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Abstract
The Subgraph Isomorphism problem is of considerable importance in computer science. We

examine the problem when the pattern graph H is of bounded treewidth, as occurs in a variety of
applications. This problem has a known algorithm running in time O(ntw(H)+1). By studying a
colored variant of the problem, we show that assuming the hyperclique hypothesis, no algorithm
with running time O(ntw(H)+1−ε) can exist for any ε > 0. This is the first tight conditional lower
bound for this problem. Moreover, we will explore a weighted variant where the solution subgraph
must be of total weight zero. Allowing the largest absolute weight to appear in the running time, we
show similar tight conditional lower bounds in almost all cases. In the process, we also immediately
get a reduction that shows conditional lower bounds for Subset Sum.

On the algorithmic side, we first analyze the unweighted variant and use so-called k-wise matrix
products (a generalization of the standard matrix product to tensors) to unify existing algorithms
with a single technique, while still matching their running times. We then expand the algorithms to
the weighted variant, improving on the best-known naive dynamic programming algorithm.

We also show similar results for the case of bounded pathwidth, with slight algorithmic improve-
ments for both the weighted and the unweighted case using rectangular matrix multiplication. In
this setting, we also show still further improvements for the node-weighted case.
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1 Introduction

The Subgraph Isomorphism problem is commonly defined as follows: Given a graph H on
k vertices, and a graph G on n vertices, is there a (not necessarily induced) subgraph of G
which is isomorphic to H?

Subgraph Isomorphism generalizes many problems of independent interest, such as the
k-path and k-clique problems. The problem is also of considerable interest when H is less
structured, with applications to discovering patterns in graphs that, for example, arise from
biological processes such as gene transcription or food networks, from social interaction, from
electronic circuits, from neural networks [73], from chemical compounds [82] or from control
flow in programs [33]. In some fields, the problem is sometimes referred to as the search for
“network motifs”, i.e. subgraphs that appear more often than would normally be expected.

In its general form, the problem is NP-hard. We are interested in solving the problem
when the pattern graph H is “tree-like” or “path-like”, i.e. when the treewidth tw(H) or the
pathwidth pw(H) of H is bounded. Such pattern graphs of low treewidth or pathwidth often
arise in practice when considering the structure of chemical compounds, the control flow
of programs, syntactic relations in natural language, or many other graphs from practical
applications (see e.g. [22, 25]). On the theoretical side, many restricted classes of graphs
have bounded treewidth, see also [24]. Restricting NP-hard problems to graphs of bounded
tree- and pathwidth often yields polynomial-time algorithms, and Subgraph Isomorphism
is no exception. Most notably, there is the classic Color-Coding algorithm by Alon, Yuster
and Zwick [15] which shows that the problem can be solved by a Las Vegas algorithm with
expected running time O(ntw(H)+1g(k)), or by a deterministic algorithm with running time
O(ntw(H)+1 log(n)g(k)), where g is a computable function. In other words, if the input
is restricted to pattern graphs H with treewidth at most some constant, the problem is
fixed-parameter tractable when parameterized by k. The Color-Coding algorithm is also
relevant for practical purposes: Recently, it has received an efficient implementation, which
tested rather competitively against state-of-the-art programs for Subgraph Isomorphism
on public data sets [70].

In one of our results, we explore whether the polynomial factor ntw(H)+1 log(n) of the Color-
Coding algorithm can be improved. Marx [71] already showed that for any class of graphs
of unbounded treewidth, there cannot be an algorithm solving Subgraph Isomorphism
for instances where the pattern graph is from that class in time O(no(tw(H)/ log(tw(H)))g(k)),
unless the Exponential Time hypothesis (ETH) fails. One of our contributions is that there
exists a class of graphs of unbounded treewidth such that for tw(H) ≥ 3, there cannot be an
algorithm with running time O(ntw(H)+1−εg(k)) for any ε > 0 for graphs from that class,
unless the hyperclique problem can be solved significantly faster than currently possible.
Hence, under the assumption that the algorithms for hyperclique cannot be significantly
improved, the algorithm by Alon, Yuster and Zwick also cannot be significantly improved
and still work on all graph classes.

For the case of tw(H) = 2, an algorithm of Curticapean, Dell and Marx [43] can be
adapted such that it solves the problem in time O(nω log(n)g(k)). We unify this with the
algorithm of Alon, Yuster and Zwick by showing that both time bounds can be achieved with
a simple framework. In particular, we use so-called k-wise matrix products, an operation
which was introduced in its general form in [56] and studied further in [68]. Indeed, that
operation is the bottleneck for both of our main algorithms. Unfortunately, for k ≥ 3, it is
known that the usual Strassen-like techniques that are used for fast matrix multiplication
cannot be applied, and hence improvements over the naive running time of O(nk+1) seem
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far out of reach [68].
We also look at the problem when the pathwidth of H is bounded, and specialize the

framework to show slight improvements in running time with respect to the case of bounded
treewidth. Here, we use rectangular matrix products, for which faster-than-naive algorithms
are known [54].

In all further results, our focus is on a weighted variant of the problem, where the
subgraph must also have total weight equal to zero. In this work, we consider both the
node-weighted and the edge-weighted variant, for both bounded treewidth and bounded
pathwidth, allowing the maximum absolute weight W to appear in the running time (i.e. we
analyze pseudopolynomial-time algorithms for the problem). We show that our algorithms
for the unweighted case can be adapted to the weighted case. We also speed up the weighted
algorithms by using the fact that fast convolution (or rather, sumset computation), a
folklore technique that lies at the core of many fast algorithms for problems with weights
(e.g. [34, 28, 64, 62, 26, 20] and [41, exercise 30.1.7]), can be adapted to work with rectangular
matrices and tensors. We furthermore show corresponding conditional lower bounds. Last but
not least, we show that our algorithms can be slightly improved for the case of node-weighted
instances for which either the pathwidth of H is bounded, or H is a tree. These algorithms
also rely on fast rectangular matrix products.

All mentioned algorithms and conditional lower bounds are shown for the restricted
problems of Colored Subgraph Isomorphism, where the nodes of G and H are colored
with |V (H)| colors and the isomorphism must preserve colors, as also studied in [71]. One
of our first results is that for the type of algorithms we are considering, this problem is
essentially equivalent to the general Subgraph Isomorphism problem.

2 Related Work

Consider algorithms for the unweighted problem. Next to Marx’s [71] result from the
introduction that a O(no(tw(H)/ log(tw(H)))g(k)) time algorithm is impossible for unbounded-
treewidth classes under ETH, there is also an unconditional lower bound of O(nκ(H)) for
the size of a AC0-circuit, for a graph parameter κ(H) = Ω(tw(H)/ log(tw(H))), which holds
even when considering the average case [66]. Interestingly, the factor of 1

log(tw(H)) does not
seem to be an artefact of the proof: There is an AC0-circuit of size O(no(tw(H))g(k)) that
solves the problem on certain unbounded-treewidth classes in the average case [79].

There have also been efforts to optimize the factor of g(k) in the running-time of the
Color-Coding algorithm instead of the polyonmial factor, see e.g. the O(4.32k · k · ntw(H)+1)
algorithm in [16]. When optimizing only g(k), and permitting a worse polynomial factor,
algorithms of running time O∗(2kn2 tw(H)) are known [53]. There is also a randomized
algorithm that approximates the number of isomorphic subgraphs arbitrarily closely, with
running time O(4.075kntw(H)+O(1)) [75].

Of particular interest is the problem of finding a tree pattern, sometimes called Subtree
Isomorphism. For constant-size H, this problem has trivial upper and unconditional lower
bounds of Θ(n2). The situation is less clear when k = O(logn) or even k = O(n). For an
introduction and many pointers to relevant literature, see [1]. Some of their lower bounds
are superseded by recent improvements in [36].

Our lower bound of no O(ntw(H)+1−ε) algorithm for the unweighted problem does not, of
course, rule out faster algorithms for specific classes of graphs: Famously, finding a k-clique1

1 i.e. a set of k vertices such that each pair is connected by an edge
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– whose treewidth is (k− 1) – can be done in O(nkω/3g(k)) for k divisible by three [74], with
similar results for k not divisible by three [48]. The same paper shows that the same running
time is possible for all pattern graphs H with k vertices.

Now consider the weighted problem. For stars, paths, cycles and other H, conditional
lower bounds under the k-Sum hypothesis are presented in [8]. The nowadays well-known
conditional lower bound of O(n3−ε) for edge-weighted triangle finding under both the the
3Sum hypothesis and the APSP hypothesis2 are proven in [12]. On the other hand, in [9],
it is proven that finding node-weighted k-cliques can be done almost as quickly as finding
unweighted k-cliques. So far, there seem to be no results on the Exact Weight Subgraph
Isomorphism problem when W may appear in the running time (i.e. a pseudopolynomial-
time algorithm), which is what we focus on in our analysis of the weighted problem.

For a large survey of Subgraph Isomorphism under various parameters including the
treewidth of H, see Marx and Pilipczuk [72]. In our work, we pose no restrictions on the
host graph G, but it should be noted that for some such restrictions, the problem becomes
considerably easier. For example, by a simple application of Courcelle’s theorem [42], when
the treewidth of G is bounded and H is of constant size, the problem is in linear time.
Furthermore, when G is planar and H is again of constant size, the problem can also be
solved in linear time [50].

3 Results

We begin in Section 5 by showing that, when considering treewidth, Subgraph Isomorphism
and Colored Subgraph Isomorphism are, both for the weighted and the unweighted
version, equivalent. For the weighted variant, they are also equivalent when considering
pathwidth. All subsequent results are then proven for Colored Subgraph Isomorphism,
leading to algorithms and conditional lower bounds for Subgraph Isomorphism.

In Section 6, we present algorithms for unweighted and weighted Subgraph Isomorphism.
We start with the unweighted variant for bounded treewidth and prove the upper bounds in
Theorem 1 below. These results themselves are not new. Part 1 was shown in [15] and part
2 follows from techniques in [43]. We unify these two results by providing a single, relatively
simple algorithmic technique achieving both, based on k-wise matrix products. In Theorem 2,
we then expand the technique to also work for the weighted version, hence obtaining new
results.

We say that an algorithm A runs in T (n) expected time if A is a Las Vegas algorithm
with expected running time T (n). Furthermore, ω < 2.373 [65] is the exponent of matrix
multiplication. When we speak of the Exact Weight Subgraph Isomorphism problem,
the instances may be either node- or edge-weighted, unless stated otherwise. The weight
function is always denoted by w. For exact definitions of the problems and the hypotheses
used in the theorem statements, we refer the reader to the preliminaries (Sections 4.3 and 4.4).

I Theorem 1. There are algorithms which, given an arbitrary instance φ = (H,G) of
Subgraph Isomorphism where H has treewidth tw(H), solve φ in
1. expected time O(ntw(H)+1g(k)) and time O(ntw(H)+1 log(n)g(k)) when tw(H) ≥ 3 ([15]),
2. expected time O(nωg(k)) and time O(nω log(n)g(k)) when tw(H) = 2 ([43]), and
3. expected time O(n2g(k)) and time O(n2 log(n)g(k)) when tw(H) = 1.
where k := |V (H)|, n := |V (G)| and g is a computable function.

2 i.e. that the all-pairs shortest path problem cannot be solved in time O(n3−ε).
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I Theorem 2. There are algorithms which, given an arbitrary instance φ = (H,G,w) of the
Exact Weight Subgraph Isomorphism problem where H has treewidth tw(H), solve φ
in
1. expected running time O((ntw(H)+1W + ntw(H)W logW )g(k)) and running time

O((ntw(H)+1W + ntw(H)W logW ) log(n)g(k)) when tw(H) ≥ 3,
2. expected time O((nωW + n2W logW )g(k)) and time O((nωW + n2W logW ) log(n)g(k))

when tw(H) = 2, or
3. expected time O((n2W + nW logW )g(k)) and time O((n2W + nW logW ) log(n)g(k))

when tw(H) = 1,
where n := |V (G)|, k := |V (H)|, g is a computable function, and W is the maximum absolute
weight in the image of w.

We show later that these upper bounds are essentially tight. However, when instead
of the treewidth, the pathwidth is bounded, we can use rectangular matrix multiplication
to speed things up slightly. For z ∈ R+, let ω(z) be the smallest real number such that
multiplying a n×n matrix with a n×nz matrix can be done in time O(nω(z)); see Section 4.7
for discussion of this value. We prove the following upper bounds.

I Theorem 3. There are algorithms which, given an arbitrary instance φ = (H,G) of
Subgraph Isomorphism where H has pathwidth p, solve φ in
1. expected time O(nω(p−1)g(k)) and time O(nω(p−1) log(n)g(k)) when p ≥ 2, and
2. expected time O(n2g(k)) and time O(n2 log(n)g(k)) when p = 1
where k := |H| and n := |V (G)|.

I Theorem 4. There are algorithms which, given an arbitrary instance φ = (H,G,w) of the
Exact Weight Subgraph Isomorphism problem, solve φ in
1. expected time O((nω(pw(H)−1)W + npw(H)W logW )g(k)) and time O((nω(pw(H)−1)W +

npw(H)W logW ) log(n)g(k)) when pw(H) ≥ 2,
2. expected time O((n2W + nW logW )g(k)) and time O((n2W + nW logW ) log(n)g(k))

when pw(H) = 1
where n := |V (G)|, k := |V (H)|, and W is the maximum absolute weight in the image of w.

We conclude Section 6 by showing that for node-weighted instances of bounded pathwidth
or of treewidth 1, the algorithms can be sped up slightly more. In particular, let MM(n, n, x)
be the time in which a n× n matrix can be multiplied with with a n× x matrix. We show
the following improvement.

I Theorem 5. There are algorithms which, given an arbitrary instance φ = (H,G,w) of
the node-weighted Exact Weight Subgraph Isomorphism problem where H is a tree,
solve φ in expected timeO((MM(n, n,W ) + nW logW )g(k)) and time O((MM(n, n,W ) +
nW logW ) log(n)g(k)).

I Theorem 6. There are algorithms which, given an arbitrary instance φ = (H,G,w) of the
node-weighted Exact Weight Subgraph Isomorphism problem, solve φ in expected time
O(MM(n, n, npw(H)−1W )g(k)) and time O(MM(n, n, npw(H)−1W ) log(n)g(k)).

For W = O(nγ), the running time of Theorem 5 is O(nω(γ) poly(k)). Using results
from [54] (see also Section 4.7), this implies several interesting facts. Firstly, for γ < 0.31,
the node-weighted problem on trees can be solved in time O(n2 poly(k)), meaning it can
be solved in the same running time as the unweighted case. In particular, this applies to
W = polylog(n) or W = O( 4

√
n).
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Secondly, for arbitrary γ we now have a running time of O(nω(γ)−γW poly(k)). Trivially,
for any γ > 0, ω(γ) − γ < 2. Indeed, for γ ≥ 5 we have ω(γ) − γ < 1.16 by [54]. This
shows that for node weighted trees, there cannot be a lower bound of n1.16W , let alone n2W .
Indeed, it is known that limγ→∞ ω(γ)− γ = 1 [39], which implies that when restricting to
instances where W = Θ(nγ), there cannot be a lower bound of n1+εW for any ε > 0 that
holds for any constant γ > 0. Similar results hold for bounded-pathwidth graphs.

In Section 7, we proceed to prove conditional lower bounds for unweighted and weighted
Subgraph Isomorphism. We start with the case of bounded treewidth, and show the
following obstacles to algorithms beating the running times from Theorems 1 and 2. The k-
clique hypothesis states that the k-clique problem cannot be solved in time than O(nkω/3−ε)
for any ε > 0. For h ≥ 3, the h-uniform hyperclique hypothesis states that for no k > h can
there be an algorithm which correctly determines if a h-uniform graph contains a h-uniform
k-hyperclique3 in time O(nk−ε) for ε > 0.

I Theorem 7. For each t ∈ N∗ there is a connected,bipartite graph Ht of treewidth t such
that there cannot be an algorithm which solves all instances from {(Ht, G, f) | G is a graph}
of Subgraph Isomorphism in time
1. O(nt+1−ε) for t ≥ 3, unless the h-uniform hyperclique hypothesis fails for all 3 ≤ h ≤ t,
2. O(nt−ε) for any t ≥ 2, unless the h-uniform hyperclique hypothesis fails for all h ≥ 3,

or
3. O(n(t+1)ω/3−ε) for t ≥ 2, unless the (t+ 1)-clique hypothesis fails.

