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Abstract

Complexity of variants of graph homomorphism problem in selected graph classes

A homomorphism is a function which maps vertices of a graph G to vertices of a graph H in

which each edge of G is mapped to some edge of H. For a �xed graph H, by Hom(H) we denote

the computational problem of deciding whether a given graph G admits a homomorphism to

H. Graph homomorphisms are generalization of graphs colorings, as if H is a complete graph

on k vertices, then Hom(Kk) is equivalent to k-coloring. A result of Hell and Ne²et°il states

that if H is bipartite or has a vertex with a loop then Hom(H) is polynomial-time solvable and

otherwise it is NP-complete.

In this thesis we consider complexity bounds of NP-complete cases of Hom(H), parameterized

by the treewidth of the instance graph G. Using both algebraic and combinatorial tools, we show

that for almost all graphs H the complexity obtained by a straightforward dynamic programming

on a tree decomposition ofG cannot be improved, unless the Strong Exponential Time Hypothesis

(a standard assumption from the complexity theory) fails.

In the second part of the thesis, we analyse the cases of graphs H for which the bound

obtained by the dynamic programming method can be improved. We prove another lower bound

with an additional restriction on H and show that it is tight for all graphs H, if we assume two

conjectures from algebraic graph theory. In particular, there are no known graphs H which are

not covered by our result.

Keywords: graph homomorphisms, treewidth, �ne-grained complexity, projective graphs





Streszczenie

Zªo»ono±¢ wariantów problemu homomor�zmu w wybranych klasach grafów

Funkcj¦ f , która wierzchoªkom grafu G przyporz¡dkowuje wierzchoªki grafu H w taki sposób,

»e je±li uv jest kraw¦dzi¡ wG, to f(u)f(v) jest kraw¦dzi¡ wH, nazywamy homomor�zmem zG w

H. Dla ustalonego grafu H przez Hom(H) oznaczamy problem decyzyjny, w którym pytamy, czy

dany graf G ma homomor�zm w H. Homomor�zmy grafów s¡ pewnym uogólnieniem problemu

kolorowania grafów � je±li H jest grafem peªnym o k wierzchoªkach, wówczas Hom(Kk) jest

równowa»ne problemowi k-coloring, w którym pytamy, czy dany graf G da si¦ poprawnie

pokolorowa¢ na k kolorów. Hell i Ne²et°il udowodnili, »e je±li H jest grafem dwudzielnym lub

zawiera wierzchoªek z p¦tl¡, wtedy Hom(H) mo»na rozwi¡za¢ w czasie wielomianowym, a w

przeciwnym wypadku problem ten jest NP-zupeªny.

W niniejszej pracy pokazujemy ±cisªe ograniczenia na zªo»ono±¢ obliczeniow¡ problemu

Hom(H) (w przypadkach, dla których jest NP-zupeªny), w zale»no±ci od liczby wierzchoªków

i szeroko±ci drzewowej instancji G. U»ywaj¡c zarówno narz¦dzi kombinatorycznych, jak i al-

gebraicznych, dowodzimy, »e, przy standardowych zaªo»eniach teorii zªo»ono±ci, programowanie

dynamiczne na dekompozycji drzewowej grafu daje algorytm optymalny dla prawie wszystkich

grafów H.

W drugiej cz¦±ci pracy analizujemy znane przypadkiHom(H), które mo»na rozwi¡za¢ szybciej

i pokazujemy znajdujemy optymaln¡ zªo»ono±¢ problemu przy dodatkowym zaªo»eniu na graf

H. Dowodzimy równie», »e znaleziona zªo»ono±¢ jest optymalna dla wszystkich grafów H, przy

zaªo»eniu dwóch znanych hipotez z algebraicznej teorii grafów. W szczególno±ci oznacza to, »e

nie jest znany »aden graf H, dla którego nasze twierdzenie nie zachodzi.

Sªowa kluczowe: homomor�zmy grafów, szeroko±¢ drzewowa, drobnoziarnista analiza zªo»ono-

±ci, grafy idempotentnie trywialne
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1. Introduction

1.1. Motivation

For two graphs G and H, consider a function f , which maps vertices of G to vertices of H in

a way that if uv is an edge of G, then f(u)f(v) is an edge of H. We call such a function f a

homomorphism from G to H and call H the target of the homomorphism (see Figure 1.1). Graph

homomorphisms are a natural generalization of graph colorings, as the existence of a k-coloring

of any graph G is equivalent to the existence of a homomorphism from G to the complete graph

Kk. So, intuitively, we can think about a homomorphism to the target H as a coloring in which

adjacent vertices must receive colors which form an edge in H.

→

Figure 1.1: An example of a homomorphism from a graph G (left) to the target graph H (right).

Colors of the vertices indicate the mapping. Note that G cannot have, for example, a blue-yellow

edge.

For a �xed graph H, by Hom(H) we denote the computational problem of deciding whether

a given graph G admits a homomorphism to H. Clearly, the computational problem of deciding

if a given graph G is k-colorable, denoted by k-coloring, is equivalent to Hom(Kk). The k-

coloring problem is one of the most known and best studied graph problems � a classical result

states that it is polynomial-time solvable if k ≤ 2 and NP-complete if k ≥ 3 (see [13]). This was

generalized to Hom(H) by Hell and Ne²et°il in [17]. They obtained a full complexity dichotomy,

i.e., proved that if H is bipartite or has a vertex with a loop, then Hom(H) is polynomial-time

solvable, and otherwise it is NP-complete.

Assuming that P ≠ NP, we know that problems that are NP-hard cannot be solved in poly-

nomial time. However, for many hard problems, algorithms better than a straightforward brute-

force approach exist. For example, if we consider the k-coloring problem, it is known that there
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1. Introduction

are algorithms which solve it in time cn ⋅ nO(1), for some constant c > 0 which does not depend

on k. Currently, the best known bound is 2n ⋅ nO(1), and was obtained by Björklund, Husfeldt,

and Koivisto [3]. So when we consider graph homomorphisms, a natural question arises: does

there exist an absolute constant c such that for every H the Hom(H) problem can be solved in

time cn ⋅ nO(1)? And, if not � how to prove such a result?

To prove a tight lower bound for running times of the algorithms, we need to introduce a

stronger hypothesis than P ≠ NP. Two standard assumptions used commonly in the complexity

theory, are the Exponential Time Hypothesis (ETH) and the Strong Exponential Time Hypoth-

esis (SETH), both conjectured by Impagliazzo and Paturi [21, 20]. The �rst one implies that

3-Sat with n variables and m clauses cannot be solved in time 2o(n+m), while the second one

implies that Cnf-Sat with n variables and m clauses cannot be solved in time (2 − ε)n ⋅mO(1),

for any ε > 0. Cygan et al. [7] showed that assuming the ETH, there is no algorithm for Hom(H)

working in time cn ⋅ nO(1), for any constant c > 0 which does not depend on H.

One of the possible research directions is analysing how the complexity depends on some other

structural parameter of the input instance, which may contain additional relevant information.

One of the most widely-studied parameters is the treewidth of a graph, denoted by tw(G), which

we formally de�ne in chapter 2. We can solve many classic NP-hard problems, like Independent

Set, Dominating Set or Hamiltonian Cycle in time f(tw(G)) ⋅ nO(1), where f is some

computable function (see [2, 8]), which means in particular that if an instance graph has bounded

treewidth, we can solve the mentioned problems in polynomial time.

Of course, it is important to understand how the optimal function f can look. For Hom(H),

the standard dynamic programming on a tree decomposition of the instance graph G gives us

the complexity ∣H ∣tw(G) ⋅nO(1), assuming that an optimal tree decomposition of G is given [4, 8].

On the other hand, there is a result by Lokshtanov, Marx, and Saurabh which shows that

if we assume the SETH, then, at least for complete graphs, we cannot hope for a signi�cant

improvement.

Theorem 1.1 (Lokshtanov et al. [26]). Let k ≥ 3. The k-coloring problem cannot be solved

in time (k − ε)t ⋅ nd ⋅ c for graphs on n vertices and treewidth t, for any constants c, d > 0, any

ε > 0, unless the SETH fails.

The main purpose of this thesis is to investigate if this bound can be somehow extended to

other target graphs.

Observe that, while working on graph colorings, a similar, more general problem can be

considered � a setting in which every vertex of the instance graph has its own list of allowed colors,

and we ask for a coloring in which every vertex receives a color from its list. We can de�ne such a

variant also for graph homomorphism problem. Consider the computational problem LHom(H)

in which the instance consists of a graph G whose every vertex v is equipped with a list L(v) of

14



1.2. Our results and organization of the thesis

vertices of H. We ask if there exists a homomorphism f from G to H such that for every v we

have f(v) ∈ L(v). Observe that while Hom(H) is trivial when H contains a vertex with a loop,

this is not the case for LHom(H), as this vertex does not have to appear in all lists. Feder and

Hell proved that if H is re�exive (which means that every vertex has a loop), then LHom(H) is

polynomial-time solvable ifH is an interval graph, and NP-complete otherwise [12]. Investigating

the tight complexity bound of re�exive cases of LHom(H), parameterized by treewidth, Egri,

Marx and Rz¡»ewski de�ned a new graph invariant i∗(H), based on incomparable sets of vertices

and a new graph decomposition, and proved the following.

