
Stream Processing with
Local Temporal Reasoning

INSTITUT FÜR INFORMATIONSSYSTEME

Özgür L. Özçep

Workshop Stream Reasoning, Vienna
November 9, 2015

Local Reasoning on Streams

Taming the Potential Infinity of Streams

Time
0.0 1.0 2.0 3.0 4.0 5.0 6.0 7.0

Sin

Sout

▶ Window operator as a means to cope with potential infinity
▶ Grab finite portion of stream and do something on it

3 / 26

Local Reasoning Service

Time
0.0 1.0 2.0 3.0 4.0 5.0 6.0 7.0

C/Rloc

▶ Local calculation/reasoning C/Rloc

▶ arithmetics, timeseries-analysis operations
▶ Entailment, satisfiability, query answering, abduction, revision,

...

4 / 26

High-Level Stream Processing

Time
0.0 1.0 2.0 3.0 4.0 5.0 6.0 7.0

C/Rloc

KB

▶ Local calculation/reasoning C/Rloc

▶ arithmetics, timeseries-analysis operations
▶ Entailment, satisfiability, query answering, abduction, revision,

...

▶ Background knowledge KB: static data, historical data, learned
data

5 / 26

OBDA within OPTIQUE

OPTIQUE
▶ EU 7th framework program

(http://www.optique-project.eu/)

▶ Two big data use cases from industrial partners
▶ STATOIL SAS: Querying data on wellbore related DBs
▶ SIEMENS: Querying sensor and event data from (gas) turbines

▶ Cycle of constructing query, issueing it, and getting answers is
bottleneck in both use cases

▶ Optique platform: OBDA with user support + optimizations
on different levels + Streaming

▶ Lübeck (R. Möller, C. Neuenstadt, Ö.Ö.) responsible for
stream-temporal OBDA module =⇒ STARQL

7 / 26

 http://www.optique-project.eu/

Ontology-Based Data Access

▶ Use ontologies as interface ...
▶ to access (here: query)
▶ data stored in some format ...
▶ using mappings

▶ Classical OBDA
▶ Relational data
▶ ABox is virtual
▶ Query answering by

rewriting/unfolding
(“Reasoning by rewriting”)

▶ Weak ontology language
(no qualified existentials on
left-hand of inclusions)

ABox%

mappings%

TBox%

Ontology%

Query%

8 / 26

End-user IT-expert

Data models
Std. ontologies

. . .

Visualisation
& Analysis

Query
Formulation

Ontology & Mapping
Management

Ontology Mappings

Query Transformation
Query Planning

Query Execution Query Execution Query Execution

· · · · · ·

re
su

lt
s

streaming data temporal data static data

VQS

BootOX

Approximation

Ontop

STARQL

Distributed DSMS EXAREME

Reasoning within STARQL

Window Semantics in STARQL

▶ Group elements according to specified criterion (including
timestamps) into mini-bags

▶ Technically: Result is a sequence of ABoxes/RDF graphs

11 / 26

Incorporating the Background Knowledge

12 / 26

Sequencing in STARQL
Information Need
Output every 1 minute those temperature sensors having value
above 90 over the last minute

Representation in STARQL

CREATE STREAM S_out AS

CONSTRUCT { ?sens rdf:type :tooHigh }<NOW>

FROM S_in [NOW , NOW - 1 minute]-> 1 minute,

ABOX, TBOX

WHERE { ?sens rdf:type TempSens }

SEQUENCE BY StdSeq AS seq

HAVING FORALL i IN seq FORALL ?x

IF { ?sens :hasVal ?x }<i> THEN ?x > 90

13 / 26

Why at all Bother with State Sequences?

▶ Building microcosm for LTL like temporal reasoning on states
▶ But note

▶ Temporal logic frameworks presuppose state sequences
▶ In contrast, sequence construction is part of STARQL query

▶ Use case may require different types of states
▶ cluster states using machine learning techniques
▶ states corresponding to consistent ABoxes

14 / 26

Types of Reasoning in STARQL

Representation in STARQL

CREATE STREAM S_out AS

CONSTRUCT { ?sens rdf:type :tooHigh }<NOW>

FROM S_in [NOW , NOW - 1 minute]-> 1 minute,

ABOX, TBOX

WHERE { ?sens rdf:type TempSens }

SEQUENCE BY StdSeq AS seq

HAVING FORALL i IN seq FORALL ?x

IF { ?sens :hasVal ?x }<i> THEN ?x > 90

15 / 26

Types of Reasoning in STARQL

Determining certain answers
▶ Has to incorporate TBox (e.g. BTTempSens ⊑ TempSens)
▶ Handled by rewriting