I Corollary 8. For no t ∈ N can there be an algorithm solving Exact Weight Subgraph
Isomorphism for pattern graphs of treewidth t as in parts 1-3 of Theorem 7.

I Theorem 9. For both the node- and edge weighted variant of the Exact Weight Sub-
graph Isomorphism problems, for any t ∈ N and any γ ∈ R+, there is a connected, bipartite
graph Ht,γ of treewidth t such that there cannot be an algorithm which solves all instances
from {(Ht,γ , G, f, w) | G is a graph and W := maxz∈Im(w) |z| = Θ(nγ)} in time
1. O(nt+1−εW ) or O(nt+1W 1−ε) for t ≥ 3, unless the h-uniform hyperclique hypothesis

fails for all 3 ≤ h ≤ t,
2. O(nt−εW ) or O(ntW 1−ε) for any t, unless the h-uniform hyperclique hypothesis fails

for all h ≥ 3, or
3. O(n(t+1)ω/3−εWω/3) or O(n(t+1)ω/3Wω/3−ε) for any t, unless the clique hypothesis

fails.
Note that item 1 only gives lower bounds for t ≥ 3, while items 2 and 3 are mostly interesting
for the case t ∈ {1, 2}.

I Corollary 10. For no t ∈ N and no γ ∈ R+ can there be an algorithm solving Exact
Weight Subgraph Isomorphism for pattern graphs of treewidth t and maximum weight
W = Θ(nγ) as in parts 1-3 of Theorem 9.

Comparing these results with Theorems 1 and 2, we have tight lower bounds for all
unweighted cases, and an essentially tight lower bound for the weighted case with tw(H) ≥ 3.
For weighted tw(H) = 2, we have a lower bound which is tight except for the exponent of ω/3
to W – it is unclear whether this can be strengthened. The lower bound for weighted graphs
with tw(H) = 1 is not tight at all: We have an upper bound of O(n2W +nW logW ), but our

3 i.e. a set of k vertices such that any size h subset of the vertices is connected by a hyperedge
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lower bounds only state that it requires time O(n1−o(1)W 1−o(1)) and O(n2ω/3−o(1)Wω/3−o(1)).
Tighter lower bounds for this case remain an open problem.

With a very similar proof of the preceding theorems, we also get lower bounds for the
case of bounded pathwidth for weighted instances. And while we furthermore get lower
bounds for unweighted instances when considering Colored Subgraph Isomorphism, our
equivalence lemma is not strong enough to hoist these results to the uncolored case. We
leave it as an open problem whether this is even possible.

I Theorem 11 (Theorem 9 for pathwidth). Parts 2 and 3 of Theorem 9 also hold when
replacing the treewidth t by the pathwidth p. Part 1 does not hold.

I Corollary 12. For no p ∈ N and no γ ∈ R+ can there be an algorithm solving Exact
Weight Subgraph Isomorphism for pattern graphs of pathwidth p and maximum weight
W = Θ(nγ) as in parts 2 and 3 of Theorem 9 (when replacing the pathwidth p by the treewidth
t).

For pw(H) ≥ 3, these lower bounds are obviously not tight, unless significant advances in
matrix multiplication techniques are made. For pw(H) = 1, 2, the situation is the same as
with treewidth.

It is natural to think that the exponents ω3 toW in the lower bounds of Theorems 9 and 11
are only artefacts of the reduction, and that with more advanced methods, this exponent
can be improved to 1. However, Theorems 5 and 6 disprove this notion for tw(H) = 1 and
pw(H) = 1, 2. Indeed, for tw(H) = 1 (or pw(H) = 1) and W = n, these bounds are tight, so
further general improvements on the exponent are impossible.

As a related result, we also prove the following theorem about the Subset Sum problem,
where one is given a set A of n numbers and a target T , and has to check whether some
subset of A sums to T .

I Theorem 13. For no ε > 0 can there be an algorithm which solves Subset Sum in time
O(T 1−ε poly(n)) unless the h-uniform Hyperclique hypothesis fails for all h ≥ 3.

In [6], a slightly better lower bound for Subset Sum is proven under a stronger hypothesis:
They prove that unless SETH fails, Subset Sum cannot have an algorithm running in time
O(T 1−ε2o(n)).

Let us quickly argue why SETH is actually a (much) stronger hypothesis – indeed, why
the h-uniform Hyperclique hypothesis failing for all h ≥ 3 has many important implications.
There is a known reduction that shows that if the h-uniform Hyperclique hypothesis fails
for some h, then Max-h-Sat4 can be solved in time O(2(1−δ)n) for some δ > 0 [83, 68].
Hence if it fails for all h ≥ 3, Max-Sat can be solved in time O(2(1−δ)n) for any constant
clause width. In particular, it also breaks the popular Max-3-Sat hypothesis, which states
that no such algorithm exists for clause width 3. This would be a very strong result. Even if it
were only true for sparse formulas, it would already imply via the Sparsification Lemma [58]
that SETH is false.5

Note that the hypotheses we use are very much believable when looking at the current
state of algorithms for these problems. For hyperclique, we are very far from any algorithm

4 Given a CNF formula with clause width h and a number k, check if at least k clauses of the formula
can be satisfied.

5 Note that for sparse, constant clause width Max-Sat, the other direction is also true: If SETH is false,
then Max-Sat with constant clause width can be solved faster-than-naively for sparse formulas. This is
proven in [5] for the more general problem of deciding the satisfiability of linear-size threshold circuits
of logarithmic depth with only AND, OR and NOT gates.
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beating the hypothesized lower bound; while we do have an algorithm running in time
O(mk−1/2Θ(

√
( logn))) where m is the number of clauses [68, 55], this only beats the naive

algorithm for sparse (or nearly sparse) instances. Nothing significant is known for dense
instances. And for Max-Sat: Again for sparse formulas, fast algorithms for Max-q-Sat
with specific q have been proven [46, 37], but there are – to the best of our knowledge – no
such results for non-sparse Max-q-Sat instances for any q ≥ 3.

4 Preliminaries

4.1 General Notation and Nomenclature
We denote by N the set of positive integers. For p ∈ N, we use [p] to denote the set {1, . . . , p}.
For a statement or predicate P, we define the Iverson bracket

[P ] :=
{

1 if P is true
0 otherwise

For a fuction f : A → B and a set S ⊆ A, we denote with f |S : S → B the function
function f restricted to S. That is, ∀s ∈ S : f |S(s) = f(s). Furthermore, for u /∈ A and
v /∈ B we define the function extension (f ∪ {u 7→ v}) : A ∪ {u} → B ∪ {v} as

(f ∪ {u 7→ v})(c) :=
{
v if c = u

f(c) otherwise

The set of functions from X to Y is called X → Y .
We use standard notation for graphs. In particular, for a graph G, we let V (G) be its set

of vertices and E(G) its set of edges. For a set X ⊆ V (G), we denote the induced subgraph
by G[X]. For a vertex v ∈ V (G), we denote its neighbourhood as N(v). We denote the
treewidth and pathwidth (see Section 4.5) of G as tw(G) and pw(G), respectively. All graphs
are, unless otherwise stated, simple, undirected and without self-loops.

We use poly(n) to denote functions which are upper-bounded by a polynomial nc, and
polylog(n) to denote functions upper-bounded by some logc(n), c ∈ N. We use the O∗-
notation to suppress polynomial factors, that is O∗(f(n)) = O(f(n) poly(n)).

4.2 Notation and Nomenclature for Colored Subgraph Isomorphism
We now define some nomenclature for the (Exact Weight) Colored Subgraph Isomor-
phism problem. Fix an instance (G,H, f) or (G,H, f, w). H is the pattern graph which is to
be found in the large graph G when given homomorphism f : V (G)→ V (H) and weight func-
tion w. For a subset I ⊆ V (H), we call a function R : I → f−1(I) a configuration of I if
∀v ∈ I : R(v) ∈ f−1(v). We define Conf(I) ⊆ (I → f−1(I)) to be the set of configurations of
I. A configuration of I is called valid configuration if ∀uv ∈ E(H[I]) : R(u)R(v) ∈ E(G).
Finally, we call a configuration R of I a partial solution of I in J , for some I ⊆ J ⊆ V (H),
if there is a valid configuration S of J such that S|I = R. We may shorten this to R being a
partial solution for J if I is clear from context.

For a valid configuration R of I ⊆ V (H), we call w(R) its weight. The exact definition
of the weight w(R) depends on whether G is node-weighted or edge-weighted. If G is node-
weighted with weight function w : V (G)→ Z, we define w(R) :=

∑
u∈I w(f−1(u)). If it is

edge-weighted with weight function w : E(G)→ Z, we define w(R) :=
∑
uv∈E(H[I]) w(R(u)R(v)),

where it is guaranteed that R(u)R(v) ∈ E(G) because R is a valid configuration. Furthermore,
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we say that a partial solution R of I in J has an extension of weight W ′ if there is a
valid configuration S of J such that S|I = R and the nodes (respectively: the edges) of S
which are not in I have combined weight W ′, i.e. wext(S,R) := w(S)− w(R) = W ′.

For brevity, we define the following indicator functions (using the Iverson bracket):
ParSol(R; I; J) = [R is a partial solution of I in J ]
ParSolE(R; I; J ;W ) = [R is a partial solution of I in J with an extension of weight W ]
ValConf(R; I) = R is a valid configuration of I

Note that the first two take values from {0, 1}, while the last is either true or false.

4.3 Problem Definitions
In the following, we define all problems considered in this paper. Note that for the colored
variants, we do not actually talk about colors; instead, to simplify our discussions, we talk
about a graph homomorphism which basically simulates the colors.

Subgraph Isomorphism Given a graph H and a graph G, does G have a (not necessarily
induced) subgraph isomorphic to H? Instances are tuples of the form (H,G).

Colored Subgraph Isomorphism Given a graph H and a graph G along with a graph ho-
momorphism f : V (G) → V (H) where all preimages are of equal size, is it possible to
pick a set S with exactly one vertex from the preimage of each v ∈ V (H) such that the
subgraph induced by S is isomorphic to H? Instances are tuples of the form (H,G, f).

Exact Weight Subgraph Isomorphism May be either node- or edge-weighted. The same
as Subgraph Isomorphism, except that the edges (respectively: vertices) each have
an integer weight assigned to them via a weight function w. A solution to a problem
instance is a solution to the Subgraph Isomorphism problem, except that the edge
weights (respectively: node weights) of the subgraph induced by S must sum to zero.
Instances are of the form (H,G,w).

Exact Weight Colored Subgraph Isomorphism May be either node- or edge-weighted. The
same as Colored Subgraph Isomorphism, except that it is weighted just as the
Exact Weight Subgraph Isomorphism. Instances are of the form (H,G, f, w).

Max-Sat Given a Sat instance φ as CNF and a number k, determine whether there is an
assignment to the variables such that at least k clauses of φ are satisfied. Instances are of
the form (φ, k).

Max-q-Sat Like Max-Sat, but all clauses have exactly q literals.
k-Clique Given a graph G and a number k, determine whether there is a subset C ⊆ V (G)

with |C| = k such that G[C] is the complete graph on k vertices.
h-Uniform k-Hyperclique Given an h-uniform hypergraph G and a number k, determine

whether there exists a subset C ⊆ V (G) with |C| = k such that G[C] is a complete graph.
That is, any size h subset of C is connected by a hyperedge.

Subset Sum Given a set A ⊆ N of n numbers and a target T ∈ N, determine whether
∃B ⊆ A :

∑
b∈B b = T .

k-Sum In the k-sum problem, we are given k sets A1, . . . Ak ⊆ N of n numbers and a target
T ∈ N, and we wish to determine whether ∃a1 ∈ A1, . . . ak ∈ Ak :

∑k
i=1 ai = T .

To avoid special cases with the running time, we assume without further mention that in
all weighted problems, the target weight or maximum absolute weight is at least 1.

For a discussion on current algorithms and hardness results on the Subgraph Isomor-
phism problems, see the introduction and related work. For Max-q-Sat, Hyperclique and
k-Clique, see the next subsection.
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We briefly discuss Subset Sum and k-Sum here. The Subset Sum problem has a well-
known O(Tn) time algorithm using dynamic programming [77]. Very recently, suprising new
algorithms with running time Õ(

√
nT ) [62, 63] and Õ(T +n) [28] have been shown, the latter

matching several conditional lower bounds from SETH [6], Set Cover [44] and k-clique
(observed in [28] via techniques from [44, 9]). The algorithm in [28] is slightly simplified
in [61], with improvements in the log factors of the running time. Moving on, the k-Sum
problem is basically a modified version of Subset Sum. It has a folklore O(ndk/2e) time
algorithm, and it is conjectured that no O(ndk/2e−ε) time algorithm exists. An unconditional
lower bound of Ω(ndk/2e) is known for a restricted type of decision trees [51].

We also remark that the restriction of the target weight to zero in the Exact Weight
Subgraph Isomorphism problems is simply for ease of discussion. We use this version to
both simplify our algorithms and circumvent any problems that might arise from having T
be part of the input. Trivially, all of our results also hold for the problem where a target
T = O(W ) is given.

4.4 Conditional Lower Bounds and Relevant Hypotheses
When searching for faster algorithms for computational problems, it is important to have a
clear picture of how hard the problem is, and what barriers are in place that might hinder
that search. Ideally, one would like to have an upper bound via a fast algorithm, and a
matching unconditional lower bound showing that no improvements whatsoever are possible.
However, such unconditional lower bounds are very hard to come by, even in the setting of
very restricted algorithms. Instead, great progress has been made by relating the hardness
of one problem to that of another via means of a reduction: If problem A has a faster
algorithm, then so does problem B. Ideally, problem B has seen decades of intense study,
with no indications of considerable progress towards such a faster algorithm existing; hence
one may conclude that problem A is seemingly also very hard.

These ideas have recently been ported to show conditional lower bounds for problems
solvable in polynomial time (so called Fine-Grained Complexity Theory), with great success.
Our lower bound results for the unweighted case – and perhaps arguably also the weighted
case – are part of this.

Throughout the paper, we refer to the following hypotheses, each of which has been
standing for several decades.
MaxSat Hypothesis There is no ε > 0 such that MaxSat with clauses of constant width

can be solved in time O∗(2(1−ε)n).
Max3Sat Hypothesis There is no ε > 0 such that Max3Sat can be solved in time

O∗(2(1−ε)n).
k-Clique Hypothesis For no k ≥ 3 is there an ε > 0 such that k-Clique can be solved in

time O(nkω/3−ε).
h-uniform Hyperclique Hypothesis For no k ≥ h+ 1 is there an ε > 0 such that h-uniform

k-Hyperclique can be solved in time O(nk−ε). This hypothesis is only defined for
h ≥ 3.

SETH Originally from [57]. For any ε > 0 there exists k ≥ 3 such that k-Sat on n variables
cannot be solved in time O∗(2(1−ε)n).

Of these four hypotheses, SETH is beyond doubt the most widely used for conditional lower
bounds for problems in P, see e.g. [5, 11, 10, 6, 27, 31, 78]. The k-clique hypothesis has found
many application in string problems (see e.g. [2, 19, 30, 32]), but also problems on graphs [68].
The Max-Sat hypothesis seems to be somewhat more rarely used, implying both lower bounds
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on Max-Flow [12] and, crucially and by a well-known reduction, that the q-uniform k-
hyperclique problem has no O(nk−ε) algorithm for q ≥ 3. Finally, the Max3Sat-hypothesis
is widely used, seeing use in problems on graphs and hypergraphs [13, 29, 67, 68, 84] as well
as CSPs [59].

The MaxSat hypothesis is, of course, weaker than both SETH and the Max3Sat
hypothesis. Indeed, we are very far from finding faster-than-trivial algorithms for MaxSat:
Not even a 2n/poly(n) algorithm seems to be known [12].

The Max3Sat hypothesis can also be formulated for Max-q-Sat for an arbitrary q ≥ 3
and reasonably be conjectured to be true. The restriction q ≥ 3 is necessary: For Max-2-Sat,
faster algorithms of running time O∗(2ωn/3) are known [84]. Also note that, as discussed
in the introduction, faster algorithms for Max-q-Sat are known when the instances are
guaranteed to be sparse [46, 37]. However, for non-sparse instances, research seems to indicate
that it is a very reasonable assumption that the trivial O(2n) algorithm is optimal up to
minor improvements.