Theorem 1.2 (Egri, Marx, Rz¡»ewski [10]). Let H be a �xed, non-interval, re�exive graph with

i∗(H) = k. Let n and t be, respectively, the number of vertices and the treewidth of an instance

graph G.

(a) Assuming a tree decomposition of G of width t is given, the LHom(H) problem can be solved

in time kt ⋅ nd ⋅ c, for some constants c, d > 0.

(b) There is no algorithm solving LHom(H) in time (k−ε)t ⋅nd ⋅c for any ε > 0, and any constants

c, d > 0, unless the SETH fails.

Although Hom(H) and LHom(H) look quite similar, the techniques used to show lower

bounds are very di�erent. This is because in LHom(H) it is su�cient to perform a reduction

for some induced subgraph H ′ of H, since every instance of LHom(H ′) is also an instance of

LHom(H), in which the vertices which do not belong to H ′ do not appear on lists. On the other

hand, in LHom(H) we need to capture the structure of the whole graph H, which is di�cult

using combinatorial tools only. This is why typical tools used in this area come from abstract

algebra and algebraic graph theory.

1.2. Our results and organization of the thesis

Chapter 2 contains the important de�nitions and notation. In chapter 3 we introduce the

upper bounds for Hom(H) and prove, in particular, that in some cases this problem can be

solved faster than ∣H ∣tw(G) ⋅ nO(1). Also, we explain why we investigate only restricted classes of

target graphs H, i.e., connected cores. A core is a graph which does not admit a homomorphism

into any of its proper subgraphs.

Chapter 4 is split in two main parts. First, we consider the class of projective graphs H (which

is formally de�ned in the chapter 2) and prove that for projective cores, which are non-trivial

(i.e., have at least three vertices), the result given by the standard dynamic programming is

asymptotically tight, assuming the SETH.

Theorem 1.3. Let H be a �xed non-trivial projective core on k vertices and let n and t be,

respectively, the number of vertices and the treewidth of an instance graph G.

15



1. Introduction

(a) Assuming a tree decomposition of G of width t is given, the Hom(H) problem can be solved

in time kt ⋅ nd ⋅ c, where c, d > 0 are constants.

(b) There is no algorithm to solve Hom(H) in time (k−ε)t ⋅nd ⋅c for any ε > 0, and any constants

c, d > 0, unless the SETH fails.

The main tool used in the proof of the lower bound is the construction of a so-called edge

gadget, which allows us to perform an elegant reduction from k-coloring. There, an edge

gadget is a graph F with two speci�ed vertices u∗ and v∗, such that:

(a) for any distinct vertices x, y of H, there is a homomorphism from F to H, which maps u∗

to x and v∗ to y, and

(b) in any homomorphism from F to H, the vertices u∗ and v∗ are mapped to distinct vertices

of H.

In the reduction, we take an instance G of the k-coloring problem and replace every edge

xy of G by the edge gadget, unifying u∗ with x and v∗ with y. This way we create an instance

G∗ of Hom(H), such that G∗ is a yes-instance of Hom(H) if and only if G is a yes-instance of

k-coloring. Also, the treewidth of G di�ers only by an additive constant from the treewidth

of G∗, which, by Theorem 1.1, is enough to prove the tight lower bound, assuming the SETH.

It is worth to note that, although the de�nition of projective graphs may look restricted, in fact

Theorem 1.3 works for the wide class of graphs. In particular, it is true that asymptotically almost

all graphs are projective cores. Indeed, �uczak and Ne²et°il proved in [27] that asymptotically

almost all graphs are projective. On the other hand, it is known that asymptotically almost all

graphs are cores (see Corollary 3.28 in the book of Hell and Ne²et°il, [19]). One can verify that

by some basic probability laws this implies that asymptotically almost all graphs are projective

cores. This, combined with Theorem 1.3 (b) gives us the following corollary.

Corollary 1.4. Assuming the SETH, for almost all graphs H on k vertices there is no algorithm

solving Hom(H) in time (k − ε)t ⋅ nd ⋅ c for any ε > 0, and any constants c, d > 0, for instance

graphs on n vertices and treewidth t.

In the second part of chapter 4 we analyse the lower bounds on the complexity of the remaining

cases of Hom(H), i.e., when H is a non-projective graph. We show that the approach from the

previous case cannot be extended for non-projective targets H. Then we investigate a class of

non-projective graphs for which there exist algorithms working faster than ∣H ∣tw(G) ⋅ nO(1) and

prove a matching lower bound in some cases. The reduction in section 4.2 is very similar to the

�rst one but more technically involved. Then in chapter 5 we show how our results are related

to open problems studied in the literature.

16



2. De�nitions and preliminaries

For an integer n we denote by [n] the set of integers {1, . . . , n}. All graphs considered in this

paper are �nite, undirected and with no multiple edges, but loops are allowed, unless stated

otherwise. For a graph G, we denote by V (G) and E(G), respectively, the set of vertices and

the set of edges of G, and by ω(G), χ(G), and og(G), respectively, the size of the largest clique

contained in G, the chromatic number of G, and the odd girth of G. Also, by ∣G∣ we denote the

number of vertices of G. Let K∗

1 be the single-vertex graph with a loop. We say that a graph G

is rami�ed if there is no pair of distinct vertices u, v in G, such that the neighborhood of u is a

subset of the neighborhood of v.

A tree decomposition of a graph G is a pair (T ,{Xa}a∈V (T )
), in which T is a tree, whose

vertices are called nodes and {Xa}a∈V (T ) is the family of subsets (called bags) of V (G), such

that

1. every v ∈ V (G) belongs to at least one bag Xa,

2. for every uv ∈ E(G) there is at least one bag Xa such that u, v ∈Xa,

3. for every v ∈ V (G) the set Tv ∶= {a ∈ V (T ) ∣ v ∈Xa} induces a connected subgraph of T .

The width of a tree decomposition (T ,{Xa}a∈V (T )
) is the number maxa∈V (T ) ∣Xa∣ − 1. The

minimum possible width of a tree decomposition of G is called the treewidth of G and denoted

by tw(G).

2.1. Homomorphisms and cores

For graphs G and H, a function f ∶ V (G) → V (H) is a homomorphism, if it preserves

edges, i.e., for every uv ∈ E(G) it holds that f(u)f(v) ∈ E(H) (see Figure 1.1). If G admits

a homomorphism to H, we denote this fact by G → H and we write f ∶ G → H if f is a

homomorphism from G to H. If there is no homomorphism from G to H, we write G /→ H.

Since graph homomorphisms generalize graph colorings, we call f ∶ G → H an H-coloring of

G and refer to the vertices of H as colors. Graphs G and H are homomorphically equivalent

if G → H and H → G, and incomparable if G /→ H and H /→ G. Observe that homomorphic

equivalence is an equivalence relation on the class of all graphs, because identity mapping is

always a homomorphism and also the composition of homomorphisms is a homomorphism. We
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2. Definitions and preliminaries

say that f is an endomorphism of G if f is a homomorphism from G to G.

A graph G is a core if G /→H for every proper subgraph H of G. Equivalently, we can say G

is a core if and only if every endomorphism of G is an automorphism. If H is a subgraph of G

such that G→ H and H is a core, we say that H is a core of G. Notice that if H is a subgraph

of G, then it always holds that H → G, so every graph is homomorphically equivalent to its

core. Moreover, if H is a core of G, then H is always an induced subgraph of G, because every

endomorphism f ∶ G → H restricted to H must be an automorphism. Also, because of that, if

f ∶ G→H is a homomorphism from G to its core H, then it must be surjective. Observe that if

there exists a bijective homomorphism from G to H, then G must be a spanning subgraph of H.

Observe that if a graph has two cores, they must be isomorphic.

Observation 2.1 (Hell, Ne²et°il, [18]). Every graph has a unique core, up to isomorphism.

Proof. Assume that H1 and H2 are cores of G. Clearly, G and H1 are homomorphically equiva-

lent, and so are G and H2. We observed that homomorphic equivalence is transitive, so H1 and

H2 are also homomorphically equivalent. It means that there exist f ∶H2 →H1 and g ∶H1 →H2.

Clearly, f ○ g is an endomorphism of H1, so, because H1 is a core, it is an automorphism. It

means that g must be injective and f must be surjective. Analogously, H2 is a core, so g ○ f

must be an automorphism of H2, which means that f must be injective and g must be surjective.

Combining these results we get that f and g are bijective homomorphisms, so H1 and H2 must

be isomorphic.

Simple examples of cores are complete graphs and odd cycles [15]. We say that a core is trivial

if it is isomorphic to K1, K
∗

1 , or K2.

Observation 2.2. Let H be a core graph. Then H is trivial if and only if it has fewer that three

vertices.

Proof. Clearly, if H is trivial, then it has at most two vertices. To see the "if" part, note that if

H has a loop, then we have G→H for every graph G, because a function which maps all vertices

of G to the vertex with a loop is a homomorphism. So K∗

1 is the only core which contains a

loop. Since K1 and K2 are cores, the only remaining case of a graph on fewer than 3 vertices is

an edgeless graph on 2 vertices, but clearly its core is K1.

