularization and unattack inclusion. We

extend these in Chapter 5 by introducing e.g. c-grounded inclusion or the sep-

aration property. For future research on weak semantics a generalized modular-

ization or other types of partitioning might help to break down the complexity of

structure-sensitive defeat operators like naa-defeat, the single-additivity we adapt

from c-semantics in Section 4.4 is an extreme case of such a partitioning. Two

other structure oriented properties we introduce are the defeat criterion by added

attacks and duplication. The two concepts are related to works on attack re-

finement [Boella et al., 2009] and expansion operators [Bistarelli et al., 2018] re-

spectively. Future developments of the two principles should be discussed in this
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context, e.g. duplication could be applied to Sub-AFs too. The sensitivity or

insensitivity, of weak semantics in particular, to certain structural changes needs

further investigation. Dondio&Longo discuss two, more philosophical, principles

in their works, in dubio pro reo and beyond reasonable doubt. We take up the

former as our motivation for default acceptance. These three principles focus on

practical, intuitive argumentation, while the others are more technical. If weak

semantics are to become relevant in practice, we will have to pay attention to both.

Under our general defense notion a lot of properties regarding the extensions them-

selves like I-maximality can be guaranteed independently from defeat by choosing

the right subset of admissible extensions as a semantics. We are now in a position

to separate the study of such properties from the study of defense-related crite-

ria. For a better understanding of the new concept we have generalized several

classic properties discussed in [Dung, 1995] for arbitrary defeat operators. We

have discussed monotony, the Fundamental Lemma and the direct comparison of

defeat operators with conclusive results. Two aspects of c-semantics remain on

which we need to shed some light in the future. The first question is under which

conditions the grounded semantics is unique and the second, more important one,

is under which conditions the preferred extensions are the maximal complete ex-

tensions. The generalized Fundamental Lemma is one such condition but since

naa-semantics, which violate the Lemma, satisfy this, too, it is obviously too

strong.

The properties adapted or newly introduced in Chapters 4 and 5 are steps towards

thinking argumentation syntax and semantics together. The expressiveness of

Dung-style argumentation depends on how good we make use of their combination.

This especially applies to structured argumentation formalisms like ASPIC [Modgil

and Prakken, 2014]. The proper embedding of an argumentation semantics into

such a formalism proved difficult multiple times in the past with our Chapter 6

being a good example of this struggle.

7.2 On generalizing defense

The original defense by attack introduced in [Dung, 1995] is too limited in its

expressiveness for most applications of abstract argumentation. A variety of solu-

tions for this problem already exists, the majority of them can be divided into two

different approaches - expanding the syntax or changing the semantics. Expanding

the syntax amounts to changing the underlying argumentation framework. In or-

der to introduce a defeat notion which takes the status of the attacker into account,
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for example, [Martınez et al., 2006] replace the attack relation with a conflict and

a preference relation. Or instead of defining Defeat for sets of arguments on an

abstract level like it has been done here, attacks can be defined for sets or argu-

ments to begin with, resulting in SETAFs [Dvořák et al., 2019]. In the same sense

Deductive ASPIC− [Cramer and Bhadra, 2020] boosts the expressiveness of ASPIC

by adding the joint support relation, although the modified AF is broken down to

a standard AF for the evaluation again. Another interesting proposal along these

lines is made by [Hanh et al., 2010] - attacks on attacks. It might be worth it to

adapt this concept on a more abstract level for our defense notion in the future.

If we defeat attacks instead of arguments we could circumvent Theorem 3.10 and

extend the range of our general defense notion to other types of semantics like

non-conflictfree semantics.

The second option - to change the semantics - has brought us the various weak se-

mantics already mentioned in the introduction and the chapter Previous Work and

the new defense notion follows this approach as well. The idea to bring about the

necessary generalization is the introduction of defeat as a flexibly definable set ver-

sion of attacks. A more logic-oriented analysis on how to represent set-based defeat

in Dung-style framworks can be found in [Verheij, 1995]. The defeat-based defense

notion from Chapter 3 allows for a great variability in both the adapted defense

concepts and the type of admissibility-based semantics generated while maintain-

ing most of the classic formalism (defense operator, fixpoint-completeness, conflict-

freeness). Now that the formal groundwork for deriving a non-classic semantics

family from a single operator has been laid, future semantics designs can focus

on realizing certain defense or defeat principles without having to worry about

a working algorithm for generating extensions. As demonstrated this approach

also enables us to directly compare the defense of semantics with fundamentally

different designs. In regard of this, a generalization of the concept of strong admis-

sibility and/or a defeat operator for SCC-semantics like the c-grounded semantics

and the ub-semantics from [Dondio and Longo, 2021] is the next major challenge

for our defense concept. The possibility of formulating a defeat operator for the

cyclically cogent semantics proposed in [Bodanza and Tohmé, 2009] should also

be examined. In general the problem of cycle-homogenity i.e. the equal treatment

of even and odd cycles deserves more attention in the context of weak semantics.

The essence of the semantics approach is to take the overall situation of an AF

into account when deciding on the acceptability of certain arguments. As a con-

sequence the evaluation process can become very complex, leading to a higher

computational complexity compared to classic semantics (see [Dvorák et al., 2020]
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on the complexity of naa-semantics for instance). On the bright side we need

no additional information for this approach, we still work with the simple basic

structure of arguments and an attack relation. In contrast modifications on the

syntactic level need far more specifications about the arguments and their rela-

tions but applying the classic semantics on them may turn out more efficient then

applying a weak semantics to a standard AF, depending on the concrete seman-

tics and framework, of course. Future Applications of abstract argumentation will

have to combine both approaches based on the information structure available, the

relevant argumentation principles and the affordable computing power. Towards

this end we ought to take a better look at what we already have in argumentation

instead of what we want. The meta-analysis and systematic categorization of exist-

ing argumentation semantics will ultimately bring future research closer together

again and ease the adaption of new ideas into existing solutions. Generalizing

defense is but one step towards structuring known approaches and developing a

unifying meta-theory for abstract argumentation.
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