For k-clique, the algorithm with running time O(nkω/3) for k divisible by three can
be found in [74]; it is well-known. The problem has resisted significant improvements in
running time for a long time, and not for lack of trying. Under the Exponential Time
Hypothesis (ETH), k-clique does not have algorithms with running time no(k) [35], and for
tensor networks, an unconditional lower bound of Ω(ndk·2/3e) is known [18].

The h-uniform Hyperclique hypothesis for h ≥ 3 is, as was said, weaker than the
Max-Sat hypothesis. For a discussion of its believability, as well as more context, we refer
to [68, Section 7].

4.5 Treewidth and Pathwidth
We give a very short introduction to treewidth and pathwidth, and state some auxiliary
definitions and notation used throughout the paper.

I Definition 14 (Tree Decomposition). Let H be a graph. A tree decomposition of H is a
pair T = (T, {Xt}t∈V (T )) consisting of a tree T and along with a set of “bags” Xt ⊆ V (H),
one for each vertex of T . It must satisfy the following properties:
(T1)

⋃
t∈V (T )Xt = V (H)

(T2) ∀uv ∈ E(H) : ∃t ∈ V (T ) : {u, v} ⊆ Xt

(T3) ∀u ∈ V (H) : The subgraph induced by Tu := {t ∈ V (T )|u ∈ Xt} is a connected subtree

I Definition 15 (Treewidth). Let T = (T, {Xt}t∈V (T )) be a tree decomposition of H. We
define its width to be maxt∈V (T )|Xt| − 1. We define the treewidth of H to be the minimum
width of all tree decompositions of H and denote it as tw(H).

I Definition 16 (Path Decomposition). Let H be a graph. A path decomposition of H is
a tree decomposition where T is a path.

I Definition 17 (Pathwidth). The width of path decompositions is defined as for tree
decompositions. The pathwidth of H is defined to be the minimum width of all path
decompositions of H, and is denoted as pw(H).

A classic algorithm by Bodlaender [23] computes an optimal tree decomposition or path
decomposition for an input graphH in time O(f(|tw(H)|)|V (H)|) for a computable function f .
For our purposes, this is almost excessive: For our results, we only need an algorithm which
computes an optimal tree decomposition in time g(|V (H)|), for some computable function g.



K.Bringmann and J. C. P. Slusallek 13

Clearly, the treewidth of a graph is always smaller than or equal to its pathwidth. It
should also be noted that while graphs of treewidth one are exactly the class of tree graphs,
graphs of pathwidth one encompass more than just paths. Rather, they are the class of
graphs where each connected component is a caterpillar graph, i.e. consists of a single path
with arbitrarily many degree-one nodes attached at any node of the path [76]. The latter is
vital for our conditional lower bounds for pathwidth one.

When working with a tree decomposition T = (T, {Xt}t∈T ), we root it at an arbitrary
vertex r. We often use path decompositions as if they were tree decompositions with the
path T rooted at one of its endpoints to unify notation. For a tree or path decomposition
with underlying tree T and for u ∈ V (T ), we define Tu to be the subtree rooted at u. The
cone Vu is then defined to be Vu :=

⋃
v∈V (Tu)Xv.

For an excellent and detailed introduction to treewidth, pathwidth and their many
applications, we refer the reader to [45, Chapter 7].

4.6 k-Wise Matrix Product
In our algorithms, we use the following generalization of matrix multiplication to tensors, as
defined in its general form in [56] and explored further algorithmically in [68]:

Given k tensors A1, . . . , Ak of order k with dimensions
k times︷ ︸︸ ︷

n× . . .× n, we define the k-wise
matrix product MPk(A1, . . . , Ak) to be the tensor given by

MPk(A1, . . . , Ak)[i1, . . . , ik] :=
∑
`∈[n]

A1[`, i2, . . . , ik]·A2[i1, `, i3, . . . , ik] · · ·Ak[i1, . . . , ik−1, `]

Clearly, for k = 2 this product is exactly matrix multiplication. Furthermore, the k-wise
matrix product can trivially be computed in time O(nk+1) for all k. Unfortunately, as
Lincoln, Williams and Williams observe in [68], it is impossible that faster Strassen-like
algorithms with running time O(nk+1−ε) with ε > 0 exist for k ≥ 3: Just as the operation
of n× n by n× n matrix multiplication has a corresponding order-6 tensor of dimensions
n × . . . × n, there is an order-k(k + 1) tensor of dimension n × . . . × n corresponding to
the k-wise matrix product. For k ≥ 3, this tensor has border rank k + 1, i.e. it cannot be
expressed as the limit of a sequence of tensors of rank smaller than k + 1.

It turns out that calculation of this product is the bottleneck for two of the algorithms
for bounded-treewidth graphs we develop. With a few exceptions, all tensor calculations are
done using operations from the ring Z. In particular, though most of our tensors have entries
from {0, 1}, the k-wise matrix product of such tensors might have larger entries.

4.7 Rectangular Matrix Multiplication
Multiplication of n × n by n × n matrices is perhaps the most ubiquitous open problem
in computer science, with the central question being whether this can be done in O(n2)
time. The matrix multiplication exponent ω has been slowly inching toward, but not quite
reaching, a value of 2 over the last few decades. In our algorithms, however, we also multiply
rectangular matrices. It turns out that the techniques used to show fast algorithms for square
matrix multiplication can also be generalized to the rectangular case. In the following, let
MM(s, r, t) denote the time needed to multiply a matrix of size r × s with a matrix of size
s× t. We are mostly interested in the case that s = n, r = n and t = nk for some k ∈ R+.

A simple, well-known result is that MM is both convex and symmetrical in its arguments
(see e.g. [69, 81]). In particular, we have ∀x ∈ R+ : MM(n, n, nk+x) ≤ nx ·MM(n, n, nk)
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and MM(n, n, nk) = MM(n, nk, n). Letting ω(k) := lognMM(n, n, nk), we immediately get
∀k ≥ 1 : ω(k) < k + 1.373 via the current bounds of ω(1) = ω < 2.373 [65].

We can, however, do better: Le Gall [54] has shown that there are faster algorithms based
on the Coppersmith-Winograd method [40, 65] used for square matrix multiplication. Among
other values, he shows ω(0.31) = 2, ω(2) < 3.26, ω(3) < 4.2, ω(4) < 5.18 and ω(5) < 6.16
(see [54] for an extensive table of such values).

5 Equivalence of Subgraph Isomorphism and Colored Subgraph
Isomorphism

We begin our discussion of (Exact Weight) Subgraph Isomorphism and (Exact
Weight) Colored Subgraph Isomorphism by showing the equivalence of these prob-
lems with respect to running times. The reductions from (Exact Weight) Subgraph
Isomorphism to (Exact Weight) Colored Subgraph Isomorphism and the reduction
from Exact Weight Colored Subgraph Isomorphism to Exact Weight Subgraph
Isomorphism leaves H unmodified. The reduction from Colored Subgraph Isomorphism
to Subgraph Isomorphism, however, modifies H in such a way that preserves treewidth,
but may modify pathwidth.

We say that Subgraph Isomorphism or Colored Subgraph Isomorphism have
a T (n, k, ρ(H)) algorithm (for some graph parameter ρ) if there is an algorithm A which
decides a given instance φ = (H,G, f) of either problem in time T (n, k, ρ(H)). Analogously,
we define the phrase that Exact Weight Subgraph Isomorphism or Exact Weight
Colored Subgraph Isomorphism has a T (n, k, ρ(H),W ) algorithm, the only difference
being that φ = (H,G, f, w). W denotes the maximum absolute value of the weight function
w.

Parts 1 and 2 of the lemma follows directly from the Color Coding technique [15].

I Lemma 18. Let ρ be any graph parameter.
1. If there is a T (n, k, ρ(H)) time deterministic algorithm for Colored Subgraph Isomor-

phism, then there is a O(T (kn, k, ρ(H))g(k)) expected time algorithm and furthermore a
O(T (kn, k, ρ(H)) log(n)g(k)) time deterministic algorithm for Subgraph Isomorphism,
for some computable function g.

2. If there is a T (n, k, ρ(H),W ) time deterministic algorithm for Exact Weight Colored
Subgraph Isomorphism, then there is a O(T (kn, k, ρ(H),W )g(k)) expected time algo-
rithm and furthermore a O(T (kn, k, ρ(H),W ) log(n)g(k)) time deterministic algorithm
for Exact Weight Subgraph Isomorphism, for some computable function g.

3. Let tw(H) ≥ 2. If there is a T (n, k, tw(H)) time algorithm for Subgraph Isomorphism,
then there is a O(T (poly(k)n,poly(k), tw(H)) + poly(k)n2) time algorithm for Colored
Subgraph Isomorphism.

4. If there is a T (n, k, ρ(H),W ) time algorithm for Exact Weight Subgraph Isomor-
phism, then there is a O(T (2n, 2k, ρ(H), 2kW ) + poly(k)n2) time algorithm for Exact
Weight Colored Subgraph Isomorphism.

Regarding treewidth, the only case the above lemma does not cover is how to transform an
algorithm for unweighted Subgraph Isomorphism to an algorithm for Colored Subgraph
Isomorphism for tw(H) = 1. Thus, we also cannot transfer lower bounds for the latter to
lower bounds for the former when H is a tree. For our purposes, this is not a problem, since
Subgraph Isomorphism for trees already has a trivial unconditional lower bound of Ω(n2),
which is tight. Note that for this unconditional lower bound, we must assume that the graph
is dense, i.e. has Θ(n2) edges.
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The lemma also cannot transform algorithms for unweighted Subgraph Isomorphism
to an algorithm for Colored Subgraph Isomorphism for bounded pathwidth. This is a
shortcoming that we could not fix, and we leave its resolution as an open problem.

Proof (of Lemma 18). We start by showing part 1 and part 2. As mentioned, this follows
directly from a standard application of the Color Coding technique [15]. Briefly speaking,
they use random colorings of the vertices of G to make the potential solution subgraph
multicolored with some probability depending only on k. In our case, we may then try all k!
mappings from colors to vertices of H to obtain the randomized algorithm; we delete any
monochromatic edges to make sure that f is a homomorphism. The authors of [15] also
explain how to derandomize the algorithm using k-perfect hash functions, which results in
the deterministic algorithm with an additional factor of 2O(k) log(n).

The factor of k in front of n in T (kn, k, tw(H)) comes from the fact that in the Colored
Subgraph Isomorphism problem, we consider n to be the size of the preimages of f , while
in the Subgraph Isomorphism problem, we consider it to be the size of V (G).

Now we show part 3. Given an instance φ of Colored Subgraph Isomorphism,
where H has k vertices, with preimages in G of n vertices each, we construct an equivalent
Subgraph Isomorphism instance φ′. This is done in two steps. First, we modify φ into an
equivalent, but more structured Colored Subgraph Isomorphism instance φ̃, which we
then reduce to φ′. See Figure 1 for an example of this reduction.

Subdividing all edges: In the first step, we construct H̃, which consists of a subdivided copy
ofH, where each vertex has a unique “signature” structure attached to it. These signatures
have a triangle as a key component. Abusing notation, we write V (H) = {1, . . . , k} and
use the vertices as numbers. First, for each i ∈ V (H), we add a vertex ĩ to H̃. Then, for
each edge ij ∈ E(H) with i < j, we add a vertex x̃ij and create two edges ĩx̃ij and x̃ij j̃,
hence subdividing the edge ij. This ensures that for now, the new graph has no triangles.
In G̃, we populate the preimages as follows: For each i ∈ V (H), let f−1(i) = {a1

i , . . . , a
n
i }

and add n vertices {ã1
i , . . . , ã

n
i } to f−1(̃i). For each `, the vertex ã`i corresponds to a`i .

The preimages of x̃ij are populated with n vertices {b1ij , . . . , bnij} via f̃ . For each edge
ij ∈ E(H) with i < j, we add an edge a`ib`ij for every ` ∈ [n]. We also go through each
edge a`iamj ∈ E(G) and add a corresponding edge b`ij ãmj to E(G̃).

Signatures: We now add the signatures. For each i ∈ [k], we add a new vertex t̃i and a
new triangle ũiṽiw̃i to H̃, and connect t̃i to both ũi and ĩ from V (H̃). Furthermore,
we connect ṽi to i+ 1 other newly created vertices ỹ1

i , . . . ỹ
i+1
i . Let the set of all newly

created vertices t̃i, ũi, ṽi, w̃i, ỹ`i (i ∈ [n], ` ∈ [i+ 1]) be named X. In G̃, we populate the
preimages of these new vertices by adding n vertices {z1, . . . , zn} to V (G̃) for each vertex
v ∈ X, with ∀i ∈ [n] : f̃(zi) = v. Now, for each u ∈ X, we pick an arbitrary node from
f−1(u) and call it active. Furthermore, for all ĩ ∈ V (H̃), we call all vertices of f−1(i)
active. Now for each v ∈ X, we connect its active vertex in f−1(v) to all active vertices
from the neighbourhood f−1(N(v)). Note that of the vertices in f−1(X), only the active
ones have edges at all. Indeed, for each i ∈ [k], G̃ contains exactly one triangle such that
one of its vertices has degree i+ 3.

We set φ̃ to be the instance (H̃, G̃, f̃). This concludes the construction of φ̃.
Clearly, the new instance φ̃ has a solution iff φ has one, and the size of the new instance

is only a poly(k) factor larger than the size of φ. We must also show that the reduction
preserves treewidth. Note that H̃ is obtained from H via two operations: Subdividing edges
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ṽ 2

ỹ
1 2 ỹ
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and connecting a graph of smaller or equal treewidth via a single edge. It is easy to see that
both operations do not change the treewidth.

Now, to construct φ′, we simply get rid of the mapping f̃ . In other words, φ′ = (H̃, G̃).
Obviously, if φ̃ has a solution, then φ′ has one. For the other direction, suppose φ′ has a
solution, i.e. a subgraph S′ of G̃ along with an isomorphism h : V (H̃) → V (G[S′]) of G̃.
Since both H̃ and G̃ have, for each i, exactly one triangle with a vertex of degree i, h must
map these triangles to their respective counterparts in G̃. In particular, each of the vertices
in X is mapped to the active vertex in its preimage. Since the active node in f−1(t̃i) is
connected only to nodes of f−1(̃i) (apart from the active node of f−1(ũi), which is already in
the image of h(ũi)), we know that h(̃i) ∈ f−1(̃i). Analogously, h(x̃ij) ∈ f−1(xij). Hence, S′
takes exactly one vertex from each preimage of vertices from H̃. Thus, φ̃ also has a solution.

We thus obtain a way to reduce φ to φ′ with a size factor of only poly(k). The reduction
obviously runs in O(poly(k)n2) time. This shows part 3.

Finally, we show part 4. We begin with the node-weighted version. Given an instance φ
of Exact Weight Colored Subgraph Isomorphism where the pattern graph H has k
vertices, we create an instance φ′ of Exact Weight Subgraph Isomorphism by simply
dropping f and modifying the weights. We have to ensure that a solution of φ′ takes exactly
one node from each preimage of H. To do this, we encode a checklist in the weights of the
nodes. Again, let V (H) = {1, . . . , k}. Let u ∈ f−1(i) for i ∈ V (H), and consider its weight
w(u). We modify it by multiplying it with 2k and adding 2i. We call the added weight its
“signature”. Now, since any solution must pick exactly k vertices, the only way that the
signatures of the solution vertices sum up to 2k − 1 is to pick vertices which have a sum of
weight 0 according to the original weight function and furthermore have exactly one vertex
with added weight 2i for each i = 1, . . . , k. To complete our reduction, we pick an arbitrary
vertex v ∈ V (G) and subtract 2k − 1 from all vertices in f−1(v), making the new target
zero. This reduction does not alter G or H, and instead only modifies the weight function,
resulting in the stated time bounds.