Observe that if a graph has no edges, then its core is isomorphic to K1. Assuming that G is

bipartite but has at least one edge, we know that the core of G has at least two vertices, because

G /→K1 and K
∗

1 /→ G (and G must be homomorphically equivalent to its core). Clearly, G→K2,

because χ(G) = 2, and any 2-coloring of G is a homomorphism into K2, which is an induced

subgraph of G. This means that K2 must be the core of G. We summarize this as follows.

Observation 2.3. Let G be a graph, whose core H is trivial.

18



2.1. Homomorphisms and cores

(a) H ≃K∗

1 if and only if G has a loop,

(b) H ≃K1 if and only if G has no edges,

(c) H ≃K2 if and only if G is bipartite and has at least one edge.

If we assume that G and H are loopless, then the following conditions are necessary for G to

have a homomorphism into H.

Observation 2.4. Assume that G → H and G and H have no loops. Then ω(G) ≤ ω(H),

χ(G) ≤ χ(H) and og(G) ≥ og(H). In particular, if H is a core of G, then ω(G) = ω(H),

χ(G) = χ(H) and og(G) = og(H).

Proof. Let f ∶ G → H and let K be the set of ω(G) vertices of G inducing a clique. Clearly, f

must map K to ω(G) distinct vertices of H, as otherwise some edge would be mapped to a loop.

On the other hand, if there exist vertices a, b ∈ f(K) such that ab /∈ E(H), then xy /∈ E(G) for

some x, y ∈ K such that f(x) = a and f(y) = b. So f(K) is a clique of size ω(G) in H, which

means that ω(H) ≥ ω(G).

Note that for every graph G with χ(G) > 1 it holds that G → Kχ(G), but also G /→ Kχ(G)−1.

Suppose that χ(G) > χ(H). It implies that there exists a homomorphism g ∶ H → Kχ(G)−1.

However, since the composition of homomorphisms is also a homomorphism, if f ∶ G → H, then

we have that g ○ f ∶ G→Kχ(G)−1, a contradiction.

To see that og(G) ≥ og(H), �rst observe that an odd cycle cannot be mapped to a bipartite

graph, because this would mean that odd cycles are 2-colorable. Also, observe that an odd cycle

C2`+1 can be mapped to C2r+1 if and only if ` ≥ r. Indeed, assume that ` ≥ r. If we denote by

x1, . . . , x2`+1 and by y1, . . . , y2r+1, respectively, the consecutive vertices of C2`+1 and C2r+1, we

can de�ne a homomorphism g ∶ C2`+1 → C2r+1 as follows:

g(xi) ∶=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

yi if i ≤ 2r + 1,

y1 if i is even and i > 2r + 1,

y2r+1 if i is odd and i > 2r + 1.

On the other hand, if there exists g ∶ C2`+1 → C2r+1 and ` < r, then clearly the set g(V (C2`+1))

induces a proper subgraph of C2r+1 because C2`+1 has fewer vertices. But each proper subgraph

of an odd cycle is bipartite, and we already observed that odd cycle cannot be mapped to a

bipartite graph. So if f ∶ G→H and C2`+1 is an odd cycle in G, its image under f must contain

an odd cycle of at most the same length, which means that og(G) ≥ og(H).

If H is a core of G, then there exists g ∶ H → G, so we must have also ω(H) ≤ ω(G),

χ(H) ≤ χ(G) and og(H) ≥ og(G).

We denote by H1 + . . .+Hm the disconnected graph with connected components H1, . . . ,Hm.
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2. Definitions and preliminaries

Observation 2.5. Let f be a homomorphism from G to H. Then f must map each connected

component of G into some connected component of H.

Proof. Let G1 be some connected component of G and let H1 be some connected component of

H. For contradiction, suppose, without the loss of generality, that there exist x, y ∈ V (G1) such

that f(x) ∈ V (H1) and f(y) /∈ V (H1). As G1 is connected, there is a path in G1 connecting x and

y. It must contain two consecutive vertices u and v such that f(u) ∈ V (H1) and f(v) /∈ V (H1).

But then f cannot map the edge uv to an edge of H, because there is no edge between H1 and

vertices from the set V (H) − V (H1), so f is not a homomorphism, a contradiction.

Observe that the graph does not have to be connected to be a core.

Observation 2.6. A disconnected graph is a core if and only if its connected components are

pairwise incomparable cores.

Proof. Let H = H1 + . . . + Hm. First, observe that if H is a core, then H1, . . . ,Hm must be

cores. Indeed, without the loss of generality, if H ′

1 is a proper subgraph of H1 and there exists

f ∶H1 →H ′

1, then g ∶ V (H)→ V (H ′

1 +H2 + . . . +Hm) de�ned by

g(x) ∶=

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

f(x) if x ∈ V (H1),

x otherwise,
(2.1)

is a homomorphism from H to its proper subgraph, a contradiction. Similarly, we can prove that,

without the loss of generality, H1 /→ H2. Since H2 is a proper subgraph of H, if there exists a

homomorphism f ∶H1 →H2, then there exists a homomorphism g ∶H →H2+H3+. . .+Hm de�ned

in the same way as (2.1). It means that H admits a homomorphism to its proper subgraph, a

contradiction. By symmetry, Hi /→Hj for every i ≠ j.

Now let H1, . . . ,Hm be pairwise incomparable cores. Suppose that H ′ is a core of H and

consider f ∶ H → H ′. Recall that f must be surjective and maps every Hi to some connected

component of H ′. Note that H ′ must contain vertices from every Hi. In other case some Hi

would be mapped by f to some subgraph of Hj , for j ≠ i, but this cannot happen, because Hi

and Hj are incomparable. It means that H ′ must have at least m connected components. On

the other hand, since f is surjective and H has m connected components, H ′ must have at most

m connected components. So it has exactly m connected components. Denote by H ′

1, . . . ,H
′

m,

respectively, the connected components of H ′ induced by the vertices from H1, . . . ,Hm. Observe

that, since for every i ∈ [m] graph Hi is incomparable with every Hj for i ≠ j, f ∣Hi must be

in fact a homomorphism into H ′

i . This means that if H ′

i is a proper subgraph of Hi, then

Hi admits a homomorphism into its proper subgraph, which is a contradiction. So f ∣Hi must

be an isomorphism between Hi and H ′

i . It implies that H1 + . . . +Hm must be isomorphic to

H ′

1 + . . . +H ′

m.
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2.2. Graph products and projectivity

An example of a pair of incomparable cores is shown on the Figure 2.1. It is theGrötzsch graph,

denoted by GG, and the clique K3. The Grötzsch graph is a core, because it is vertex-critical,

i.e., its every proper induced subgraph has a lower chromatic number [6]. This, by Observa-

tion 4.4, implies that there is no homomorphism from GG into any of its proper subgraphs.

Clearly, og(GG) > og(K3) and χ(GG) > χ(K3), so by Observation 2.4, they are incomparable.

Observation 2.6 implies that graph GG +K3 is a core.

Figure 2.1: An example of incomparable cores, the Grötzsch graph (left) and K3 (right).

Observe that for every non-trivial core H we can �nd a core H ′ such that H and H ′ are

incomparable. In fact, we can construct an arbitrarily large families of pairwise incomparable

cores, starting from an arbitrary non-trivial core H0. A classic result of Erd®s [11] states that

for every positive integers `, r > 0 there exists graph H with og(H) > ` and χ(H) > r. So if

H0, . . . ,Hm is already a family of incomparable cores, there exists a graph H such that og(H) >

maxi∈{0,...,m} og(Hi) and χ(H) > maxi∈{0,...,m} χ(Hi). By Observation 2.4, H is incomparable

withHi for every i ∈ {0, . . . ,m}. Denote byHm+1 the core ofH. It is homomorphically equivalent

with H, so must be also incomparable with Hi, for every i ∈ {0, . . . ,m}, which means that

H0, . . . ,Hm,Hm+1 is also a family of pairwise incomparable cores.

Also note that if H is a trivial core, then for every graph H ′ it always holds that H →H ′ or

H ′ →H. In particular, there are no disconnected cores with trivial components.

2.2. Graph products and projectivity

De�ne the direct product of graphs H1 and H2, denoted by H1 ×H2, as follows:

V (H1 ×H2) = {(x, y) ∣ x ∈ V (H1) and y ∈ V (H2)}

and

E(H1 ×H2) = {(x1, y1)(x2, y2) ∣ x1x2 ∈ E(H1) and y1y2 ∈ E(H2)}.

We call H1 and H2 the factors of H1 ×H2. Clearly, the binary operation × is commutative, so

we can identify H1 ×H2 and H2 ×H1. Since × is also associative, we can extend the de�nition
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2. Definitions and preliminaries

for more than two factors:

H1 × ⋅ ⋅ ⋅ ×Hm−1 ×Hm ∶= (H1 × ⋅ ⋅ ⋅ ×Hm−1) ×Hm.

We say that H1 × . . . × Hm is a factorization of H. If H is isomorphic to H1 × . . . × Hm for

some m ≥ 2 and every factor Hi has at least three vertices, we call H1 × . . . ×Hm a non-trivial

factorization of H.