Representation in STARQL

CREATE STREAM S_out AS

CONSTRUCT { ?sens rdf:type :tooHigh }<NOW>

FROM S_in [NOW , NOW - 1 minute]-> 1 minute,

ABOX, TBOX

WHERE { ?sens rdf:type TempSens }

SEQUENCE BY StdSeq AS seq

HAVING FORALL i IN seq FORALL ?x

IF { ?sens :hasVal ?x }<i> THEN ?x > 90

16 / 26

Types of Reasoning in STARQL

Determining certain answers
▶ Has to incorporate TBox (e.g. BTTempSens ⊑ TempSens)
▶ Handled by rewriting

Representation in STARQL

CREATE STREAM S_out AS

CONSTRUCT { ?sens rdf:type :tooHigh }<NOW>

FROM S_in [NOW , NOW - 1 minute]-> 1 minute,

ABOX, TBOX

WHERE { ?sens rdf:type TempSens }

SEQUENCE BY StdSeq AS seq

HAVING FORALL i IN seq FORALL ?x

IF { ?sens :hasVal ?x }<i> THEN ?x > 90

17 / 26

Types of Reasoning in STARQL

Local temporal reasoning on states

Representation in STARQL

CREATE STREAM S_out AS

CONSTRUCT { ?sens rdf:type :tooHigh }<NOW>

FROM S_in [NOW , NOW - 1 minute]-> 1 minute,

ABOX, TBOX

WHERE { ?sens rdf:type TempSens }

SEQUENCE BY StdSeq AS seq

HAVING FORALL i IN seq FORALL ?x

IF { ?sens :hasVal ?x }<i> THEN ?x > 90

18 / 26

Types of Reasoning in STARQL

Reasoning involved in constructing the state sequence
(in particular for checking consistency of mini ABoxes)

Representation in STARQL

CREATE STREAM S_out AS

CONSTRUCT { ?sens rdf:type :tooHigh }<NOW>

FROM S_in [NOW , NOW - 1 minute]-> 1 minute,

ABOX, TBOX

WHERE { ?sens rdf:type TempSens }

SEQUENCE BY StdSeq AS seq

HAVING FORALL i IN seq FORALL ?x

IF { ?sens :hasVal ?x }<i> THEN ?x > 90

19 / 26

Theoretical Results

▶ State elimination
▶ State abstraction means additional layer in OBDA stack
▶ Nonetheless, it can be eliminated

(Ö., Möller, Neuenstadt 2014, 2015)

▶ Relation to LTL approaches
▶ Backend systems mostly have domain independent languages
▶ LTL like query languages not domain independent
▶ TCQs: CQs combined with LTL (Borgwardt et al. 13)
▶ A fragment of STARQL embeds a safe fragment of TCQs

(Ö., Möller, Neuenstadt 2015)

20 / 26

Theoretical Results

▶ State elimination
▶ State abstraction means additional layer in OBDA stack
▶ Nonetheless, it can be eliminated

(Ö., Möller, Neuenstadt 2014, 2015)

▶ Relation to LTL approaches
▶ Backend systems mostly have domain independent languages
▶ LTL like query languages not domain independent
▶ TCQs: CQs combined with LTL (Borgwardt et al. 13)
▶ A fragment of STARQL embeds a safe fragment of TCQs

(Ö., Möller, Neuenstadt 2015)

21 / 26

Practical Results

▶ Implemented STARQL sub-module with optimizations
▶ Transformation realized to backend EXAREME
▶ Optimizations for distributed stream processing in EXAREME

▶ Multiple Query/multiple stream handling
▶ Monitor different components (turbines, sensors)
▶ Monitor different hand-crafted well-proven patterns

▶ Specific statistical and time-series operators
▶ Pearson-correlation (e.g. for detecting out faulty sensors)
▶ Calls for specific optimizations (local-sensitive hashing)

22 / 26

Future Work

Stream Reasoning for NLP

▶ Intention: Use stream semantics and techniques for natural
language processing (NLP)

▶ One of the (very few) application scenarios where
stream-processing historical data makes sense

▶ You could read a text in “parallel” but here, “order really
matters”:

▶ Meaning of sentence depends on meanings of preceding
sentences

▶ Discoure representation theory (DRT): Capture super-sentence
meaning by discourse structures

▶ Calls for state-based stream processing with a scopus storing
discourse structures

24 / 26

Challenges
▶ Need for state-based stream processing with a scopus storing

discourse structures
▶ Discourse structure dynamically updated
▶ In general may grow arbitrarily

▶ Need for abduction style reasoning (Sherlock Holmes style
reasoning)

▶ From observations to possible explanations
▶ Have to constrain search space, anytime abduction

▶ Different orders to incorporate
▶ sentence (arrival) ordering (so)
▶ causal ordering (co)
▶ temporal ordering(s) (to)

Example
▶ Bob cried. Alice consoled him. (so corresponds to to)
▶ Bob cried. Alice insulted him. (so corresponds to co)

25 / 26

Thank you for your attention!

26 / 26

	Local Reasoning on Streams
	OBDA within OPTIQUE
	Reasoning within STARQL
	Future Work