For the edge-weighted version, we can use essentially the same construction as for the
node-weighted version. Again, all weights are multiplied by 2k, and each vertex of H has a
unique “signature”. However, this time, we have to add the signatures to the edge weights.
Consequently, for each i ∈ V (H) = {1, . . . , k}, we pick an arbitrary incident edge e ∈ E(H).
Let e = {i, j}. We add the signature 2i to every edge in the preimage of e. That is, to every
edge {e′ ∈ E(G) | e′ = {u, v} and f(u) = i and f(v) = j}. This way, we must still pick a
node from each preimage to ensure that the signatures sum to T := 2k − 1. Again, we pick
an arbitrary edge e ∈ E(H) and subtract T from all edges in its preimage. This almost
completes the proof. However, we still have to handle nodes of degree 0 in H, since we
cannot pick an incident edge for them. However, an isolated vertex i in H may be mapped
to any vertex in G. Hence, we may simply skip the signature of i. We also have to modify
the target T to be T − 2i. J

6 Algorithmic Results

6.1 Colored Subgraph Isomorphism for Bounded Treewidth

We begin by looking at the unweighted version of Colored Subgraph Isomorphism. As
was previously mentioned for Theorem 1, these results essentially follow from [15] and [43],
but are now unified via a single technique.
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I Theorem 19. There is an algorithm which, given an arbitrary instance φ = (H,G, f) of
Colored Subgraph Isomorphism, solves φ in time
1. O(ntw(H)+1 poly(k) + g(k)) when tw(H) ≥ 3,
2. O(nω poly(k) + g(k)) when tw(H) = 2, where ω is the exponent of matrix multiplication,

and
3. O(n2 poly(k) + g(k)) when tw(H) = 1.
where k := |V (H)|, n is the size of the preimages of f , and g is a computable function.

Obviously, a proof of this theorem suffices to prove Theorem 1, since we can simply plug
the algorithm into Lemma 18.

Proof (of part 1 of Theorem 19). We describe an algorithm which, given G,H and f :
V (G) → V (H), first calculates an optimal tree decomposition T = (T, {Xt}t∈V (T )) for H
in time g(k), then finds a solution via dynamic programming over the tree decomposition.
By assumption, tw(H) ≥ 3. We use a slightly more complicated framework than necessary,
because it generalizes nicely to a proof of part 2 and to a proof of parts 1 and 2 of Theorem 20.

To make our algorithm as easy as possible, we begin by modifying the tree decomposition.
This modification is analogous to that which [43] describes for treewidth 2 graphs. In
particular, we will obtain the following properties:

1. The bags of the root node r as well as of all leaves have size tw(H), and every other bag
has size exactly tw(H) + 1

2. The root node r has a unique child r′
3. For every t ∈ V (T ) and every child t′ of t, we have |Xt ∩Xt′ | = tw(H)
4. For every inner node t ∈ V (T ) with set of children Ct, we have ∀u ∈ Xt : ∃t′ ∈ Ct :

Xt ∩Xt′ = Xt \ {u}

To obtain these properties, we follow the outline of [43]. First, we merge adjacent nodes
t1, t2 ∈ V (T ) with Xt1 = Xt2 . If there exists a node t with |Xt| < tw(H) + 1 and a neighbor
t′ such that Xt′ 6⊆ Xt, then we simply add an element of Xt′ \ Xt to Xt. Now all bags,
including root and leaves, have size exactly tw(H) + 1. To achieve property 3, we take
any adjacent pair of nodes (t, t′) with |Xt ∩ Xt′ | < tw(H) and, letting u ∈ Xt \ Xt′ and
v ∈ Xt′ \Xt, insert a bag with vertices (Xt ∪ {v}) \ {u} between them. Applying this rule
exhaustively satisfies property 3. Now we satisfy property 1 and 2 by taking the root and all
leaves and, for each one, copying any tw(H) of its vertices into a new bag which we attach
only to the respective root or leaf. Finally, to satisfy property 4, we take any inner node
which violates this property for some u ∈ Xt and attach a leaf with vertices Xt \ {u} to it.

We now do dynamic programming over the modified tree decomposition. Using notation
and nomenclature from Section 4.2, we only store values for each configuration of the
separators Xt ∩Xt′ . In particular, let t′ be a non-root node with parent t. For each such t′,
we store the following function of finite domain from configurations of Xt∩Xt′ to truth values.
Remember that ParSol(S; I; J) is 1 iff S is a partial solution of I in J , for I ⊆ J ⊆ V (H).

dt′ : Conf(Xt ∩Xt′)→ {0, 1}
dt′(R) := ParSol(R;Xt ∩Xt′ ;Vt′) (1)

I.e. we store for each configuration whether it is a partial solution of Xt ∩Xt′ in the cone Vt′ .
Since there are ntw many configurations for Xt ∩Xt′ , the function dt′ can be specified

using ntw many bits.
We calculate all functions dt′ for t′ ∈ T in a bottom-up manner. We begin with the

case that t′ is a leaf with parent t. Since Xt ∩Xt′ = Xt′ , any configuration of Xt ∩Xt′ is a
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configuration of Xt′ , and Xt′ = Vt′ . Thus, to calculate dt′(R) as in equation 1, we simply
have to check whether R is a valid configuration. The latter can be done in time poly(k),
which leads to a total time of O(ntw(H) poly(k)) per leaf.

Now let t′ with parent t be an inner node of T , let Ct′ be its set of child vertices in T . We
may partition the set Ct′ into tw(H) + 1 subsets according to which vertices the bag of the
child shares with Xt′ . Specifically, for u ∈ Xt′ , let C(u)

t′ denote the set of children t′′ ∈ Ct′
such that Xt′ ∩Xt′′ = Xt′ \ {u}. We define the “partial cone” V (u)

t′ :=
⋃
t′′∈C(u)

t′
Vt′′ .

Now, let R be a configuration of Xt∩Xt′ . Letting Xt′ \Xt = {v} , we obtain the following
alternate characterization of dt′(R):

dt′(R) =
[
∃v′ ∈ f−1(v) : ∀u ∈ Xt′ : ParSol((R ∪ {v 7→ v′})|Xt′\{u};Xt′ \ {u};V (u)

t′ ) = 1
]

We now show how to calculate the values of dt′ via a tw(H)-wise matrix product, with
0-1-tensors of dimensions n× . . .× n. For convenience, all tensors from this point onward
are indexed via configurations, each dimension indexed by a single vertex. Formally, we call
a tensor A indexed by configurations of X ⊆ V (H) when it is an order |X| tensor of
dimensions n× . . .× n. Abusing notation, we rename the vertices of f−1(u) for each u ∈ X
as {1, . . . , n} and use them as if they were numbers. We fix some ordering (v1, . . . , v|X|) of
X, and for a configuration R of X define A[R] := A[R(v1), . . . , R(v|X|)].

For our tw(H)-wise matrix product, each input tensor is indexed by configurations of one
of the subsets of size tw(H) of Xt′ , excluding Xt′ \ {v}. Note that in particular, all input
tensors have one dimension indexed by the configuration of v.

The input tensor p(u)
t′ , to be defined in a moment, is indexed by configurations of Xt′ \{u}

and is responsible for all children t′′ ∈ C(u)
t′ . By definition, for all such children t′′, we have

Xt′′ ∩Xt′ = Xt′ \ {u}. We define

p
(u)
t′ [R′] := ParSol(R′;Xt′ \ {u};V (u)

t′ )

Letting Xt′ = {v, u1, . . . , utw(H)}, and permuting the indices of the tensors p(ui)
t′ such

that the i-th index always corresponds to v, we now calculate the tw(H)-wise matrix
product D := MPtw(H)(p

(u1)
t′ , . . . , p

(utw(H))
t′ ). Via the formula for the tw(H)-wise matrix

product, it can be seen that for any configuration R of Xt ∩ Xt′ , we have D[R] ≥ 1 iff
∃v′ ∈ f−1(v) : ∀u ∈ Xt′ \ {v} : p(u)

t′ [(R ∪ {v 7→ v′})|Xt′\{u}] = 1. We arrive at the following
formula for dt′(R):

dt′(R) =
[
∃v′ ∈ f−1(v) : ∀u ∈ Xt′ : ParSol((R ∪ {v 7→ v′})|Xt′\{u};Xt′ \ {u};V (u)

t′ ) = 1
]

=
[
ParSol(R;Xt′ \ {v};V (v)

t′ ) = 1 ∧

∃v′ ∈ f−1(v) : ∀u ∈ Xt′ \ {v} : ParSol((R ∪ {v 7→ v′})|Xt′\{u};Xt′ \ {u};V (u)
t′ ) = 1

]
=
[
p

(v)
t′ [R] = 1 ∧ ∃v′ ∈ f−1(v) : ∀u ∈ Xt′ \ {v} : p(u)

t′ [(R ∪ {v 7→ v′})|Xt′\{u}] = 1
]

=
[
p

(v)
t′ [R] = 1 ∧D[R] ≥ 1

]
This gives an easy algorithm for calculating dt′ from the tensors p(u)

t′ . The tw(H)-wise
matrix product to calculate D can be done in O(ntw(H)+1) given the input tensors. From
that, we can calculate dt′ in time O(ntw(H) poly(k)) using the above formula. To calculate
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the input tensors, note that

p
(u)
t′ [R′] =

[
∀t′′ ∈ C(u)

t′ : ParSol(R′|Xt′\{u};Xt′ \ {u};Vt′′) = 1
]

=
[
∀t′′ ∈ C(u)

t′ : dt′′(R′|Xt′\{u}) = 1
]

Obviously, calculation of a single entry p(u)
t′ [R′] takes time O(|C(u)

t′ |) = poly(k)(since the tree
decomposition only has poly(k) nodes). There are tw(H) = poly(k) input tensors, one for
each u ∈ Xt′ , and each one has ntw(H) entries. Hence, the entries of all of the input tensors
p

(u)
t′ can be calculated in total time O(ntw(H) poly(k)). Thus we obtain a total running time

of O(ntw(H)+1 poly(k)) for each inner node.
Now to output the answer, remember that r′ is the unique child of the root node r of T .

We know by definition that dr′(R) is 1 iff R is a partial solution for Xr in V (H). Thus, the
input is a YES-instance for Colored Subgraph Isomorphism iff there is an R such that
dr′(R) is 1.

It remains to analyze the running time. As was discussed, we need time O(ntw(H) poly(k))
for each leaf, and time O(ntw(H)+1 poly(k)) for each inner node. The final check of dr′(R)
can be done in O(ntw(H)). Since the number of nodes of T is polynomial in k, we have an
overall running time of O(ntw(H)+1 poly(k)). J

So far, we have only looked at the case that tw(H) ≥ 3. However, this exact algorithm
also achieves the second result.

Proof (of part 2 of Theorem 19). Note that in the algorithm for part 1, all steps run in
time O(ntw(H) poly(k)), except for the tw(H)-wise matrix product, which can be done in
time O(ntw(H)+1). However, for tw(H) = 2, tw(H)-wise matrix product is exactly matrix
multiplication, which runs in time O(nω). Thus we obtain our second result. J

The third result with tw(H) = 1 cannot be achieved by this algorithm directly. We
shortly outline why. Rooting G in some arbitrary node, consider the tree decomposition that
takes exactly the edges of G as bags, and constructs T such that two nodes are connected by
an edge iff their bags have a non-empty intersection. Now consider a graph G which contains
nodes u, v, w such that u is the parent of v and v is the parent of w. Let t, t′ ∈ T be such
that Xt = {u, v}, Xt′ = {v, w}. But now the edge vw is not covered by any of the subsets
Xt′ \ {v} or Xt′ \ {w} and is thus not considered in the algorithm at all. This leads to the
algorithm failing. For tw(H) ≥ 2, this does not happen, since any pair of nodes is contained
in a bag Xt of size ≥ 3, hence there is some u such that the edge is covered by the subset
Xt \ {u}.

Thus, to obtain our third result, we must employ a different technique. However, this
part of the theorem turns out to be easy.

Proof (of part 3 of Theorem 19). We only sketch the result, since it is easy to see. It
suffices to employ the trivial dynamic programming solution on the tree G, which already
has a running time of O(n2 poly(k)). J

6.2 Exact Weight Colored Subgraph Isomorphism for Bounded
Treewidth

We now move on to the weighted version of Colored Subgraph Isomorphism. Specifically,
we show how to solve the Exact Weight Colored Subgraph Isomorphism problem
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for bounded-treewidth pattern graphs using dynamic programming. Remember that the
instances we consider here may be either node- or edge-weighted.

I Theorem 20. There is an algorithm which, given an arbitrary instance φ = (H,G, f, w)
of the Exact Weight Colored Subgraph Isomorphism problem, solves φ in time
1. O((ntw(H)+1W + ntw(H)W logW ) poly(k) + g(k)) when tw(H) ≥ 3,
2. O((nωW + n2W logW ) poly(k) + g(k)) when tw(H) = 2, and
3. O((n2W + nW logW ) poly(k) + g(k)) when tw(H) = 1.
where k := |H|, n is the size of the preimages of f , and W is the maximum absolute weight
in the image of w.

Again, note that this implies Theorem 2 via a simple application of Lemma 18 to the
resulting algorithm.

Before we prove this, we establish two important lemmata. First, we prove that in the
algorithms, we can always assume that the instances are edge-weighted. For the lower bounds,
it also shows that we must only prove bounds for node-weighted instances to immediately
also get bounds for edge-weighted instances.

I Proposition 21. Given an instance of Exact Node Weight Colored Subgraph
Isomorphism where each vertex v ∈ V (G) with w(v) 6= 0 has degree at least one, we can
transform it into an equivalent instance of Exact Edge Weight Colored Subgraph
Isomorphism in such a way that only the weight function changes. Furthermore, this
reduction runs in time linear in the input size.

Proof. We construct a new weight function w′ : E(G) → Z. Initially, w′(e) = 0 for all
e ∈ E(G). The idea is to push the weight of each vertex of non-zero weight in G onto one of
its edges. Hence let v ∈ V (G) with w(v) 6= 0. Then there must be u ∈ V (G) with uv ∈ E(G).
We add w(v) to w′(uv). This completes the reduction.

It can easily be seen that if there is a solution in the node-weighted instance with w, then
that same solution must work with w′ and vice versa. J

As our second lemma, we show that you can basically do the k-wise matrix product of
tensors of polynomials faster than naively by utilizing the Fast Fourier Transform. Recall
that a Laurent polynomial p ∈ C[X,X−1] is simply a polynomial which may have negative
powers of the X.

I Lemma 22. Let m ∈ N tensors A1, . . . , Am of order m be given, each of dimensions
n× . . .× n and such that each of their entries Aij1,...,jm

∈ C[Z,Z−1] (i ∈ [m] and ∀` ∈ [m] :
j` ∈ [n]) is a Laurent polynomial of degree bounded by W in both the positive and negative
direction. Then their m-wise matrix product can be computed in time
1. O(nm+1Z +mnmW logW ) for m ≥ 3 and
2. O(nωZ + n2W logW ) for m = 2.

Proof. It suffices to prove the result for standard polynomials of degree bounded by 2W , since
we can shift the exponents of the polynomials such that they only have positive exponents,
do the m-wise matrix product, then shift back.

We assume for now that m ≥ 3. Our algorithm is a generalization of the Fast Fourier
Transform algorithm for standard polynomials (e.g. [38]). Specifically, we evaluate each
Ai at the set S of the 2W -th roots of unity, obtaining m · |S| tensors with complex entries.
Since each entry of Ai is a polynomial, this can be done separately for each entry. Then, for
each s ∈ S, we compute MPm(A1(s), . . . , Am(s)), obtaining |S| tensors with complex entries.
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Obviously, these are exactly the evaluations of MPm(A1, . . . , Am) at S. At this point we can
use interpolation via the inverse Fast Fourier Transform separately for each entry to recover
the result.

Evaluating all entries of the tensors Ai at the roots of unity can be done using the classic
Fast Fourier Transform algorithm. Since there are m ·nm such entries, each with polynomials
of degree bounded by W , this runs in time O(mnmW logW ). Similarly, the interpolation of
the result can be done by the inverse Fast Fourier Transform algorithm. Since there are nm
entries to interpolate, each with a degree bound of O(W ), this runs in time O(mnmW logW ).
Finally, computing the m-wise matrix products for each root of unity can be done in
|S| · nm+1 = O(nm+1W ). Thus, our total running time is O(nm+1W +mnmW logW ).

For the case that m = 2, note that in the above algorithm, all steps except for the m-wise
matrix product run in time O(nmW logW ). For m = 2, the m-wise matrix product is exactly
matrix multiplication, which can be done in O(nω). Thus the O(W ) matrix multiplications
can be done in O(nωW ). J

We use this lemma as an important tool in our proof of Theorem 20. The framework
of the proof is somewhat analogous to that of Theorem 19, but instead of storing a single
tensor for each node of T in the dynamic programming table, they have several such tensors,
one for each achievable weight. The computation of the dynamic programming table entries
is slightly more complex, with some shifting of the entries being required.

Proof (of part 1 of Theorem 20). Due to Proposition 21, we only need to consider the case
of edge weights.