The direct product appears in the literature under di�erent names: tensor product, cardinal

product, Kronecker product, relational product. It is also called categorical product, because it is

the product in the category of graphs (see [16, 29] for details).

In the next chapters we sometimes consider the products of factors which are products them-

selves, so the vertices of such graphs are formally tuples of tuples. If it does not lead to confusion,

for x̄ ∶= (x1, . . . , xk1) and ȳ ∶= (y1, . . . , yk2), we will treat tuples (x̄, ȳ), (x1, . . . , xk1 , y1, . . . , yk2),

(x̄, y1, . . . , yk2), and (x1, . . . , xk1 , ȳ) as equivalent. This notation is generalized to more factors in

a natural way.

Observe that a graph H1 ×H2 with at least one edge is isomorphic to H1 if and only if H2

is isomorphic to K∗

1 . We say that a graph H is directly indecomposable (or indecomposable for

short) if the fact that H is isomorphic to H1×H2 implies that H1 or H2 is isomorphic to K∗

1 . If H

is isomorphic to H1 × . . .×Hm and each factor Hi is directly indecomposable and not isomorphic

to K∗

1 , we call H1 × . . . × Hm a prime factorization of H. In particular, if m = 1, then H is

indecomposable, otherwise, assuming H /≃ K∗

1 , we call H decomposable. Clearly, K∗

1 does not

have a prime factorization.

The property of uniqueness is very useful, when dealing with graph factorizations (see also

Theorem 8.17 in [16]). Note that, in particular, factors can have loops.

Theorem 2.7 (McKenzie, [28]). Any connected non-bipartite graph with more than one vertex

has a unique prime factorization into directly indecomposable factors.

The following theorem is a corollary from the result of Weichsel [32] (see Corollary 5.10 in

[16]).

Theorem 2.8 (Weichsel, [32]). Let H1, . . . ,Hm be connected graphs, such that ∣Hi∣ > 1 for every

i ∈ [m]. Graph H1 × . . . ×Hm is connected if and only if at most one factor Hi is bipartite.

Let H1× . . .×Hm be some factorization of H (not necessary prime) and let i ∈ [m]. A function

πi ∶ V (H) → V (Hi) such that for every (x1, . . . , xm) ∈ V (H) it holds that πi(x1, . . . , xm) = xi
is a projection on the i-th coordinate. It follows from the de�nition of the product that every

projection πi is a homomorphism from H to Hi.

We denote by Hm the product of m copies of H. Below we summarize some basic properties

of direct products.
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2.2. Graph products and projectivity

Observation 2.9. Let H be a graph on k vertices. Then

(a) the core of H ×K1 is K1,

(b) if H has at least one edge, then the core of H ×K2 is K2,

(c) the graph Hm contains an induced subgraph isomorphic to H. In particular, if m ≥ 2, then

Hm is never a core,

(d) if H1 × . . . ×Hm is the factorization of H, then for every graph G it holds that

G→H if and only if G→Hi for every i ∈ [m],

Proof. (a) Observe that H ×K1 is an edgeless graph on k vertices, so by Observation 2.3 (b) its

core is isomorphic to K1.

(b) If we denote by y1 and y2 the vertices of K2, observe that {(xi, y1) ∣ xi ∈ H} and

{(xi, y2) ∣ xi ∈ H} induce the bipartition classes of H × K2. As H has at least one edge, so

does H ×K2. Since H ×K2 is a bipartite graph with at least one edge, from Observation 2.3 (c)

we know that its core is K2.

(c) Note that Hm contains a subgraph induced by vertices {(x, . . . , x) ∣ x ∈ V (H)}, which

must be isomorphic to H. The projection π1 ∶ Hm → H is a homomorphism, so if m ≥ 2, then

for sure Hm is not a core.

(d) Assume that f ∶ G → H. Clearly, H → Hi for every i ∈ [m] because each projection

πi ∶ H → Hi is a homomorphism. So πi ○ f is a homomorphism from G to Hi. On the other

hand, if we have some fi ∶ G → Hi for every i ∈ [m], then we can de�ne f ∶ G → H by

f(x) ∶= (f1(x), . . . , fm(x)).

A homomorphism f ∶ Hm → H is idempotent, if for every x ∈ V (H) it holds that

f(x,x, . . . , x) = x. We say that H is projective (or idempotent trivial), if for every m ≥ 2

every idempotent homomorphism from Hm to H is a projection. The projectivity property in

graphs seems to be related to many areas of study and plays a key role in some important proofs

(see for example [1, 30, 14]).

Observe that if H is a projective core, then homomorphisms from Hm to H have a very

speci�c form.

Observation 2.10. If H is a projective core and f ∶Hm →H is a homomorphism, then f ≡ g○πi
for some i ∈ [m] and some automorphism g of H.

Proof. If f is idempotent, then it is a projection and we are done. Assume f is not idempotent

and de�ne a function g ∶ V (H) → V (H) by g(x) = f(x, . . . , x). Function g is an endomorphism

of H and H is a core, this implies that g is in fact an automorphism of H. Observe that g−1 ○ f

is an idempotent homomorphism, so it is equal to πi for some i ∈ [m], because H is projective.

From this we get that f ≡ g ○ πi.
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2. Definitions and preliminaries

Observe that the de�nition of projective graphs does not imply that recognizing graphs with

this property is decidable. However, an algorithm to recognize these graphs follows from the

useful characterization, obtained by Larose and Tardif.

Theorem 2.11 (Larose, Tardif, [24]). A connected graph H on at least three vertices is projective

if and only if every idempotent homomorphism from H2 to H is a projection.

It appears that the properties of projectivity and being a core are indepentent. Figure 2.2

shows an example of a projective graph G, which is not a core. Clearly, G can be mapped

to a triangle, which is its proper subgraph, so it is not a core. However, Larose [23] proved

that all non-bipartite, rami�ed, connected graphs which do not contain C4 as a (not necessarily

induced) subgraph, are projective (later we will use his stronger result, which implies this one,

see Theorem 5.2).

On the other hand, there are cores which are not projective (such an example is GG×K3), and

we analyse them in section 4.2. Also, it is known that projective graphs are always connected

[24] and in Observation 2.6 we proved that there exist disconnected cores.

Figure 2.2: An example of a projective graph which is not a core.
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3. Complexity of the Hom(H) problem

In this chapter we introduce upper bounds for the complexity of Hom(H). Note that if two

graphs H1 and H2 are homomorphically equivalent, then Hom(H1) and Hom(H2) problems are

also equivalent. So in particular, because every graph is homomorphically equivalent to its core,

we may restrict our attention to graphs H which are cores. Also, from Observation 2.3 we know

that Hom(H) can be solved in polynomial time if H is isomorphic to K∗

1 , K1 or K2. Recall from

the introduction that Hell and Ne²et°il in [17] proved that if H is bipartite or has a vertex with

a loop then Hom(H) is polynomial-time solvable and otherwise it is NP-complete. So we are

interested only in cores H for which the Hom(H) problem is NP-complete, i.e., cores on at least

three vertices. In particular we assume that H is not bipartite and has no loops.

We investigate the complexity of the Hom(H) problem, parameterized by treewidth of the

input graph. The standard dynamic programming approach (see for example Cygan et al., [8])

gives us the following upper bound.

Theorem 3.1. Let H be a �xed graph on k vertices and let n and t be, respectively, the number

of vertices and the treewidth of the instance graph G. Assuming a tree decomposition of width t

of G is given, the Hom(H) problem can be solved in time kt ⋅ nd ⋅ c for some constants c, d > 0.

As mentioned in the introduction (see Theorem 1.1), it is known that this bound is tight under

the SETH for complete graphs on at least three vertices, i.e. for the k-coloring problem. On

the other hand, there are graphs for which we can obtain a better upper bound. Consider the

family of decomposable graphs, de�ned in the previous chapter. Recall from Observation 2.9 (d)

that if H has a prime factorization H1 × . . . ×Hm, then for every graph G it holds that

G→H if and only if G→Hi for every i ∈ [m].

So consider an algorithm which takes an instance G of Hom(H), solves Hom(Hi) on the same

instance G for each i ∈ [m] and returns a positive answer for Hom(H) if and only if it gets a

positive answer for each Hom(Hi). This way we obtain the following result.

Theorem 3.2. Let H be a �xed core with prime factorization H1 × . . . × Hm. Let n and t

be, respectively, the number of vertices and the treewidth of an instance graph G. Assuming

the tree decomposition of width t of G is given, the Hom(H) problem can be solved in time

maxj∈[m] ∣Hj ∣t ⋅ nd ⋅ c for some constants c, d > 0.
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3. Complexity of the Hom(H) problem

In the next chapter we analyse for which graphs H we can prove that assuming the SETH

the bound in Theorem 3.2 is tight. Now we conclude this chapter with an observation about the

complexity of Hom(H) for disconnected cores H.

Theorem 3.3. Let H be a disconnected core isomorphic to H1 + . . . + Hm. Let n and t be,

respectively, the number of vertices and the treewidth of an instance graph G. Assume that a tree

decomposition of G of width t is given.

(a) If for every i ∈ [m] the Hom(Hi) problem can be solved in time αt ⋅nd ⋅c, where α, c, d > 0 are

constants, then the Hom(H) problem can also be solved in time αt ⋅nd ⋅ c′ for some constant

c′ > 0.

(b) If the Hom(H) problem can be solved in time αt ⋅ nd ⋅ c, where α, c, d > 0 are constants, then

for every i ∈ [m] the Hom(Hi) problem can also be solved in time αt ⋅nd ⋅c′ for some constant

c′ > 0.

Proof. First, observe that if G is disconnected and its connected components are G1, . . . ,G`,

then G1 + . . . +G` → H if and only if Gi → H for every i ∈ [`]. Also, tw(G) = maxi∈[`] tw(Gi).

It means that if the instance graph is disconnected, we can just consider the problem separately

for each of its connected components.

So we assume that G is connected. First, observe that G→H if and only if G→Hi for some

i ∈ [m]. Indeed, if G → Hi for some i ∈ [m] then clearly G → H. On the other hand, if G → H,

then, because G is connected, we use Observation 2.5 and get that G → Hi for some i ∈ [m].

So we can solve Hom(Hi) for each Hi for the same instance G and return a positive answer for

Hom(H) if and only if we get a positive answer of Hom(Hi) for at least one i ∈ [m]. We do it

in time αt ⋅ nd ⋅ c′ for c′ ∶= c ⋅m. This proves (a).

To see (b), let G be an instance of Hom(Hi) on n vertices and treewidth t. Let V (Hi) =

{z1, . . . , zk} and let u be some �xed vertex of G. We construct an instance G∗ of Hom(H) by

taking a copy G′ of G and a copy H̃k
i of Hk

i and identifying the vertex corresponding to u in G′

and the vertex corresponding to (z1, . . . , zk) in V (H̃k
i ). Denote this vertex of G∗ by z̃. Observe

that Hi is connected and non-trivial, so Theorem 2.8 implies that H̃k
i is connected. Since G is

also connected, G∗ must be connected.

We claim that G → Hi if and only if G∗ → H. Indeed, if f ∶ G → Hi, then there exists

j ∈ [k] such that f(z̃) = zj , so we can de�ne a homomorphism g ∶ G∗ → Hi (which is also a

homomorphism from G∗ to H) by

g(v) =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

f(v) if v ∈ G′,

πj(v) if v ∈ H̃k
i .

Clearly, both f and πj are homomorphisms and z̃ is a cut-vertex in G∗ for which f(z̃) = πj(z̃),

so g is a homomorphism from G∗ to H.

26



Conversely, if we have g ∶ G∗ → H, recall that from Observation 2.5 we know that g maps

G∗ to a connected component Hj , for some j ∈ [m] (as we assume G∗ is connected). But G∗

contains an induced copy H̃k
i of Hk

i , so also the induced copy of Hi, say H̃i (recall Observation

2.9 (c)). So g∣V (H̃i)
is in fact a homomorphism from Hi to Hj . Recall from Observation 2.4 that

since H1 + . . . +Hm is a core, its connected components are pairwise incomparable cores � so j

must be equal to i. It means that g∣V (G′). is a homomorphism from G′ to Hi, so we can conclude

that G→Hi.

Observe that the number of vertices of G∗ is equal to n + ∣Hk
i ∣ − 1 ≤ n∣Hk

i ∣. Now let

(T ,{Xa}a∈V (T )
) be a tree decomposition of G of width t, and let b be a node of T , such that

u ∈ Xb. De�ne Xb′ ∶= Xb ∪ V (H̃k
i ) and let V (T ∗) = V (T ) ∪ {b′} and E(T ∗) = E(T ) ∪ {bb′}.

Clearly, (T ∗,{Xa}a∈V (T ∗)
) is a tree decomposition of G∗. This means that tw(G∗) ≤ t + ∣Hk

i ∣.

The graph Hi is �xed, so the number of vertices of Hk
i is a constant. By our assumption, we can

decide if G∗ →H in time αtw(G∗) ⋅ ∣G∗∣d ⋅ c, so we are able to decide if G→Hi in time

αtw(G∗) ⋅ ∣G∗∣d ⋅ c ≤ αt ⋅ α∣Hk
i ∣ ⋅ nd ⋅ ∣Hk

i ∣d ⋅ c = αt ⋅ nd ⋅ c′,

where c′ ∶= c ⋅ α∣Hk
i ∣ ⋅ ∣Hk

i ∣d .

Theorem 3.3 implies that for our purpose it is su�cient to consider connected cores.
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4. Lower bounds

In this chapter we investigate the lower bounds for the complexity of Hom(H). We split the

analysis to two cases. In the �rst one we consider projective cores and prove that for them the

bound in Theorem 3.1 is tight. In the second one we investigate the remaining cases and analyse

for which target graphs the bound in Theorem 3.2 is tight.

4.1. Projective graphs

In this section we are going to prove the Theorem 1.3.

Theorem 1.3. Let H be a �xed non-trivial projective core on k vertices and let n and t be,

respectively, the number of vertices and the treewidth of an instance graph G.

(a) Assuming a tree decomposition of G of width t is given, the Hom(H) problem can be solved

in time kt ⋅ nd ⋅ c, where c, d > 0 are constants.

(b) There is no algorithm to solve Hom(H) in time (k−ε)t ⋅nd ⋅c for any ε > 0, and any constants

c, d > 0, unless the SETH fails.

Observe that the part (a) of Theorem 1.3 follows from Theorem 3.1, so we need to show the

hardness counterpart, i.e., the statement (b). The following construction of the edge gadget is a

crucial tool in our proof.

Lemma 4.1. For every non-trivial projective core H, there exists a graph F with two special

vertices u∗ and v∗, satisfying the following:

(a) for every x, y ∈ V (H) such that x ≠ y, there exists a homomorphism f ∶ F → H such that

f(u∗) = x and f(v∗) = y,

(b) for every f ∶ F →H it holds that f(u∗) ≠ f(v∗).

We call such F an edge gadget for H.

Proof. Let V (H) = {z1, . . . , zk}. For i ∈ [k] denote by zk−1i the (k − 1)-tuple (zi, . . . , zi) and by

zi the (k − 1)-tuple (z1, . . . , zi−1, zi+1, . . . zk). We claim that F ∶=H(k−1)k and vertices

u∗ ∶= (zk−11 , . . . , zk−1k ) and v∗ ∶= (z1, . . . , zk)

satisfy the statement of the lemma. Note that the vertices of F are k(k − 1)-tuples.
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4.1. Projective graphs

To see that (a) holds, observe that if x and y are distinct vertices of H, then there always

exists i ∈ [k(k − 1)] such that πi(u∗) = x and πi(v∗) = y. This means that πi is a homomorphism

from Hk(k−1) to H satisfying πi(u∗) = x and πi(v∗) = y.

To prove (b), recall that since H is projective, by Observation 2.10 the homomorphism f is a

composition of some automorphism g of H and πi ∶H(k−1)k →H for some i ∈ [k(k − 1)] Observe

that u∗ and v∗ were de�ned in a way such that πj(u∗) ≠ πj(v∗) for every j ∈ [k(k − 1)]. As g is

an automorphism, it is injective, which gives us f(u∗) = g(πi(u∗)) ≠ g(πi(v∗)) = f(v∗).

Now we are ready to prove Theorem 1.3 (b).

Proof of Theorem 1.3 (b). Note that H is non-trivial, so by Observation 2.2 we know that k ≥ 3.

We reduce from k-coloring. Let G be an instance of k-coloring with n vertices and treewidth

t. We construct the instance G∗ of Hom(H) as follows. First, for every v ∈ V (G) we introduce

to G∗ a vertex v′. Denote the set of these vertices by V ′. Now for every edge xy of E(G)

we introduce to G∗ a copy of the edge gadget F from Lemma 4.1, denoted by Fxy. Then, for

every edge xy of G we identify vertices u∗ and v∗ of Fxy, with x
′ and y′ from V ′, respectively.

This completes the construction of G∗. Observe that the number of vertices of G∗ is less than

n + ∣F ∣ ⋅ (n2) ≤ ∣F ∣ ⋅ n2.

We claim that G is k-colorable if and only if G∗ →H. Indeed, let ϕ be a k-coloring of G. For

simplicity of notation, we label the colors used by ϕ in the same way as the vertices of H, i.e.,

z1, z2, . . . , zk. De�ne g ∶ V ′ → V (H) by g(v′) ∶= ϕ(v′). Now consider the gadget Fxy for an edge

xy ∈ E(G). As ϕ is a proper coloring, for every pair of vertices x′ and y′ of V ′ which correspond

to an edge xy in G it holds that g(x′) ≠ g(y′). So because of Lemma 4.1 (a), we can �nd a

homomorphism fxy ∶ Fxy → H such that fxy(x′) = g(x′) and fxy(y′) = g(y′). Repeating this for

every edge gadget, we can extend g to a homomorphism from G∗ to H. Observe that there are

no edges between two distinct edge gadgets, so because each fxy is an H-coloring of edge gadget,

g must be an H-coloring of G∗.