We describe an algorithm with inputs G, H, f : V (G)→ V (H) and a weight function w
describing edge weights. It calculates an optimal tree decomposition T := (T, {Xt}t∈V (T ))
for H in time g(k) and then computes a solution via dynamic programming over the tree
decomposition. By assumption, tw(H) ≥ 3.

We use the same modified version of the tree decomposition as described in the proof of part
1 of Theorem 19. We continue using the terms and notation as described in Section 4.2. We
also continue using the the notation and nomenclature for indexing tensors via configurations,
as described in the proof of part 1 of Theorem 19.

In deviation from the proof of Theorem 19, our dynamic programming table is now
structured differently. Instead of having only a single function of finite domain for each t′,
we have one function for each t′ and achievable weight. Since the instance is node-weighted,
the achievable weights must all lie in W := {−kW, . . . , kW}.

Specifically, for each non-root node t′ ∈ T with parent t, for each weight W ′ ∈W and for
each configuration R of Xt ∩Xt′ , we store

dt′,W ′ : Conf(Xt ∩Xt′)→ {0, 1}
dt′,W ′(R) := ParSolE(R;Xt ∩Xt′ ;Vt′ ;W ′)

Again, we calculate these values in a bottom-up manner. Specifically, for a node t ∈ T

with children Ct, we calculate dt′,W for all t′ ∈ Ct,W ′ ∈W before calculating dt′,W for all
W ∈ W. In the case that t′ is a leaf with parent t, we have that dt′,W ′(R) is 1 iff R is a
valid configuration and W ′ = 0. Even the simplest implementation of this takes time at most
O(ntw(H)W poly(k)).

Now consider the case where t′ ∈ T is an inner node. For u ∈ Xt′ we again denote
by C

(u)
t′ the set of children t′′ with Xt′′ ∩ Xt′ = Xt′ \ {u} and define the partial cone

V
(u)
t′ :=

⋃
t′′∈C(u)

t′
Vt′′ . First, we deal with calculating the weight of an extension. Let R′ be a
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partial solution of Xt′ ∩Xt in Vt′ , let S be an extension of R′ and let Xt′ \Xt = {v}. Notice
that we get the following formula for the weight of the extension S:

wext(S,R′) = w(S)−w(S|Xt′\{v}) =

 ∑
u∈Xt′

wext(S|V (u)
t′
, S|Xt′\{u})


︸ ︷︷ ︸

Part A

+wext(S|Xt′ , S|Xt′\{v})︸ ︷︷ ︸
Part B

Part A is the combined weight of the edges which are not in Xt′ . Compared to the right
hand side, it is missing the weight of all edges going from v to Xt′ \ {v}, which is exactly
what is then added in Part B. Recall thatwext(S|Xt′ , S|Xt′\{v}) =

∑
u∈Xt′\{v} w(S(v)S(u)).

Again, we name the vertices of Xt′ as Xt′ =: {v, u1, . . . , utw(H)}.
We call a tensor indexed by configurations of a subset as defined in the proof of part 1

of Theorem 19. In keeping with that, we now define for each u ∈ Xt′ and each W̃ ∈ W a
0-1-tensor p(u)

t′,W̃
of dimensions n× . . .× n, which is indexed by configurations of the subset

Xt′ \ {u} and thus is responsible for the set of children C(u)
t′ . However, to be able to compute

the full weight of a configuration from these tensors, we want the weight fo part B from above
to be encoded in these tensors. Hence, the entry of p(u)

t′,W̃
corresponding to a configuration

R′ of Xt′ ∩Xt is defined as

p
(u)
t′,W ′ [R′] :=


P

(u)
t′,W̃−

∑tw(H)
i=2

w(R′|{v,ui})
[R′] if u = u1

P
(u)
t′,W̃−w(R′|{v,u1})

[R′] if u = u2

P
(u)
t′,W̃

[R′] otherwise

where P
(u)
t′,W̃

is another 0-1-tensor indexed by the same set of configurations, which we define
via

P
(u)
t′,W̃

[R′] := ParSolE(R′;Xt′ \ {u};V (u)
t′ ; W̃ )

Now, the weight of v is encoded in the tensors p(u1)
t′,∗ and p(u2)

t′,∗ (for ∗ ∈W). We will specify
how to compute all of these tensors later. For now, consider how we can calculate dt′,W ′

from them. We have the following formula for dt′,W ′(R):

dt′,W ′(R) =
[
∃Wv,Wu1 , . . . ,Wutw(H) : ∃v′ ∈ f−1(v) :

Wv +
tw(H)∑
i=1

Wui
+ wext((R ∪ {v 7→ v′}), R) = W ′ ∧

∀u ∈ Xt′ : ParSolE((R ∪ {v 7→ v′})|Xt′\{u};Xt′ \ {u};V (u)
t′ ;Wu) = 1

]

We now substitute.

Wu :=


W̃u1 −

∑tw(H)
i=2 w(v′R(ui)) if u = u1

W̃u2 − w(v′, R(u1)) if u = u2

W̃u otherwise

This cancels out with the weight of v being added. Furthermore, we again reorder the tensors
p

(ui)
t′,∗ (∗ ∈ W, i ∈ [tw(H)]) such that the i-th index corresponds to v. As a result, their
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tw(H)-wise matrix product iterates over v. Defining the tensor D
W̃

as

D
W̃

[R] :=

∃Wu1 , . . . ,Wutw(H) :
tw(H)∑
i=1

Wui
= W̃ ∧MPtw(H)(p

(u1)
t′,Wu1

, . . . , p
(utw(H))
t′,Wutw(H)

)[R] ≥ 1


one can now show equivalence of dt′,W ′ to the following:

dt′,W ′(R) =

∃W̃v, W̃u1 , . . . , W̃utw(H) : ∃v′ ∈ f−1(v) : W̃v +
tw(H)∑
i=1

W̃ui
= W ′ ∧

∀u ∈ Xt′ : p(u)
t′,W̃u

[(R ∪ {v 7→ v′})|Xt′\{u}] = 1
]

=

∃W̃v, W̃u1 , . . . , W̃utw(H) : W̃v +
tw(H)∑
i=1

W̃ui = W ′ ∧ p(v)
t′,W̃v

[R] = 1 ∧

∃v′ ∈ f−1(v) : ∀u ∈ Xt′ \ {v} : p(u)
t′,W̃u

[(R ∪ {v 7→ v′})|Xt′\{u}] = 1
]

=
[
∃W̃v, W̃ : W̃v + W̃ = W ′ ∧ p(v)

t′,W̃v

[R] = 1 ∧D
W̃

[R] = 1
]

(1)

We are now ready to describe the algorithm for computing dt′,W ′ for each W ′ ∈ W in
detail. It consists of the following three steps:

1. Compute p(u)
t′,W ′ each W ′ ∈W and u ∈ Xt′

2. Compute D
W̃

for each W̃ ∈W using the results of step 1
3. Compute dt′,W ′ for each and W ′ ∈W using (1) and the results of step 2

We have to show that each of these steps can be done in time O(ntw(H)+1W poly(k) +
ntw(H)W logW poly(k)). Starting with step 1, we wish to compute p(u)

t′,W ′ for arbitrary
W ′ ∈ W and u ∈ Xt′ . It suffices to specify how to compute P

(u)
t′,W ′ , since from that point

onward calculating p(u)
t′,W ′ boils down to shifting entries among the tensors according to the

weight difference.
Let R′ be a configuration of Xt′ \{u}. We set c = |C(u)

t′ | and number the child nodes C(u)
t′

as C(u)
t′ = {t′′1 , . . . , t′′c }. To calculate the entry Pt′,W ′ [R′], note that R′ is a partial solution

for V (u)
t′ with an extension of weight W ′ iff there are weights W1, . . . ,Wc with sum W ′ such

that ∀i : R′|Xt′\{u} is a partial solution for the cone Vt′′
i
with an extension of weight Wi.

Hence,

Pt′,W ′ [R′] =
[
∃W1, . . .Wc :

c∑
i=1

Wi = W ∧ ∀i : dt′′
i
,Wi

(R′) = 1
]

This may be calculated via a discrete convolution. Specifically, for the configuration R′ we
define the finitely supported functions f1

t′,R′ , . . . , f ct′,R′ : Z→ {0, 1} as f it′,R′(x) := dt′′
i
,x(R′)

if x ∈W, and 0 otherwise. We now use the discrete convolution of these functions, defined
as (f it′,R′ ∗ f jt′,R′)(x) :=

∑∞
m=−∞ f it′,R′(m)f jt′,R′(x − m). Note how (f it′,R′ ∗ f jt′,R′) ≥ 0 iff

∃m : f it′,R′(m)f jt′,R′(x − m) = 1. We get that P
(u)
t′,W ′ [R] =

[
(f1
t′,R′ ∗ . . . ∗ f ct′,R′)(W ′) ≥ 0

]
.

This is a convolution of poly(k) finitely supported functions on Z, with supported values
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ranging over an interval of size O(W ). This can be computed via a Fast Fourier Transform
(e.g. the classical algorithm in [38]) in time O(W logW poly(k)). Since we this for each
entry, P(u)

t′,W ′ can be computed in total time O(ntw(H)W logW poly(k)).
For step 2, we want to compute D

W̃
for each W̃ ∈W. Note how, with the usual definition

of tensor addition, we have

D
W̃

[R] =




∑
W1,...,Wtw(H)∈W
W1+...+Wtw(H)=W̃

MPtw(H)(p
(u1)
t′,W1

, . . . , p
(utw(H))
t′,Wtw(H)

)

 [R] ≥ 1


We now show how to calculate this using a single tw(H)-wise matrix product of tensors with
polynomials as entries. Let Ttw(H) be the additive group of order-tw(H) tensors of dimensions
n× . . .× n with entries from Z. Define Ttw(H)[X,X−1] as the group of Laurent polynomials
with elements of Ttw(H) as coefficients. Note how elements of Ttw(H)[X,X−1] may also be
viewed as tensors with Laurent polynomials as entries, or as functions f : Z→ Ttw(H) when
using the usual definition of scalar-tensor multiplication.

We define p
(ui)
t′ (X) :=

∑
j∈W p

(ui)
t′,j · Xj ∈ Ttw(H)[X,X−1] for all i. Viewing them

as tensors of polynomials, we may calculate their tw(H)-wise matrix product. Viewing
MPtw(H)(p

(u1)
t′ , . . . p

(utw(H))
t′ ) as polynomial again, it can be easily seen that the coefficient

tensor for XW̃ is exactly∑
W1,...,Wtw(H)∈W
W1+...+Wtw(H)=W̃

MPtw(H)(p
(u1)
t′,Wu1

, . . . , p
(utw(H))
t′,Wutw(H)

)

Thus, to compute D
W̃

[R], it suffices to compute MPtw(H)(p
(u1)
t′ , . . . , p

(utw(H))
t′ ).

Hence, we have reduced the problem of calculating D
W̃

to computing the tw(H)-wise
matrix product of tensors whose entries are Laurent polynomials of degree bounded (in
both directions) by O(W ). By Lemma 22, this can be done in time O(ntw(H)+1W +
ntw(H)W logWpoly(k)).

Finally, step 3 is just another discrete convolution. Let R be a configuration of Xt′ .
Defining fv, fD : Z → {0, 1} as fv(x) := p

(v)
t′,x[R] and fD(x) := Dx[R] if x ∈ W and 0

everywhere else, equation (1) impllies dt′,W ′(R) = [(fv ∗ fD)(W ′) ≥ 1]. Again, the discrete
convolution may be implemented via a Fast Fourier Transform, leading to a running time of
O(ntw(H)W logW ).

Thus the case where t′ ∈ T is an inner node can be handled in time O(ntw(H)+1W +
ntw(H)W logW poly(k)).

After calculating dt′,W ′ for each t′ ∈ T,W ′ ∈W, outputting the result is simple. Letting
r′ be the unique child of the root r of T , we output YES iff ∃R : dr′,−w(R)(R) = 1. By the
definition of dt′,−w(R), this is the case iff R is a partial solution of Xr′ ∩ Xr = Xr in the
cone Vr′ = V (H) with an extension of weight −w(R). This is the case iff R can be expanded
to a configuration for all of V (H) such that its total weight is −w(R) + w(R) = 0. Hence,
∃R : dt′,−w(R)(R) = 1 iff the instance has a solution. Checking whether such an R exists can
obviously be done in time O(ntw(H) poly(k)).

We have shown that for each node of the tree decomposition, we need time at most
O(ntw(H)+1W+ntw(H)W logW poly(k)). The tree decomposition has poly(k) nodes, so the to-
tal running time of the dynamic programming algorithm isO((ntw(H)+1W+ntw(H)W logW ) poly(k)).

J
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We now consider the second part of the theorem. Similarly to the weighted case, it suffices
to employ the algorithm from part 1.

Proof (of part 2 of Theorem 20). In the algorithm for part 1, all running times except for
the tw(H)-wise matrix product are bounded by O(ntw(H)W logW poly(k)). For tw(H) = 2,
the tw(H)-wise matrix product is simply matrix multiplication, which can be done in O(nω).
Thus, for tw(H) = 2 the running time is O(nωW poly(k) + n2W logW poly(k)). J

Finally, we come to the third part of the theorem. For reasons outlined in the proof of the
previous theorem, the algorithm from part 1 does not work for tw(H) = 1. Again, however,
the result turns out to be quite simple for this case.

Proof (of part 3 of Theorem 20). Again, we only sketch the result, since it is easy to see.
A simple dynamic programming algorithm on trees can be applied, storing for each node
which configurations together with which weights can be achieved.

J

6.3 Colored Subgraph Isomorphism for Bounded Pathwidth

Surprisingly, Colored Subgraph Isomorphism can be solved slightly faster on graphs
of bounded pathwidth. This algorithm leverages rectangular matrix multiplication. In the
following, for z ∈ R+, let ω(z) be the smallest real number such that multiplying a n× n
matrix with a n× nz matrix can be done in time O(nω(z)). For a discussion of current best
running times, see Section 4.7.

I Theorem 23. There is an algorithm which, given an arbitrary instance φ = (H,G, f) of
Colored Subgraph Isomorphism, solves φ in time
1. O(nω(pw(H)−1) poly(k) + g(k)) when pw(H) ≥ 2, and
2. O(n2 poly(k)) + g(k) when pw(H) = 1
where k := |H|, n is the size of the preimages of f , and g is a computable function.

This theorem implies Theorem 3 from the results section.

Proof. Part 2 of the theorem is trivial, since for any graph, its treewidth is smaller than its
pathwidth. Hence, by application of Theorem 19, we achieve the desired running time.

For part 1, let G, H and f : V (G)→ V (H) be given. The algorithm first computes an
optimal path decomposition P = (P, {Xt}t∈V (T )) of H in time g(k) (see preliminaries), then
does dynamic programming over P.

To unify nomenclature and notation with the case of treewidth, we talk about a path as
a tree rooted at one of its endpoints. As in the proof of Theorem 19, we modify the path
decomposition P to satisfy certain properties. Specifically, we wish to obtain the following
properties:
1. The bags of the root and leaf of the path have size pw(H), and every other bag has size

pw(H) + 1
2. For every t ∈ V (P ) with child t′, we have |Xt ∩Xt′ | = pw(H)
These properties can be obtained via the techniques described in the proof of part 1 of
Theorem 19.
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We now do dynamic programming on this modified path decomposition. We only store
values for each configuration of the separators Xt ∩Xt′ . In particular, let t′ be a node other
than the root, and let t be its parent. As in Theorem 19, we only store

dt′ : Conf(Xt ∩Xt′)→ {0, 1}
dt′(R) := ParSol(R;Xt ∩Xt′ ;Vt′) (1)

We calculate these functions bottom-up. The case that t′ is the leaf is analogous to the
corresponding case in Theorem 19, taking time O(npw(H) poly(k)).