Conversely, from Lemma 4.1 (b), we know that if g is an H-coloring of G∗, then for any edge

xy of G we have that g(x) ≠ g(y). So any homomorphim from G∗ to H induces a k-coloring

of G.

Now let (T ,{Xa}a∈V (T )
) be a tree decomposition of G of width t. We extend it to a tree

decomposition of G∗. For each edge xy of G there exists a bag Xb such that x, y ∈ Xb. De�ne

Xb′ ∶=Xb ∪V (Fxy) and construct a tree T ∗ by adding for every edge xy of G a node b′ to V (T )

and an edge bb′ to E(T ). Observe that (T ∗,{Xa}a∈V (T ∗)} is a tree decomposition of G∗. This

means that tw(G∗) ≤ t + ∣F ∣. Since the number of vertices of F depends only on ∣H ∣, it is a

constant number, because H is �xed. So if we can decide if G∗ →H in time (k−ε)tw(G∗) ⋅ ∣G∗∣d ⋅c,

then we are be able to decide if G is k-colorable in time

(k − ε)tw(G∗) ⋅ ∣G∗∣d ⋅ c ≤ (k − ε)t ⋅ (k − ε)∣F ∣ ⋅ n2d ⋅ ∣F ∣d ⋅ c = (k − ε)t ⋅ nd
′

⋅ c′

29



4. Lower bounds

for constants c′ = c ⋅ (k − ε)∣F ∣ ⋅ ∣F ∣d and d′ = 2d. This, by Theorem 1.1 is a contradiction with the

SETH.

4.2. Non-projective graphs

In this section we consider graphs not analyzed before, i.e., non-trivial, connected non-

projective cores. First, we argue that if H is a non-projective core on k vertices, then the

approach based on Lemma 4.1 does not work. We can show that it is impossible to construct an

edge gadget with properties from Lemma 4.1 for a non-projective core H. Our argument uses the

notion of constructible set, see Larose and Tardif [24]. A set C ⊆ V (H) is said to be constructible

if there exists a graph K, and vertices x0, . . . , x` ∈ V (K) and y1, . . . , y` ∈ V (H) such that

{f(x0) ∈ V (H) ∣ f ∶K →H is any homomorphism such that f(xi) = yi for every i ∈ [`]} = C.

Less formally, C is constructible if we can �nd a graph K with a special vertex x0 and some

partial H-coloring c of K, in which c(xi) = yi for every i ∈ [`], such that C is the set of colors

which can appear on x0 when we extend c to some H-coloring of K.

The tuple

(K,x0, x1, . . . , x`, y1, y2, . . . , y`)

is called a construction of C.

It appears that the notion of constructible sets is closely related to projectivity.

Theorem 4.2 (Larose, Tardif [24]). A graph H on at least three vertices is projective if and only

if every subset of its vertices is constructible.

We show that Lemma 4.1 cannot work for non-projective cores.

Proposition 4.3. Assume that we can construct an edge gadget F with properties listed in

Lemma 4.1 for a core H. Then every subset of its vertices is constructible.

Proof. Fix a C ⊆ V (H), let ` ∶= ∣C ∣ and let k ∶= ∣H ∣. Suppose there exist an edge gadget F with

properties listed in Lemma 4.1. Take k − ` copies of F , say F1, . . . , Fk−` and denote the vertices

u∗ and v∗ of the i-th copy Fi respectively by u∗i and v∗i . Identify the vertices u∗i of all these

copies, denote the obtained vertex by u∗, and the obtained graph by K. Now set xi = v∗i for

each i ∈ [k − `], set x0 = u∗, and set {y1, . . . , yk−`} to be the complement of C in V (H).

It is easy to verify that this is a construction of the set C. Indeed, suppose that x ∈ C,

so x /∈ {y1, . . . , yk−`}. Then, by Lemma 4.1 (a), for each copy Fi there exists a homomorphism

fi ∶ Fi → H such that f1(v∗i ) = f1(xi) = yi and f1(u∗) = f1(x0) = x, because yi ≠ x for every

i ∈ [k − `]. Combining these homomorphisms, we get a homomorphism f ∶K →H. On the other
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4.2. Non-projective graphs

hand, suppose that x /∈ C, so x = yi for some i ∈ [k−`]. But then from property (b) in Lemma 4.1

we know that for every homomorphism f ∶ Fi → H it holds that x = yi = f(v∗i ) ≠ f(u∗) = f(x0).

So x0 cannot be mapped to x by any homomorphism from K to H.

Observe that if a graph H is projective, then it must be indecomposable. Indeed, assume

H has a non-trivial factorization H1 × H2 for some H1,H2. Consider a homomorphism f ∶

(H1 ×H2)2 →H1 ×H2, de�ned as f((x, y), (x′, y′)) = (x, y′). Note that it is idempotent, but not

a projection, so H is not projective. An example of a non-projective graph core is H =K3 ×GG,

where the GG is the Grötzsch graph (see Figure 2.1).

On the other hand, it is natural to ask when indecomposability implies projectivity. Larose

and Tardif in [24] leave an open question about non-projective graphs, in particular, cores: if

a connected non-bipartite core is indecomposable, does it imply it is projective? Up to our

knowledge, there is still no known example of a indecomposable, connected core, which would

be non-projective.

Conjecture 1. Let H be a connected non-trivial core. Then H is projective if and only if it is

indecomposable.

Because of these reasons, in this section we consider all remaining known cases of cores. From

now we will assume that H is a decomposable, non-trivial connected core, so, by Theorem 2.7,

it has a unique prime factorization H1 × . . . ×Hm for some m ≥ 2.

Below we summarize some properties of a non-trivial factorization of a core H.

Observation 4.4. Let H be a connected, non-trivial core with some non-trivial factorization

H1 ×H2. Then both H1 and H2:

(a) are cores,

(b) are non-trivial,

(c) are connected,

(d) are incomparable with each other.

In particular, because × is commutative and associative, if H1 × . . .×Hm is a prime factorization

of H, then (a)-(d) hold for every Hi.

Proof. We prove (a)-(c) only for H1, but by symmetry it works for H2 as well.

(a) Suppose thatH1 is not a core and letH
∗

1 be the core ofH1, so a proper induced subgraph of

H1. Let f ∶H1 →H∗

1 . De�ne H
∗ =H∗

1 ×H2. Note that because H
∗

1 is a proper induced subgraph

of H1, then H
∗ is a proper induced subgraph of H. Consider a function f ′ ∶ V (H) → V (H∗)

de�ned by f ′(x1, x2) ∶= (f(x1), x2). Observe that because f is a homomorphism, so is f ′. This

is a contradiction, because H is a core.

(b) We excluded the case when H1 is isomorphic to K∗

1 in the assumption. If H1 is isomorphic

to K1, then by Observation 2.9 (a) its core is isomorphic to K1. Also, if H1 is isomorphic to K2,
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then by Observation 2.9 (b) its core is isomorphic to K2. But we assumed H is not non-trivial,

a contradiction.

(c) This follows from Theorem 2.8, but the direct proof is not complicated: let u and v

be some vertices in H1. Fix w ∈ V (H2). The graph H is connected, so there exists a path

((u,w), (x1, y1), . . . , (x`, y`), (v,w)) in H. Clearly, the sequence (u,x1, . . . , x`, v) must induce a

walk in H1.

(d) To see that H1 /→ H2, assume otherwise and let g ∶ H1 → H2. Observe that the set of

vertices {(x1, g(x1)) ∈ V (H) ∣ x1 ∈ V (H1)} forms an induced subgraph of H, isomorphic to H1.

Since we always have H → H1 (for example, π1 is always a homomorphism from H to H1), it

means that H has a homomorphism into its subgraph. As H2 is not isomorphic to K∗

1 , then H

is not isomorphic to H1, so H1 is a proper subraph of H, a contradiction. Analogously we can

prove that H2 /→H1.

Again, we will consider the complexity of the Hom(H) problem. Recall from Theorem 3.2

that if H admits a prime factorization H1 × . . . × Hm, then Hom(H) can be solved in time

maxj∈[m] ∣Hj ∣t ⋅nd ⋅ c, where n and t are, respectively, the number of vertices and the treewidth of

an instance graph, and c, d are positive constants. It would be interesting to know if it is tight

for connected, non-trivial decomposable cores.

Below we investigate a restricted case of this problem. We say that a graph Hi is truly

projective if it has at least three vertices and for every s ≥ 2 and every connected core W

incomparable with Hi, it holds that the only homomorphisms f ∶ Hs
i ×W → Hi which satisfy

f(x,x, . . . , x, y) = x for any x ∈ V (Hi), y ∈ V (W ), are projections. Observe that such de�ned

graphs are projective.

Observation 4.5. If a graph H is truly projective, then it is projective.

Proof. Because of Theorem 2.11, it is enough to prove that if g ∶ H2 → H is an idempotent

homomorphism, then it is a projection. Let W be a core incomparable with H. De�ne a

homomorphism f ∶ H2 ×W → H as f(x1, x2,w) ∶= g(x1, x2). But H is truly projective, which

means that f is a projection, and so is g.

Graphs with very similar but more restrictive property were studied by Larose in [22] in

connection with problems raised by Greenwell and Lovász in [14]. In chapter 5 we use results

presented there to obtain some interesting corollaries. But here we prove the following.