Now let t′ with parent t and child t′′ be an inner node of P . We define v̂ to be the unique
element with v̂ ∈ Xt′ \ Xt and similarly, ŵ ∈ Xt′ \ Xt′′ (or, if we would have v̂ = ŵ, we
take ŵ to be some vertex from Xt′ \ {v̂} instead), and finally E := Xt′ \ {v̂, ŵ}. Now if
v̂ŵ /∈ E(H), the calculation is easy. Hence assume v̂ŵ ∈ E(H). For a configuration R of
Xt ∩Xt′ , we get the following alternate characterization of dt′(R):

dt′(R) = [ValConf(R; {ŵ} ∪ E) ∧
∃v′ ∈ f−1(v̂) : ParSol((R ∪ {v̂ 7→ v′})|Xt′\{ŵ}; {v̂} ∪ E;Vt′′) = 1 ∧ v′R(w) ∈ E(G)

]
We describe how to calculate dt′ via rectangular matrix multiplication. Much like in

Theorem 19, the matrices are indexed by configurations. In contrast to the former, however,
one of the two dimensions of the matrix might correspond to the configuration of multiple
vertices. Formally, for a vertex subset Y ⊆ V (H) and a vertex x ∈ V (H), x /∈ Y , we call a
matrix A indexed by configurations of (x, Y ) when it is of dimensions n× n|Y |. We use
two arbitrary bijections g{x} : Conf({x})→ [n] and gY : Conf(Y )→ [n|Y |] which will help
us map configurations of x and Y to indices of the matrix. Hence, for a configuration R of
{x} ∪ Y , we define A[R] := A[gx(R|{x}), gY (R|Y )].

For our rectangular matrix product, we define a n × npw(H)−1 matrix Bt′ indexed by
configurations of (v̂, E). For a configuration R′ of {v̂} ∪ E, we define

Bt′ [R′] := dt′′(R′) = ParSol(R′; {v̂} ∪ E;Vt′′)

Now consider the adjacency matrix Adjv̂,ŵ of f−1(v̂) and f−1(ŵ), indexed by configurations
of (ŵ, {v̂}). We make sure that the indexing bijection g{v̂} as defined above is the same
for both Adjv̂,ŵ and Bt′ and then calculate the matrix product Adjv̂,ŵ ·Bt′ . Naturally, the
product is indexed by configurations of (ŵ, E) and can be expressed as

(Adjv̂,ŵ ·Bt′)[R′] =
[
∃v′ ∈ f−1(v̂) : ParSol((R′ ∪ {v̂ 7→ v′})|Xt′\{ŵ}; {v̂} ∪ E;Vt′′) = 1
∧v′R(w) ∈ E(G)]

Hence, we may write dt′(R) as

dt′(R) = [ValConf(R; {ŵ} ∪ E) ∧ (Adjv̂,ŵ ·Bt′)[R] = 1] (2)

The algorithm to calculate dt′ is immediate. First, we calculate the rectangular matrix
product of Adjv̂,ŵ and Bt′ in time O(nω(pw(H)−1)), then calculate dt′ via formula 2. Checking
whether R is a valid configuration of {ŵ} ∪ E can be done in time poly(pw(H)) ≤ poly(k),
giving us a total time of at most O(nω(pw(H)−1) poly(k)) per inner node.

To output the answer, consider the child r′ of the root r. We have by definition that
dr′(R) is 1 iff R is a partial solution for Xr in V (H). Thus, the input is a YES-instance for
Colored Subgraph Isomorphism iff there is an R such that dr′(R) is 1.

Since there is only a single leaf and poly(k) inner nodes, total running time of the dynamic
programming algorithm is O(nω(pw(H)−1) poly(k)). J
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6.4 Exact Weight Colored Subgraph Isomorphism for Bounded
Pathwidth

The techniques of using rectangular matrix multiplication for the case of pathwidth can also
be applied to the weighted case, and they lead to improvements in the expected way. Again,
the instances may be either node- or edge-weighted.

I Theorem 24. There is an algorithm which, given an arbitrary instance φ = (H,G, f, w)
of the Exact Weight Colored Subgraph Isomorphism problem, solves φ in time
1. O((nω(pw(H)−1)W + npw(H)W logW ) poly(k) + g(k)) when pw(H) ≥ 2, and
2. O((n2W + nW logW ) poly(k) + g(k)) when pw(H) = 1
where k := |V (H)|, n is the size of the preimages of f , W is the maximum absolute weight
in the image of w, and g is a computable function.

From this, Theorem 4 from the results section follows directly via Lemma 18.

I Lemma 25. Let two matrices A,B of dimensions r × s and s× t be given, such that each
of their entries Ai,j , Bj,k ∈ C[X,X−1] (for all i ∈ [r], j ∈ [s], k ∈ [t]) is a Laurent polynomial
of degree bounded by Z in both the positive and the negative direction. Then their product
can be computed in time O(MM(r, s, t)Z + (rs+ st)Z logZ)

Proof. Analogous to Lemma 22. J

Proof (of theorem 24). Again, we only need to prove an algorithm for the edge-weighted
case due to Proposition 21.

Part 2 is a corollary of Theorem 20, since for any graph, its treewidth is smaller than its
pathwidth.

For part 1, we only sketch the proof, since it is a straightforward combination of the
techniques used in the proofs of Theorems 20 and 23. We use notation and phrasing from
both of those proofs without further mention.

Given G,H and f , we compute an optimal path decomposition (P, {Xt}t∈V (P )) for H
and do dynamic programming on the modified path decomposition as described in the proof
of Theorem 23. For each non-root node t′ ∈ P with parent t, for each weight W ′ ∈W and
for each configuration R of Xt ∩Xt′ , we store

dt′,W ′ := ParSolE(R;Xt ∩Xt′ ;Vt′ ;W ′)

The case that t′ is a leaf is clear. For the case that t′ is an inner node with parent t and
child t′′, let v̂, ŵ be the unique elements with v̂ ∈ Xt′ \Xt, ŵ ∈ Xt′ \Xt′′ (or, if we would
have v̂ = ŵ, we take ŵ to be some vertex from Xt′ \ {v̂} instead) and E = Xt′ \ {v̂, ŵ}. If
v̂ŵ /∈ E(H), the calculation is easy, hence assume v̂ŵ ∈ E(H). For each weight W ′, we build
a rectangular matrix AW ′

t′ indexed by (v̂, E). The entry corresponding to a configuration
R of {v̂} ∪ E tells us whether R has an extension of weight W ′ + x, where x is the weight
contributed by v̂ in {v̂} ∪ E. In particular x :=

∑
û∈E w(R|{û,v̂}).

We also use, for each weight W ′, an adjacency matrix AdjW ′

v̂,ŵ defined for node-weighted
instances as

AdjW
′

v̂,ŵ[v′, w′] = [v′w′ ∈ E(G) ∧ w(v′w′) = W ′]

We then create two Laurent polynomials of degree |W|, one with the matrices AdjW ′

v̂,ŵ as
coefficients, one with the matrices AW ′

t′ . These can also be seen as matrices with Laurent
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polynomials as entries. Using Lemma 25, we then calculate their matrix product, which
tells us for each weight W ′ and each configuration R of {ŵ} ∪ E if R is a potential solution
of {ŵ} ∪ E in Vt′ with an extension of weight W ′, potentially missing edges between the
preimage of w and the preimages of E. The latter can be checked for each entry. This leads
to the desired running time.

J

6.5 Improvements for the Node-Weighted Case
In the case of node weights instead of edge weights, some of the algorithms can be slightly
improved using rectangular matrix multiplication. However, these improvements only work
for the case that that the treewidth of H is 1 and for the case of bounded pathwidth.

Specifically, we show the following two results, which imply Theorems 5 and 6 from the
results section.
I Theorem 26. There is an algorithm which, given an arbitrary instance φ = (H,G, f, w)
of the node-weighted Exact Weight Colored Subgraph Isomorphism problem where
H is a tree, solves φ in time O(MM(n, n,W ) poly(k) + nW logW poly(k)).
I Theorem 27. There is an algorithm which, given an arbitrary instance φ = (H,G, f, w)
of the node-weighted Exact Weight Colored Subgraph Isomorphism problem, solves
φ in time O(MM(n, n, npw(H)−1W ) poly(k) + g(k)).
Proof (of Theorem 26). Let G, f : V (G) → V (H) and w : V (G) → Z be given. All
achievable total weights must lie in W := {−kW, . . . , kW}.

We do dynamic programming on the tree H. Rooting H in an arbitrary vertex, we define
Tu to be the subtree rooted at a node u ∈ H. For each weight W ∈W, each node v ∈ H, we
store the following function of finite domain:

dv,W : Conf({v})→ {0, 1}
dv,W (R) := ParSolE(R; {v};Tv;W )

We calculate the entries of these functions bottom-up, starting at the leaves of H. If v is
a leaf, dv,W (R) is 1 iff W = 0. Now suppose v is a non-leaf node of H with set of children
Cv. For each child u ∈ Cv, we construct a rectangular matrix puv . This matrix is indexed
by w and W. Formally, we call a matrix A indexed by w and W if it has dimensions
n× |W|. We use two arbitrary bijections g{v} : Conf({v})→ [n] and gW : W → [|W|] to help
us map weights from W and configurations of v to indices of A. Correspondingly, we define
A[R,W ] := A[gv(R), gW (W )].

We define puv as

puv [R,W ] := ParSolE(R; {v}; {v} ∪ Tu;W )

We may calculate this as follows. Let Adj{v,u} be the adjacency matrix of f−1(v) and f−1(u)
indexed by (v, {u}) (as defined in the proof of Theorem 23), and let d̃u be the rectangular
matrix indexed by u and W and defined as d̃u[R,W ] := du,W−w(R)(R). We make sure that
the indexing bijection g{u} as defined above is the same for both Adjv,u and d̃u and then
calculate the matrix product Adjv,u · d̃u. The product is indexed by configurations of v and
W and can be expressed as

(Adjv,u · d̃u)[R,W ] = [∃u′ ∈ f−1(u) : R(v)u′ ∈ E(G) ∧ ParSolE(R; {u};Tu;W − w(u′)) = 1]
= ParSolE(R; {v}; {v} ∪ Tu;W )
= puv [R,W ]



30 Finding (Exact-Weight) Subgraphs of Bounded Treewidth

Writing Cv = {u1, . . . , uc} with c = |Cv|, the function dv,W may then be expressed as

dv,W (R) = [∃W1, . . . ,Wc :
c∑
i=1

Wi = W ∧ ∀i : pui
v [R,Wi] = 1]

Just as in the proof of Theorem 20, this may be calculated using a discrete convolu-
tion. Accordingly, we define for each configuration R of v the finitely supported functions
f1
v,R, . . . , f

c
v,R : Z → {0, 1} as f iv,R(x) := pui

v (R) if x ∈ W, and 0 otherwise. By a simple
calculation, we get dv,W (R) = [(f1

v,R ∗ . . . ∗ f cv,R)(W )].
Finally, after having calculated all values of dt′,W (R) for all t′,W and R, we wish to

output the result. Let r be the root of H. By definition of dr,W , there is some configuration
R of r such that dr,−w(R)(R) = 1 iff the instance has a solution.

It remains to analyze the running time. For the leaves of H, the calculation takes time
O(nW ). For inner nodes, the calculation of the matrix product Adj{v,u} · d̃u takes time
MM(n, n,W ). Finally, calculating the discrete convolutions takes time O(nW logW ), since
any vertex of v is involved as a child in at most one discrete convolution. Hence, we arrive at
the running time from the theorem. J

Proof (of Theorem 27). The proof uses a combination of the techniques from the proofs of
Theorem 26 and Theorem 23.

Let G,H, f : V (G)→ V (H) and w : V (G)→ Z be given. We compute an optimal path
decomposition in time g(k), modify it as described in Theorem 23, obtaining a modified path
decomposition P = (P, {Xt}t∈P ), and then do dynamic programming on P. Note that all
achievable weights must lie in W := {−kW, . . . , kW}.

We store, for each non-root node t′ with parent t of P , the following function of finite
domain:

dt′,W (R) := ParSolE(R;Xt ∩Xt′ ;Vt′ ;W )

For t′ a leaf, the calculations is clear. Let t′ be an inner node with parent t and child t′′
and define v̂ to be the unique element with v̂ ∈ Xt′ \Xt and similarly ŵ ∈ Xt′ \Xt′′ (or, if we
would have v̂ = ŵ, we take ŵ to be some arbitrary vertex from Xt′ \ {v} instead) and finally
E := Xt′ \ {v̂, ŵ}. If v̂ŵ /∈ E(H), the calculation is easy, hence assume v̂ŵ ∈ E(H). For a
configuration R of Xt ∩Xt′ , we get the following alternate characterization of dt′,W (R):

dt′,W (R) =
[
ValConf(R; {ŵ} ∪ E) ∧ ∃v′ ∈ f−1(v̂) : v′R(ŵ) ∈ E(G) ∧

ParSolE((R ∪ {v̂ 7→ v′})|Xt′\{ŵ}; {v̂} ∪ E;Vt′′ ;W − w(v′)) = 1
]

We now set up our rectangular matrix product. For a vertex x ∈ V (H), x /∈ E, we call
a matrix A indexed by x,E and W if it has dimensions n× n|E||W|. We use two arbitrary
bijections g{x} : Conf({x}) → [n] and gE,W : Conf(E) ×W) → [n|E||W|] to help index the
matrix and define, for a configuration R of {x} ∪ E, A[R,W ] := A[gx(R|x), gE,W(R|E ,W )].

We define the n × npw(H)−1|W| matrix Bt′ , which is to be indexed by v̂, E and W, as
follows:

Bt′ [R′,W ′] := dt′,W ′−w(R′|v̂)(R′)

As in the proof of Theorem 23, we also use the adjacency matrix Adjv̂,ŵ indexed by configu-
rations of (ŵ, {v̂}). Ensuring that the indexing bijections g{v̂} are the same for both Bt′ and



K.Bringmann and J. C. P. Slusallek 31

Adjv̂,ŵ, we calculate Adjv̂,ŵ · Bt′ and obtain a matrix indexed by ŵ, E and W. Its entries
can be expressed as

(Adjv̂,ŵ ·Bt′)[R′,W ′] =
[
∃v′ ∈ f−1(v̂) : v′R′(w) ∈ E(G) ∧

ParSolE((R′ ∪ {v̂ 7→ v′})|Xt′\{ŵ}; {v̂} ∪ E;Vt′′ ;W ′ − w(v′)) = 1
]

Thus, dt′(R) can be expressed as

dt′,W (R) = [ValConf(R; {ŵ} ∪ E) ∧ (Adjv̂,ŵ ·Bt′)[R,W ] = 1]

This concludes the description of the computation of dt′,W . For the computation of the
answer, consider the child r′ of the root r. By definition of dr′,W (R), we have that there
exists a configuration R such that dt′,−w(R|Xr

(R) = 1 iff the instance has a solution.
By a simple argument, this dynamic programming algorithm has a running time of

O(MM(n, n, npw(H)−1W ) poly(k)).
J

7 Hardness Results

7.1 The Main Lemma
We use a central Main Lemma to obtain all our lower bounds. This main lemma reduces
Hyperclique instances to Exact Weight Colored Subgraph Isomorphism instances,
where the pattern graph H is of a special form defined below.

I Definition 28 (Twin Water Lily). We call a graph H a h-uniform Twin Water Lily of
order (s1, s2) the following holds: V (H) consists of two independent sets S1 and S2 with r1
and r2 vertices, respectively. Additionally, for every size h subset {(v1, s1), . . . , (vh, sh)) ∈((S1∪S2)×[h]

h

)
, it has a vertex v which is connected to all vertices in {v1, . . . , vh} ∩ S2. We

define P to be the set of all such v created in this way.
Note that S1 consists only of isolated vertices, and that H is bipartite.

I Proposition 29. If a graph H is a h-uniform Twin Water Lily of order (s1, s2), then its
treewidth is bounded by

tw(H) ≤
{
s2 − 1 if s2 > h

s2 otherwise

and its pathwidth is bounded by pw(H) ≤ s2.

Proof. There is a very useful characterization of treewidth using a graph-theoretic game: A
graph G has treewidth ≤ k if and only if k + 1 cops can catch a visible robber on G [80].
The game works as follows: The k + 1 cops are placed on vertices of the graph. Then the
robber may choose his or her starting vertex. The cops can always see the robber and adapt
their strategy accordingly. Similarly, the robber can see the cops. The game now proceeds in
steps, where in each step, one of the cops chooses an arbitrary destination vertex and takes
off via helicopter in the direction of that vertex. While the cop is travelling, the robber sees
where they will land and may now move arbitrarily along edges of the graph, as long as he
does not pass through stationary cops. When the robber has finished moving, the cop lands.
The cops win if and only if they are guaranteed to catch the cop after a finite number of
moves, and lose otherwise.
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To show the bound on the treewidth of H, simply place the cops on all vertices of S2.
No matter where the the robber starts, it is surrounded by cops or is on an isolated vertex.
If s2 > h, then there must exist some cop which is not adjacent to the robber, whom we can
use to catch him in a single step. If s2 ≤ h, it is not guaranteed that there is a non-adjacent
cop. However, we have an additional cop which can start at any vertex. As soon as the
robber is positioned, we use the additional cop to capture them.

A similar characterization exists for pathwidth: A graph G has pathwidth ≤ k if and
only if k + 1 cops can catch an invisible robber on G [49]. The game can be formulated such
that it is the same as the one for treewidth, but the cops simply cannot see the robber and
must therefore have a universal strategy for catching him on G. This is also often referred to
as the “infection cleansing” game.

For the pathwidth of H, we again place all cops on the vertices of S2 and have one left
over. We use this cop to go through all vertices not in S2, one in each step. The robber
is always surrounded by the cops in S2 an hence cannot move, so after going through all
vertices with the additional cop, we must have caught him. J

First, we state the Main Lemma. This result enables us to prove lower bounds for not only
Exact Weight Colored Subgraph Isomorphism, but also for Colored Subgraph
Isomorphism and Subset Sum.

I Lemma 30 (The Main Lemma). For any ε ∈ (0, 1) and any constant parameters h ∈
N \ {1}, r1 ∈ N, r2 ∈ N, β ∈ (0, 1) ∩Q, there exists a k ∈ N and an algorithm A which
(a) accepts as input an instance I = G of h-uniform k-Hyperclique.
(b) produces an equivalent instance I′ = (H ′, G′, f ′, w′) of Exact Weight Colored

Subgraph Isomorphism, where H ′ is a h-uniform Twin Water Lily of order (r1, r2).
The preimages of I′ have size at most max{nβk/r1 , n(1−β)k/r2}, and the maximum weight
is W = Θ(n(1+ε)βk).

(c) runs in time O(poly(n) + (nβk/(hr1))m) for some universal constant m ∈ N.
We also allow two further special cases of parameters.
1. All parameters are as before, but β = 0 and r1 = 0. In this case, the preimages in I′

instead have size nk/r2 , and all weights are zero. Furthermore, the running time of the
reduction is only poly(n).

2. All parameters are as before, but β = 1 and r2 = 0. In this case, the preimages in I′

instead have size nk/r1 , and the maximum weight is W = Θ(n(1+ε)k).

Intuitively, the parameter β indicates what percentage of the instance I should be encoded
in which part of the Twin Water Lily. A percentage of β is encoded in the weights, while the
remaining percentage of (1− β) is encoded in the edges.

We now prove the Main Lemma.

Proof. Let us first focus on the case that β ∈ (0, 1), postponing the special cases to the end of
the proof. For some k chosen later, let an instance I0 = G0 of h-uniform k-Hyperclique be
given, where k is chosen later. We convert this to an Exact Weight Colored Subgraph
Isomorphism instance with a Twin Water Lily as pattern graph in five steps, each of which
we explain in detail below: First, we convert it to a Colored k-Hyperclique instance in
a standard way. Second, we split the instance into the part that we want to encode in the
weights and the part that we want to encode in the edges. In both of these parts, we merge
large groups of preimages such that we are left with only hr1 in the weight part, and hr2
in the edges part. Third, we go from hypercliques to Colored Subgraph Isomorphism
in a standard way while preserving the preimages. Fourth, we convert the weight part of
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the instance into actually using weights by replacing edge constraints by weight constraints,
using a construction known as k-average free sets. Finally, we merge preimages in both parts
again to obtain the final Twin Water Lily instance.
1. Converting to Colored Hyperclique: We convert I0 to a new h-uniform Colored Hy-

perclique instance with k colors. The converted instance should have a hyperclique where
all vertices has different colors if and only if the old instance has a hyperclique. The new
instance have the form I1 = (G1, f1), where the color homomorphism f1 : V (G1)→ V (Ck)
assigns each vertex of G1 a vertex in the k-hyperclique Ck.
Let V (Ck) = {1, . . . , k}. For each i, the preimage f−1

1 (i) is a copy of V (G0). Let
g : V (G1) → V (G0) be a function between sets that indicates which vertex in G0 the
vertex in G1 is a copy of. Now for each set {v1, . . . , vh} ∈

(
V (Ck)
h

)
, we go through all

tuples (w1, . . . , wh) ∈ f−1
1 (v1)× . . .× f−1

1 (vh) and create the edge {w1, . . . , wh} ∈ E(G1)
if and only if {g(w1), . . . , g(wh)} ∈ E(G0).
The correctness of this construction is easy to see.

2. Merging Preimages: We now convert I1 to a new h-uniform Colored (hr1 + hr2)-
Hyperclique instance, by condensing groups of (small) preimages into single (large)
preimages. In the converted instance I2 = (G2, f2) with color homomorphism f2 :
V (G2) → V (Cr1+r2), we ensure that V (Chr1+hr2) can be divided into two sets H1, H2
such that |H1| = hr1, |H2| = hr2 and ∀v ∈ H1 : |f−1

2 (v)| = nβk/(hr1),∀v ∈ H2 :
|f−1

2 (v)| = n(1−β)k/(hr2). These two sets correspond to the two water lilies constructed in
later steps.
At this point, we must make our choice of k. We will need that k1 := βk is an integer
and divisible by hr1. Furthermore, k2 := (1− β)k must also be an integer and divisible
by hr2. Letting β = p

q ∈ (0, 1) ∩Q where p, q ∈ N, it hence suffices to choose k = hr1r2q.
Now, we split V (Ck) = {1, . . . , k} into two groups V1 = {1, . . . , k1} and V2 = {k1 +
1, . . . , k2}. We split each of these sets further: V1 is split into hr1 disjoint groups
V1, . . . , Vhr1 of size k1

hr1
each. Analogously, we split V2 into hr2 many disjoint groups

Vhr1+1, . . . , Vhr1+hr2 of size k2
hr2

each.
Define V (Chr1+hr2) = {v1, . . . , vhr1+hr2} and furthermore let S′1 = {v1, . . . , vhr1}, S′2 =
{vhr1+1, . . . , vhr1+hr2}. The vertex vi corresponds to Vi, for every i. The vertices in
their preimages represent all the configurations of the sets. In particular, we let every
v′i ∈ f−1

2 (vi) represent a configuration conf(v′i) ∈ Conf(Vi). Hence, for vi ∈ S′1 the
preimage f−1

2 (vi) has size nk1/(hr1), and for vi ∈ S′2 the preimage f−1
2 (vi) has size

nk2/(hr2).
Now for the edges. For every subset {vi1 , . . . , vih} ∈

(
S′

1∪S
′
2

h

)
, we iterate over all

(v′i1 , . . . , v
′
ih

) ∈ f−1
2 (vi1)× . . . ,×f−1

2 (vih). We combine the configurations that they repre-
sent by defining R ∈ Conf(Vi1 ∪ . . . Vih) as ∀` ∈ [h] : ∀v′i` ∈ f

−1
2 (vi`) : R(v′i`) := conf(v′i`).

Now we add {w1, . . . , wh} as a hyperedge to E(G2) iff R is a valid configuration. That
is, if the image of R induces a hyperclique in G1.
Again, correctness is easy to see.

3. Representing Hyperedges by Intermediate Vertices: We now go from the Colored
Hyperclique instance I2 = (G2, f2) to a (structured) Colored Subgraph Isomor-
phism instance I3 = (H3, G3, f3). The reduction is done in a standard way: We replace
each hyperedge in G2 with a vertex connected to all its endpoints.
Formally, we need to construct H3 and G3. H3 has three sets of vertices S′1, S′2 and P .
S′1 and S′2 copy S′1 and S′2 from the last step, including their preimages. Accordingly, we
write S′1 = {v1, . . . , vhr1} and S′2 = {vhr1+1, . . . , vhr1+hr2}. In P , we have one vertex u
for every subset {w1, . . . , wh} ∈

(Chr1+hr2
h

)
, and we have ∀` ∈ [h] : uw` ∈ E(H3). Now for
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every hyperedge {w′1, . . . , w′h} ∈ E(G2) with ∀` ∈ [h] : w′` ∈ f
−1
2 (G2), we add a vertex

u′ ∈ f−1
3 (u) which is connected to all vertices w′1, . . . , w′h. Note here that u′ is only

connected to one vertex from each preimage, which is a property that will be needed in
the fourth step. This concludes the construction of I3.
Correctness of this construction is again easy to see. As for the size, note that preimages of
vertices in S′1 and S′2 still have size nk1/(hr1) and nk2/(hr2), respectively. The preimages of
vertices in P , however, have at most (max{nk1/(hr1), nk2/(hr2)})h = max{nk1/r1 , nk2/r2}
vertices.

4. Replacing Some of the Edges with Weights We now come to the crucial step of con-
verting some of the edge constraints to weight constraints. We convert the Colored
Subgraph Isomorphism instance I3 = (H3, G3, f3) of the preceding step into an Exact
Weight Colored Subgraph Isomorphism instance I4 = (H4, G4, f4, w4). To do this,
we will need so-called k-average free sets.
I Definition 31 (k-average free sets). A set S ⊆ Z is called k-average-free if, for any
s1, . . . , sk′+1 ∈ S with k′ ≤ k, we have s1 + . . .+ sk′ = k′ · sk′+1 iff s1 = . . . = sk′+1. In
other words, the average of s1, . . . , sk′ ∈ S is in S iff all si are equal.6
We use the following construction for k-average free sets, originally proven in [21], modified
into a more useful version in [9] and formulated in this form in [6].
I Lemma 32. There exists a universal constant c > 0 such that, for all constants ε ∈ (0, 1)
and k ≥ 2, a k-average-free set S of size n with S ⊆ [0, kc/εn1+ε] can be constructed in
time poly(n).
Specifically, we use Lemma 32 with ε′ = ε, k′ = λ := |P | and n′ = nk1/(hr1). Letting
B := λc/εn(1+ε)k1/(hr1), this yields a λ-average free set S ⊆ [0, B] of size nk1/(hr1). From
this, we can construct an arbitrary bijection %S : [nk1/(hr1)]→ S.
Now, to construct I4, we first copy I3, giving each node a default weight of “infinity” (i.e.
something otherwise unobtainable, e.g. k2W + 1). Now we delete all edges in H3 which
are incident to a vertex in S′1, along with the corresponding edges in G3. These are the
edges that we replace by weight constraints.
Hence we now describe the weights. To make our construction easier, we specify a target
value T (instead of the default target zero). We can easily get rid of this again by picking
some vertex ŵ ∈ V (H3) and subtracting T from the weights of all of its preimages. The
binary representation of T consists of h · a blocks of dlog(2λB)e bits, each containing the
binary representation of λB. The i-th block represents the vertex vi ∈ S′1.
We move to the weights of the vertices, starting with vertices in the preimages of S′1.
Somewhat abusing notation, we define ∀i ∈ [hr1] : f−1

4 (vi) = {1, . . . , nk1/(hr1)}. The
weight of vertex v′i ∈ f−1

4 (vi) has a value of λB − |N(vi)| · %S(v′i) in the i-th block, and
a value of zero in all other blocks. Now for vertices in the preimages ofP . Let u ∈ P
correspond to the set {w1, . . . , wh} ∈

(Chr1+hr2
h

)
. As observed in the preceding step, each

u′ ∈ f−1
3 (u) is connected to exactly one vertex w′i from each preimage f−1

3 (wi). In the
current step, for each i ∈ [h] with wi ∈ S′1, we have deleted the edges u′w′i. To replace
them, for each such i, we give u′ a value of %S(w′i) in the i-th block. We have just changed
the weight of u′ at |N(u) ∩ S′1| blocks of its binary representation. All other blocks have
a value of zero.

6 These k-average-free sets are a tool which are very useful for weighted problems, especially when they
have additive elements. Such problems include k-sum, Subset Sum, Bin Packing, various scheduling
problems, Tree Partitioning, Max-Cut, Maximum/Minimum Bisection, a Dominating Set
variant with capacities, and similar [6, 7, 9, 17, 52, 60, 47]. Other uses of k-average-free sets in computer
science include constructions in extremal graph theory, see e.g. [3, 4, 14].
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All vertices with so far unspecified weight have weight zero. This concludes the construc-
tion of I4.
We show correctness of this construction. It suffices to show that any configuration R
that is a solution for I3 is also a solution for I4 and vice versa. Hence, suppose R is a
solution for I3. Then all edge constraints of H4 are trivially fulfilled and we need only
show that the total weight is T . For ease of discussion, we denote by α[i] the value
of the i-th block of a weight α. Consider the blocks of the binary representation of
the sum of weights w(R) =

∑
v∈Im(R) w4(v), and let i be fixed. The large block size

prevents overflow, so w(R)[i] =
∑
v∈Im(R) w4(v)[i]. By construction, we have w(R)[i] =

w(R(vi))[i] +
∑
u∈N(vi) w(R(u))[i]. However since R is a valid configuration in I3, we

have that for each u, ∀vj ∈ N(u) : R(u)R(vj) ∈ E(G3). In particular, R(u)R(vi) ∈ E(G3)
and hence by construction w(R(u))[i] = %S(vi). We conclude w(R)[i] = λB − |N(vi)| ·
%S(R(vi)) +

∑
i∈N(vi) %S(R(vi)) = λB = T [i]. Hence w(R) is equal to T in each of its

blocks, which was to be proven.
Conversely, suppose R is a solution for I4. Then all edge constraints in G3[V (G3)\S′1] are
trivially satisfied and we need only show that ∀vi ∈ S′1 : ∀u ∈ N(vi) : R(vi)R(u) ∈ E(G3).
Fix vi ∈ S′1. We have that λB = T [i] = w(R)[i] = w(R(vi))[i] +

∑
u∈N(vi) w(R(u))[i].

Let N(vi) = {u1, . . . , u|N(vi)|}. For each ` ∈ |N(vi)|, we have that R(u`) is connected
to some vertex v(`)

i ∈ f−1
3 (vi), and hence that w(R(u`))[i] = %S(v(`)

i ). Hence we have
that λB = λB − |N(vi)| · %S(R(vi)) +

∑
`∈|N(vi)| %S(v(`)

i ). Hence |N(vi)| · %S(R(vi)) =∑
`∈|N(vi)| %S(v(`)

i ). But because the values in the image of the bijection %S are a λ-average
free set and N(vi) ⊆ P certainly has size less than |P | = λ, we have that ∀` : v(`)

i = R(vi).
Thus for all `, R(u`) is connected to R(vi), which was to be proven.

5. Merging Preimages in S′
1 and S′

2: Lastly, we go from I4 = (H4, G4, f4, w4) to the final
instance I5 = (H5, G5, f5, w5) where H5 is a Twin Water Lily. Note that I4 is “almost”
a the instance we want, save for the fact that the preimages P are much larger (size
up to max{nk1/r1 , nk2/r2}) than the preimages of S′1 and S′2 (size nk1/(hr1) and nk2/(hr2),
respectively). We rectify this by merging groups of vertices within S′1 and S′2. In both
sets, these groups have size h.
We split S′1 into r1 groups X1, . . . , Xr1 of size h, and we split S′2 into r2 groups
Xr1+1, . . . , Xr1+r2 of size h. In H5, we have for every i ∈ [r1 +r2] a vertex xi representing
Xi. Each vertex x′i ∈ f−1

5 (xi) corresponds to a configuration conf(x′i) ∈ Conf(Xi). The
weight of x′i is w(conf(x′i)), i.e. the sum of the weights of the vertices in the image of
the configuration. In accordance with the definition of a Twin Water Lily, we define
S1 = {x1, . . . , xr1} and S2 = {xr1+1, . . . , xr1+r2}.
The set P ⊆ V (H5) remains the same as in the preceding step, including its preimages and
the weights of the vertices in the preimages. For each u ∈ P , we go through the vertices v in
the neighbourhood of u in H4, and connect u to xi such that v ∈ Xi. Note that each u ∈ P
is still connected to at most h other vertices (note, however, that it can be less if multiple
vertices of its neighborhood came from the same group). Finally, we connect a vertex
u′ ∈ f−1(u) to a vertex x′i ∈ f−1

5 (xi) if and only if ∀z ∈ Im(conf(x′i)) : u′z ∈ E(G4).
Correctness is easy to see. Note that H5 is a Twin Water Lily now. The set S1 has
size r1 and S2 has size r2, with respective preimages of size nk1/r1 and nk2/r2 . The
preimages of P still have size max{nk1/r1 , nk2/r2}. Furthermore, the weights constructed
in step 4 have hr1 blocks of dlog(2λB)e bits, hence the maximum weight is Θ(2ζ)
where ζ = hr1 · (log(λB) + O(1)) = hr1 · log(|P |1+c/εn(1+ε)k1/(hr1)) + O(1) = hr1 ·
log(n(1+ε)k1/(hr1)) +O(1) = (1 + ε)k1 log(n) +O(1), hence as promised in the statement
of the lemma the maximum weight is Θ(n(1+ε)k1).
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We have shown a reduction that has properties (b) and (c) from the lemma. We still
have to analyze the running time. It is easy to see that steps 1, 2 and 3 run in time poly(n),
where the polynomial degree depends only on r1, r2 and h. In step 4, we need to construct
the k-average free set S, which is done in time poly(nk1/(hr1)) = O((nk1/(hr1))m) for some
universal constant m ∈ Z. The rest of step 4 as well as step 5 can again be done in time
poly(n).