Theorem 4.6. Let H be a �xed non-trivial connected core, with prime factorization H1×. . .×Hm.

Let n and t be, respectively, the number of vertices and the treewidth of an instance graph G.

Assume there exists i ∈ [m] such that Hi is truly projective. Then there is no algorithm to solve

Hom(H) in time (∣Hi∣ − ε)t ⋅ nd ⋅ c for any constants c, d > 0, any ε > 0, unless the SETH fails.
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4.2. Non-projective graphs

To simplify the notation, for any given homomorphism f ∶ G → H1 × . . . × Hm, we de�ne

fi ≡ πi ○ f . Then for each vertex v of G it holds that

f(x) = (f1(x), . . . , fm(x)),

where fi is a homomorphism from G to Hi.

To prove Theorem 4.6 we need another edge gadget. It is similar to the one in the previous

chapter, but its properties are slightly modi�ed. The following theorem will be useful to prove

the correctness of our construction. To avoid introducing new de�nitions, we state the theorem

in a sightly weaker form, using the terminology used in this paper, but see also Theorem 8.18

in [16].

Theorem 4.7 (Dör�er, [9]). Let ϕ be an automorphism of a connected, non-bipartite, rami�ed

graph H, with the prime factorization H1 × . . . × Hm. Then for each i ∈ [m] there exists an

automorphism ϕ(i) of Hi such that ϕi(t1, . . . , tm) ≡ ϕ(i)(ti).

In particular, it implies the following.

Corollary 4.8. Let µ be an automorphism of a connected, non-trivial core H, with some non-

trivial factorization H1 × R, such that H1 is indecomposable. Then there exist automorphisms

µ(1) ∶H1 →H1 and µ(2) ∶ R → R such that µ(t, t′) ≡ (µ(1)(t), µ(2)(t′)).

Proof. As R must be a non-trivial core (see Observation 4.4), it admits the unique prime factor-

ization, say H2 × . . . ×Hm, so H1 ×H2 × . . . ×Hm is the unique prime factorization of H. From

Theorem 4.7 we know that for each i ∈ [m] there exists an automorphism ϕ(i) of Hi such that

µ(t1, . . . , tm) ≡ (ϕ(1)(t1), . . . , ϕ(m)(tm)). We de�ne µ(1)(t) ∶= ϕ(1)(t) for every vertex t ∈ V (H1).

Clearly, µ(1) is an automorphism ofH1. For every vertex t
′ = (t2, . . . , tm) of R such that ti ∈Hi for

i ∈ {2, . . . ,m}, de�ne µ(2)(t′) ∶= (ϕ(2)(t2), . . . , ϕ(m)(tm)). Observe that (t2, . . . , tm)(t′2, . . . , t′m) is

an edge of R if and only if tit
′

i is an edge of Hi for every i ∈ {2, . . . ,m}. This happens if and only

if ϕ(i)(ti)ϕ(i)(t′i) is an edge of Hi for every i ∈ {2, . . . ,m}, because each ϕ(i) is an automorphism.

Clearly, ϕ(i)(ti)ϕ(i)(t′i) is an edge of Hi for every i ∈ {2, . . . ,m} if and only if

(ϕ(2)(t2), . . . , ϕ(m)(tm))(ϕ(2)(t′2), . . . , ϕ(m)(t′(m))) is an edge of R,

so µ(2) is indeed an automorphism of R.

Below we construct an edge gadget with properties which are needed to perform a hardness

reduction. The gadget is similar to the one constructed in Lemma 4.1, but more technically

complicated.

Lemma 4.9. Let H = H1 ×R be a connected, non-trivial core, such that H1 is truly projective

and R /≃K∗

1 . Let w be a �xed vertex of R. Then there exists a graph F and vertices u∗, v∗ of F ,

satisfying the following conditions:
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(a) for every xy ∈ E(H1) there exists f ∶ F →H such that f(u∗) = (x,w) and f(v∗) = (y,w),

(b) for any f ∶ F →H it holds that f1(u∗)f1(v∗) ∈ E(H1).

Proof. Let E(H1) = {e1, . . . , es} and let ei = uivi for every i ∈ [s] (clearly, one vertex can appear

many times as some ui or vj). Consider the vertices

u ∶= (u1, . . . , us, v1, . . . , vs)

v ∶= (v1, . . . , vs, u1, . . . , us)

of H2s
1 . Let F ∶=H2s

1 ×R, and let u∗ ∶= (u,w) and v∗ ∶= (v,w). We will treat vertices u and v as

2s-tuples, and vertices u∗ and v∗ as (2s + 1)-tuples.

Observe that, if xy ∈ E(H1), then there exists i ∈ [2s] such that x = πi(u∗) and

y = πi(v∗), it follows from the de�nition of u∗ and v∗. De�ne a function f ∶ V (F ) → V (H)

as f(x1, . . . , x2s,w) ∶= (πi(x1, . . . , x2s),w). Observe that this is a homomorphism, for which

f(u∗) = f(u,w) = (x,w) and f(v∗) = f(v,w) = (y,w), which is exactly the condition (a) in the

statement of Lemma 4.9.

We prove (b) in two steps. First, we observe the following.

Claim 1. Let ϕ ∶ F → H. If for every z ∈ V (H1) and r ∈ V (R) it holds that ϕ1(z, . . . , z, r) = z

then ϕ1(u∗)ϕ1(v∗) ∈ E(H1).

Proof of Claim. Recall that R is a connected core incomparable with H1, and H1 is truly

projective. It means that if ϕ1 ∶ H2s
1 × R → H1 satis�es the assumption of the claim, then

it is equal to πi for some i ∈ [2s]. Directly from the de�nition of u∗ and v∗ we have that

πi(u∗)πi(v∗) ∈ E(H1). ∎

Observe that F contains a subgraph isomorphic to H, say H̃, induced by the set V (H̃) =

{(z, . . . , z, r) ∈ F ∣ z ∈ V (H1), r ∈ V (R)}. Indeed, there is an isomorphism σ ∶ H̃ → H de�ned as

σ(z, . . . , z, r) ∶= (z, r).

Second, assume that f is a homomorphism from F to H and observe that f ∣V (H̃)
is an

isomorphism from H̃ to H, because H is a core. If f ∣V (H̃)
≡ σ then for every z ∈ V (H) and

r ∈ V (R) it holds that f1(z, . . . , z, r) = σ1(z, . . . , z, r) = z, so, by the claim above, we are done.

If not, observe that there exists the inverse isomorphism g ∶ H → H̃ such that g ○ f ∣V (H̃)
= idH̃ .

Let µ ∶= σ ○ g. Observe that µ is an endomorphism of H1 × R, so an automorphism, since

H1 ×R is a core. Also note that (µ ○ f) ∶ F → H1 ×R is a homomorphism such that for every

(z, . . . , z, r) ∈ V (H̃) it holds that

(µ ○ f)(z, . . . , z, r) = (σ ○ g ○ f)(z, . . . , z, r) = (σ ○ idH̃)(z, . . . , z, r) = σ(z, . . . , z, r) = (z, r),

which means that (µ ○ f)1(z, . . . , z, r) = z. This means that µ ○ f satis�es the assumption of the

claim, so

(µ ○ f)1(u∗)(µ ○ f)1(v∗) ∈ E(H1). (4.1)
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4.2. Non-projective graphs

Clearly, for every vertex z̃ of F it holds that

(µ ○ f) (z̃) = µ(f1(z̃), f2(z̃)) =
⎛
⎝
µ1(f1(z̃), f2(z̃)), µ2(f1(z̄), f2(z̃))

⎞
⎠
. (4.2)

Note that Corollary 4.8 implies that there exists automorphisms µ(1) and µ(2) of, respectively,

H1 and R, such that for every z̃ ∈ V (F ) it holds that

µ1 (f1(z̃), f2(z̃)) = µ(1)(f1(z̃))

µ2 (f1(z̃), f2(z̃)) = µ(2)(f2(z̃)),
(4.3)

So (4.2) and (4.3) show that in particular (µ ○ f)1 = µ(1) ○ f1. Combining this with (4.1) we get

that

(µ(1) ○ f1) (u∗) (µ(1) ○ f1) (v∗) ∈ E(H1). (4.4)

Since µ(1) is an automorphism of H1, there exists the inverse automorphism (µ(1))−1 of H1 for

which (µ(1))−1 ○ µ(1) is the identity of H1. Because (µ(1))−1 is an automorphism, (4.4) implies

that

((µ(1))
−1
○ µ(1) ○ f1) (u∗) ((µ(1))

−1
○ µ(1) ○ f1) (v∗) ∈ E(H1).

Since ((µ(1))−1 ○ µ(1)) is the identity, we conclude that f1(u∗)f1(v∗) ∈ E(H1), which completes

the proof.

Now we can proceed to the proof of the Theorem 4.6.