This proves the main case of the lemma. We still must prove the two special cases.
In special case 1, where β = 0 and a = 0, we wish to encode everything in the weights.
The above reduction still works. We must simply purge all parts of the construction that
relate to the weights part. That is, no construction of V1 in step 2, no construction of S′1
in steps 3 and 5 and no construction of S2 in step 5. We also do not need to construct the
λ-average free set in step 4, which means that we do not need the additional running time of
O((n(1+ε)k1/(hr1))m).

The second special case is analogous, except that we purge all parts of the construction
that relate to the edge part. Of course, we still need the λ-average free set, so the running
time does not change.

J

7.2 Lower Bound Results
We now use the Main Lemma to prove our lower bound results. The main case of the lemma
is used to prove the lower bounds for Exact Weight Colored Subgraph Isomorphism
of bounded treewidth, while the first and second special case give lower bounds for Colored
Subgraph Isomorphism and Subset Sum, respectively.

7.2.1 Exact Weight Colored Subgraph Isomorphism
The following theorem implies Theorem 9 via Lemma 18.

I Theorem 33. For both the node- and edge weighted variant of the Exact Weight
Colored Subgraph Isomorphism problems, for any t ∈ N and any γ ∈ R+, there is a
connected, bipartite graph Ht,γ of treewidth t such that there cannot be an algorithm which
solves all instances from {(Ht,γ , G, f, w) | G is a graph and W := maxz∈Im(w) |z| = Θ(nγ)}
in time
1. O(nt+1−εW ) or O(nt+1W 1−ε) for t ≥ 3, unless the h-uniform hyperclique hypothesis

fails for all 3 ≤ h ≤ t,
2. O(nt−εW ) or O(ntW 1−ε) for any t, unless the h-uniform hyperclique hypothesis fails

for all h ≥ 3, or
3. O(n(t+1)ω/3−εWω/3) or O(n(t+1)ω/3Wω/3−ε) for any t, unless the clique hypothesis

fails.
Note that item 1 only gives lower bounds for t ≥ 3, while items 2 and 3 are mostly interesting
for the case t ∈ {1, 2}.

The following implies Theorem 11 from the results section.

I Theorem 34 (Theorem 33 for pathwidth). Parts 2 and 3 of Theorem 33 also hold when
replacing the treewidth t by the pathwidth p. Part 1 does not hold.

I Remark 35. By the algorithm presented in Theorem 23, we cannot hope to obtain a lower
bound as in part 1 of Theorem 33 for the case of pathwidth.
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Proof (of theorem 33). Note that by Proposition 21, it suffices to prove lower bounds for
the node-weighted case.

We begin with part 1 of the theorem. Let t ∈ N and γ ∈ R+, as well as 3 ≤ h ≤ t be
given. We apply the Main Lemma (Lemma 30) with

some ε′ > 0 chosen later,
some β′ ∈ (0, 1) ∩Q chosen later,
h′ := h,
r′2 := t+ 1 and
some arbitrary r′1 ∈ N with
r′1 >

mβ′

h (this ensures that the running time O(poly(n) +nmβ
′k/(hr′

1)) of the reduction
is equal to O(poly(n) +nk−ε) for some ε > 0, and can hence be ignored in the analysis)
and
r′1 >

β′(t+1)
1−β′ (this ensures that max{nβ′k/r′

1 , n(1−β′)k/(t+1)} = n(1−β′)k/(t+1)).
This produces a k ∈ N and a reduction algorithm A with the properties from the lemma. In
particular, the reduction algorithm produces instances where the pattern graph H is a Twin
Water Lily of order (r1, r2), which we define to be our graph Ht,γ .

Now suppose there is an algorithm for the Exact Weights Colored Subgraph
Isomorphism problem on pattern graph Ht,γ running in time O(N t+1−εW ) (the case
O(N t+1W 1−ε) is analogous). We show that the h-uniform Hyperclique hypothesis fails by
showing that there is an algorithm for h-uniform k-Hyperclique running in time O(nk−ε)
for some ε > 0.

Given an h-uniform k-Hyperclique instance, we use algorithm A to obtain an equivalent
instance of Exact Weight Colored Subgraph Isomorphism where the pattern graph is a
TwinWater Lily of order (r′1, t+1), the preimages have sizeN = max{nβ′k/r′

1 , n(1−β′)k/(t+1)} =
n(1−β′)k/(t+1), and the maximum weight is W = Θ(n(1+ε′)β′k).

First, we make sure that W = Θ(Nγ) by choosing β′ and ε′ accordingly. Substituting,
we get n(1+ε′)β′k = Θ(nγ(1−β′)k/(t+1)), which is true if and only if

(1 + ε′)β′k = γ(1− β′)k
t+ 1 ⇐⇒ β′

1− β′ = γ

(t+ 1)(1 + ε′) ⇐⇒ ε′ = γ(1− β′)
(t+ 1)β′ − 1

Hence we choose ε′ as such. However, to apply the Main Lemma, we must have ε′ ∈ (0, 1).
Hence we get the following two constraints for β′:

γ(1− β′)
(t+ 1)β′ − 1 > 0 ⇐⇒ β′ <

γ

(t+ 1) + γ

γ(1− β′)
(t+ 1)β′ − 1 < 1 ⇐⇒ β′ >

γ

2(t+ 1) + γ

We incorporate these constraints later.
Now we need to ensure that the new running time we get is also small. We solve the

Exact Weight Colored Subgraph Isomorphism instance in time O(N t+1−εW ) =
O(N t+1+γ−ε) = O(n(t+1+γ−ε)(1−β′)k/(t+1)). Hence we get the following additional constraints
on β′:

(t+ 1 + γ − ε)(1− β′)
t+ 1 < 1 ⇐⇒ 1− β′ < t+ 1

t+ 1 + γ − ε
⇐⇒ β′ >

γ − ε
(t+ 1) + γ − ε

Combining these three constraints on β′, we get

max
{

γ − ε
(t+ 1) + γ − ε

,
γ

2(t+ 1) + γ

}
< β′ <

γ

(t+ 1) + γ
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It is always possible to choose a β′ ∈ (0, 1) ∩Q such that this is true.
Part 2 of the theorem is very much analogous. Note that the loss of the 1 in the exponent

is due to the weaker bound in Proposition 29.
Part 3 is completely analogous for t ≥ 2; we simply always choose h = 2. The ω/3 in

the bound comes from the Clique hypothesis.
However, a small trick has to be used for t = 1, since a 2-uniform Twin Water Lily of order

(r1, 2) has treewidth 2, not 1. To get the better lower bound, we have to slightly modify the
proof of the Main Lemma for h = 2 in step 3. Instead of replacing the edges between vertices
of S2 by intermediate vertices, we simply leave them as-is. Now the resulting graph is not a
Twin Water Lily anymore, but does always have treewidth r2. We omit the details. J

Finally, we prove the same theorem for pathwidth.

Proof (of Theorem 34). Proving part 2 is exactly analogous to part 2 of the theorem for
treewidth.

Now remember that we needed a slight modification of the proof of the Main Lemma for
part 3 of the theorem for treewidth for t = 1. For part 3 of the theorem for pathwidth, we
actually need that modification for all t. Using this, the rest of the proof is clear. Again, we
omit the details. J

7.2.2 Unweighted Colored Subgraph Isomorphism
I Theorem 36. For each t ∈ N there is a connected,bipartite graph Ht of treewidth t such
that there cannot be an algorithm which solves all instances from {(Ht, G, f) | G is a graph}
of Colored Subgraph Isomorphism in time
1. O(nt+1−ε) for t ≥ 3, unless the h-uniform hyperclique hypothesis fails for all 3 ≤ h ≤ t,
2. O(nt−ε) for any t ≥ 2, unless the h-uniform hyperclique hypothesis fails for all h ≥ 3,

or
3. O(n(t+1)ω/3−ε) for t ≥ 2, unless the (t+ 1)-clique hypothesis fails.

Trivially, we get the following corollary.

I Corollary 37. For no t ∈ N can there be an algorithm solving Exact Weight Colored
Subgraph Isomorphism for pattern graphs of treewidth t as in parts 1-3 of Theorem 36.

I Theorem 38 (Theorem 36 for pathwidth). Part 2 of Theorem 36 also holds when replacing
the treewidth t by the pathwidth p. Part 3 only holds when replacing t+ 1 by p. Part 1 does
not hold.

I Corollary 39. For no p ∈ N can there be an algorithm solving Exact Weight Colored
Subgraph Isomorphism for pattern graphs of pathwidth p as in parts 1-3 of Theorem 38.

Unfortunately, Lemma 18 cannot be applied to Theorem 38, and hence we have no lower
bounds for the uncolored, unweighted case of bounded pathwidth. We believe it is unlikely
that the techniques used to prove 18 for the uncolored, unweighted case of bounded treewidth
generalize to pathwidth. Note, however, that Theorem 36 implies Theorem 7 by Lemma 18.

We now prove the theorems above.

Proof (of Theorem 36). For the proof of this theorem, we use the first special case of the
Main Lemma (Lemma 30).

We begin with part 1. Let t ∈ N, γ ∈ R+ and 3 ≤ h ≤ t be given. We apply the first
special case of the Main Lemma with
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some ε′ > 0 chosen later
h′ := h

r′2 = t+ 1
This produces a k ∈ N and a reduction algorithm A with the properties from the lemma. In
particular, the reduction algorithm produces instances where the patern graph H is a Twin
Water Lily of order (0, r2), which we define to be our graph Ht,γ .

Now suppose there is an algorithm for the Exact Weights Colored Subgraph
Isomorphism problem on pattern graph Ht,γ running in time O(N t+1−εW ) (the case
O(N t+1W 1−ε) is analogous). We show that the h-uniform Hyperclique hypothesis fails by
showing that there is an algorithm for h-uniform k-Hyperclique running in time O(nk−ε)
for some ε > 0.

Given an h-uniform k-Hyperclique instance, we use algorithm A to obtain an equivalent
instance of Exact Weight Colored Subgraph Isomorphism where the pattern graph is
a Twin Water Lily of order (0, t+ 1), the preimages have size N = nk/(t+1), and all weights
are zero.

By simply removing the weights, this is a Colored Subgraph Isomorphism instance
with the same properties. Solving this with the fast algorithm from above, we get a running
time of O(N t+1−ε) = O(n(t+1−ε)k/(t+1) = O(nk−ε/t+1). Hence we are done.

Part 2 is analogous. Again, as in Theorem 33 the loss of 1 in the exponent is due to the
weaker bound in Proposition 29.

Part 3 is obvious: We simply choose Ht to be the (t + 1)-clique and use the clique
hypothesis. The Main Lemma is not needed.

J

Proof (of Theorem 38). Completely analogous. J

7.2.3 Subset Sum
We now prove the conditional lower for Subset Sum, restated below for convenience.

I Theorem 13. For no ε > 0 can there be an algorithm which solves Subset Sum in time
O(T 1−ε poly(n)) unless the h-uniform Hyperclique hypothesis fails for all h ≥ 3.

Before proving this result, we need a lemma that shows that we can reduce k-sum to
Subset Sum with minimal overhead. This theorem is already known, but we could not find
a formal proof of it in the literature. Therefore we provide one here.

I Lemma 40 (Reducing k-Sum to Subset Sum). There is an algorithm B which, given as
input a k-sum instance with N values from [0, D] per set, as well as a target T , constructs
an equivalent Subset Sum instance with k ·N values in [0, Dg(k)] and a target T ′ bounded
by Tg(k) for a computable function g. Furthermore, for constant k, B runs in time linear in
the input size.

Proof. The values of the Subset Sum instance are the union of the k sets. However, we
modify the weights and target as follows. At the front of the binary representation of the
weights and the target, we add a buffer of dlog(k)e zero bits to avoid overflow, then another
k bits constituting a “checklist”, then in front of that another buffer of dlog(k)e zero bits
and finally another dlog(k)e bits which contains a counter for the number of nodes of the
solution.

The target T has the binary representation of k in the counter bits and only ones in the
checklist bits. Each weight has the binary representation of 1 in the counter bits, ensuring
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that we take exactly k weights. Furthermore, if the weight comes from the i-th set of the
k-sum instances, its checklist bits is zero except for the i-th position.

Now if one picks more than 2dlog(k)e values, the counter at the front overflows the length
of the target, so that selection cannot be a solution. Since 2dlog(k)e < 2k and since there is a
buffer of dlog(k)e bits, the checklist cannot overflow into the counter. Hence any solution
must pick exactly k weights. Hence, the only way to achieve all ones in the checklist bits of
a sum of k weights is to pick exactly one weight from each of the k sets. This completes the
reduction.

Since we add 3dlog(k)e+ k bits to the weights and the target, their value is multiplied by
at most 2k · 23 · k3. Choosing g(k) = 2k+3k3, we obtain the bounds from the lemma. J

We now prove the theorem about Subset Sum. Essentially, the instances we get from
the second special case of the Main Lemma are k-sum instances that we can then reduce to
Subset Sum via the lemma above.

Proof (of Theorem 13). Suppose there is an algorithm solving Subset Sum in timeO(T 1−εNz)
for some z ∈ N. We use the second special case of the Main Lemma with

some ε′ chosen later,
h′ := h, and
some arbitrary r′1 ∈ N such that
r′1 >

mβ′

h (this ensures, again, that the running time O(poly(n) + nmβ
′k/(hr′

1)) of the
reduction is equal to O(poly(n) + nk−ε) for some ε > 0, and can hence be ignored in
the analysis), and
r′1 > zε′ (this ensures that nzk/r′

1 < nε
′k).

This yields a k ∈ N and a reduction algorithm A with the properties from the lemma.
In particular, the reduction algorithm produces an Exact Weight Colored Subgraph
Isomorphism where H consists only of isolated vertices with preimages of size O(nk/r1) and
maximum absolute weight W = Θ(n(1+ε)k). We make all weights positive by adding a large
number to each, such that the target is T = Θ(n(1+ε)k). Note that this instance is also a
(r1 +

(
hr1
h

)
)-sum instance, with each set of numbers being the set of weights in a preimage.

We now use the algorithm B from Lemma 40 to convert this to a Subset Sum instance
with N = O(nk/r1) values in [0,Θ(n(1+ε′)k)] and target T = Θ(n(1+ε′)k).

We can now solve the instance in time O(n(1−ε)(1+ε′)knzk/r1) = O(n((1−ε)(1+ε′)+ε′)k).
Hence it suffices to choose ε′ such that

(1− ε)(1 + ε′) + ε′ < 1 ⇐⇒ ε′ <
ε

2− ε

Since ε < 1 and hence ε
2−ε > 0, this is always possible.

J

8 Open Problems

We conclude with some open problems.

1. Can the algorithms for weighted trees be improved? We have shown that some small
improvements can be made for node-weighted trees (see Theorem 5), but are these
optimal? What about edge-weighted trees?

2. Are there faster algorithms for unweighted Subgraph Isomorphism on graphs of
bounded pathwidth, independent of running time improvements for rectangular matrix
multiplication? If so, can they be adjusted for the weighted case? See Theorems 3 and 4.
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3. Relatedly, are there good lower bounds for unweighted Subgraph Isomorphism on
graphs of bounded pathwidth? These could be attained via a modification of the proof of
part 2 of Lemma 18 for pathwidth (though we saw no way to do this), or with completely
new techniques.

4. Do our algorithms and lower bounds also work for other types of subgraph homomorphisms,
and for counting the number of solutions? It seems like techniques from [43] should work.
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