Proof of Theorem 4.6. Since × is commutative, then without loss of generality we can assume

that H1 is truly projective. De�ne R ∶=H2×. . .×Hm, so H =H1×R. Since H1 is truly projective,

Observation 4.5 implies that it is projective, so it is connected and by Theorem 1.3 there is no

algorithm for Hom(H1) which works in time (∣H1∣−ε)t ⋅nd ⋅c, for instance graphs on n vertices and

treewidth t, for any constants c, d, ε > 0, unless the SETH fails. We will show that an existence

of an algorithm for Hom(H) working in time (∣H1∣−ε)t ⋅nd
′ ⋅c′ for some constants c′, d′ > 0 would

contradict the SETH.

For a given instance G of Hom(H1) consider an instance G∗ of Hom(H), which is constructed

as follows. Let w be a �xed vertex of R and let F be a graph obtained for H and w from

Lemma 4.9. To construct G∗, �rst, for every vertex v of G we introduce a vertex v′ of G∗.

Denote by V ′ the set of these vertices in G∗. Then we add a copy Fxy of F for every pair

x′, y′ ∈ V ′ which corresponds to an edge xy in G, and identify vertices x′ and y′ respectively with

u∗ and v∗ of Fxy. Note that G
∗ has at most ∣F ∣ ⋅ n2 vertices.

We claim that there exists f ∶ G → H1 if and only if there exists f∗ ∶ G∗ → H. Clearly, for

f∗ ∶ G∗ →H by Lemma 4.9 (b) we know that the function f∗1 ∣V ′ corresponds to a homomorphism

from G to H1.
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For f ∶ G → H1, de�ne f
∗(v) ∶= (f(v),w) for every v ∈ V ′. Consider the edge gadget Fxy for

an edge xy of G. From Lemma 4.9 (a) we know that we can extend f∗ to every vertex of Fxy.

So G∗ →H if and only if G→H1.

Finally, observe that each edge gadget has a constant size (depending only on H). Again we

can construct a tree decomposition of G∗ from a given decomposition T of G of width t. For

each edge xy of G there exists a bag Xb such that x, y ∈ Xb. We de�ne Xb′ = Xb ∪ V (Fxy) and

construct a tree T ∗ by adding for every edge y ∈ G a node b′ to V (T ) and an edge {bb′} to E(T ).

Clearly, (T ∗,{Xa}a∈V (T ∗)} is a tree decomposition of G∗, so tw(G∗) ≤ t + ∣F ∣. It means that if

we could decide if G∗ → H in time (∣H1∣ − ε)tw(G∗) ⋅ ∣G∗∣d ⋅ c, then we would be able to decide if

G→H1 in time

(∣H1∣ − ε)tw(G∗) ⋅ ∣G∗∣d ⋅ c ≤ (∣H1∣ − ε)t ⋅ (∣H1∣ − ε)∣F ∣ ⋅ n2d ⋅ ∣F ∣d ⋅ c

≤ (∣H1∣ − ε)t ⋅ nd
′

⋅ c′

for c′ ∶= c ⋅ (∣H1∣ − ε)∣F ∣ ⋅ ∣F ∣d and d′ = 2d. By Theorem 1.3(b) this is a contradiction with the

SETH.

Using Theorem 3.2 we obtain a tight bound for the complexity of Hom(H), for cores H,

whose largest factor is truly projective.

Corollary 4.10. Let H be a connected core with prime factorization H1 × . . . ×Hm and let Hi

be the factor with the largest number of the vertices. Assume that Hi is truly projective. Let n

and t be, respectively, the number of vertices and the treewidth of an instance graph G.

(a) If a tree decomposition of G of width t is given, the Hom(H) problem can be solved in time

∣Hi∣t ⋅ nd ⋅ c, for some constants c, d > 0.

(b) There is no algorithm to solve Hom(H) in time (∣Hi∣ − ε)t ⋅ nd ⋅ c for any ε > 0 and any

constants c, d > 0, unless the SETH fails.
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To summarize our results, recall that we know that a truly projective core must be projective

and a projective core must be indecomposable. So if we could prove that all connected, non-

trivial indecomposable cores are truly projective, we would obtain a tight complexity bound in

Theorem 4.6 and Corollary 4.10 for all graphs H. Let us discuss the possibility of obtaining such

a result.

As mentioned before, Larose in [22] considered the concept of strongly projective graphs. We

say that a graph H1 on at least three vertices is strongly projective, if for every connected graph

W on at least two vertices and every s ≥ 2, the only homomorphisms f ∶Hs
1 ×W →H1 satisfying

f(x, . . . , x, y) = x for all x ∈ V (H1) and y ∈ V (W ), are projections. If we compare this with the

de�nition of truly projective graphs, we see that for truly projective graphs H we restricted the

homomorphisms from Hs ×W to H only for connected cores W , that are incomparable with H.

So the following is clear.

Observation 5.1. Every strongly projective graph is truly projective.

In [22] Larose considers many examples of families of strongly projective graphs. Restricting

the results presented there to cores, we can provide some examples of non-projective cores, for

which the complexity bound in Theorem 3.2 is tight.

We say that graph is square-free if it does not contain a subgraph isomorphic to C4 (not

necessarily induced).

Theorem 5.2 (Larose, [22]). If H is a square-free, connected, rami�ed, non-bipartite graph, then

it is strongly projective.

Example 1. Consider the graph GB, shown of Figure 5.1, called the Brinkmann graph. Observe

that ∣GB ∣ = 21. It is connected, non-bipartite, and its girth is equal to 5, which means it is

square-free. Also, it is vertex-critical, so it must be a core. Thus by Theorem 5.2 we know that

GB is strongly projective. By exhaustive computer search we veri�ed that K3 ×GB is a core.

Let us consider the complexity of Hom(K3×GB) for input graphs with n vertices and treewidth

t, given along with its optimal tree decomposition. The dynamic programming approach from

Theorem 3.1 gives us the running time 63t ⋅c⋅nd, for some constants c, d > 0. But from Theorem 4.6

we can conclude that we can solve Hom(K3×GB) in time 21t ⋅nd ⋅c. Moreover, by Corollary 4.10,

assuming the SETH, there is no algorithm to solve Hom(K3 ×GB) in time (21 − ε)t ⋅ nd ⋅ c.
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Consider another family of strongly projective graphs. A graph is said to be primitive if there

is no non-trivial partition of its vertices which is invariant under all automorphisms of this graph

(see e.g., [31]).

Theorem 5.3 (Larose, [22]). If H is a directly indecomposable primitive core, then it is strongly

projective.

From this theorem we can conclude that, for example, Kneser graphs, which are known to be

projective cores (see [25],[15]) are strongly projective. However, Kneser graphs do not have to

be square-free, so it is not implied by Theorem 5.2. In particular, complete graphs are strongly

projective.

Figure 5.1: The Brinkmann graph GB (left), the Chvátal graph GC (right) and the graph GM

(down).

Larose in [22] and [23] studies also the properties of strongly projective graphs. In particular,

his results imply that this property is decidable (which, again, does not follow directly from the

de�nition). Also, he shows that all known families of projective graphs on at least three vertices

contain only strongly projective graphs and poses a question if every projective graph on at

least three vertices is in fact strongly projective. As we have shown in Observations 5.1 and 4.5,

respectively, every strongly projective graph is truly projective and every truly projective graph
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is projective, so a positive answer to Larose's question would imply that these three classes are

in fact equivalent. We recall this problem in a weaker form, which would be su�cient in our

setting.

Conjecture 2. Let H be a non-trivial core. Then it is truly projective if and only if it is

projective.

Clearly, if both Conjecture 1 and Conjecture 2 are true, there is another characterization of

indecomposable connected cores.

Observation 5.4. Assume that Conjecture 1 and Conjecture 2 hold. Let H be a connected

non-trivial core. Then H is indecomposable if and only if it is truly projective.

We can summarize the main results of chapter 4 in the following theorem.

Theorem 5.5. Assume that Conjectures 1 and 2 hold.

Let H be a �xed non-trivial connected core. Let H1 × . . . ×Hm be a prime decomposition of H.

Let k ∶= maxi∈[m] ∣Hi∣.

(a) Assuming a tree decomposition of G of width t is given, the Hom(H) problem can be solved

in time kt ⋅ nd ⋅ c, for instance graphs on n vertices, where c, d > 0 are constants.

(b) There is no algorithm solving Hom(H) in time (k− ε)t ⋅nd ⋅c for any ε > 0 and any constants

c, d > 0, unless the SETH fails.

To conclude this analysis, we point out that in the light of the problem we consider, it is

natural to ask when the product of graphs is a core. Observation 4.4 provides us some necessary

conditions, it would be interesting to know if they are su�cient for a product of indecomposable

graphs to be a core.

Conjecture 3. Let H1 and H2 be indecomposable, incomparable cores. Then H1 ×H2 is a core.

We con�rmed this conjecture by exhaustive computer search for some small graphs. In partic-

ular, the conjecture is true for graphsK3×H, where H is any 4-vertex-critical, triangle-free graph

with at most 14 vertices [5], including the Grötzsch graph (see Figure 2.1) and the Brinkmann

graph (see Figure 5.1 (left)). It is true also for the Chvátal graph (see Figure 5.1 (right)) and

the graph GM (see Figure 5.1 (down)), which are two of the 18 smallest graphs with chromatic

number 4 and girth 5. In particular, GB and GM are strongly projective by Theorem 5.2.
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