
Stream Processing with
Local Temporal Reasoning

INSTITUT FÜR INFORMATIONSSYSTEME

Özgür L. Özçep

Workshop Stream Reasoning, Vienna
November 9, 2015



Local Reasoning on Streams



Taming the Potential Infinity of Streams

Time
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Sin

Sout

▶ Window operator as a means to cope with potential infinity
▶ Grab finite portion of stream and do something on it
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Local Reasoning Service

Time
0.0 1.0 2.0 3.0 4.0 5.0 6.0 7.0

C/Rloc

▶ Local calculation/reasoning C/Rloc

▶ arithmetics, timeseries-analysis operations
▶ Entailment, satisfiability, query answering, abduction, revision,

...
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High-Level Stream Processing

Time
0.0 1.0 2.0 3.0 4.0 5.0 6.0 7.0

C/Rloc

KB

▶ Local calculation/reasoning C/Rloc

▶ arithmetics, timeseries-analysis operations
▶ Entailment, satisfiability, query answering, abduction, revision,

...

▶ Background knowledge KB: static data, historical data, learned
data
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OBDA within OPTIQUE



OPTIQUE
▶ EU 7th framework program

(http://www.optique-project.eu/)

▶ Two big data use cases from industrial partners
▶ STATOIL SAS: Querying data on wellbore related DBs
▶ SIEMENS: Querying sensor and event data from (gas) turbines

▶ Cycle of constructing query, issueing it, and getting answers is
bottleneck in both use cases

▶ Optique platform: OBDA with user support + optimizations
on different levels + Streaming

▶ Lübeck (R. Möller, C. Neuenstadt, Ö.Ö.) responsible for
stream-temporal OBDA module =⇒ STARQL
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Ontology-Based Data Access

▶ Use ontologies as interface ...
▶ to access (here: query)
▶ data stored in some format ...
▶ using mappings

▶ Classical OBDA
▶ Relational data
▶ ABox is virtual
▶ Query answering by

rewriting/unfolding
(“Reasoning by rewriting”)

▶ Weak ontology language
(no qualified existentials on
left-hand of inclusions)

ABox%

mappings%

TBox%

Ontology%

Query%
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Reasoning within STARQL



Window Semantics in STARQL

▶ Group elements according to specified criterion (including
timestamps) into mini-bags

▶ Technically: Result is a sequence of ABoxes/RDF graphs
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Incorporating the Background Knowledge
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Sequencing in STARQL
Information Need
Output every 1 minute those temperature sensors having value
above 90 over the last minute

Representation in STARQL

CREATE STREAM S_out AS

CONSTRUCT { ?sens rdf:type :tooHigh }<NOW>

FROM S_in [ NOW , NOW - 1 minute ]-> 1 minute,

ABOX, TBOX

WHERE { ?sens rdf:type TempSens }

SEQUENCE BY StdSeq AS seq

HAVING FORALL i IN seq FORALL ?x

IF { ?sens :hasVal ?x }<i> THEN ?x > 90
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Why at all Bother with State Sequences?

▶ Building microcosm for LTL like temporal reasoning on states
▶ But note

▶ Temporal logic frameworks presuppose state sequences
▶ In contrast, sequence construction is part of STARQL query

▶ Use case may require different types of states
▶ cluster states using machine learning techniques
▶ states corresponding to consistent ABoxes
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Types of Reasoning in STARQL

Representation in STARQL

CREATE STREAM S_out AS

CONSTRUCT { ?sens rdf:type :tooHigh }<NOW>

FROM S_in [ NOW , NOW - 1 minute ]-> 1 minute,

ABOX, TBOX

WHERE { ?sens rdf:type TempSens }

SEQUENCE BY StdSeq AS seq

HAVING FORALL i IN seq FORALL ?x

IF { ?sens :hasVal ?x }<i> THEN ?x > 90
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Types of Reasoning in STARQL

Determining certain answers
▶ Has to incorporate TBox (e.g. BTTempSens ⊑ TempSens)
▶ Handled by rewriting

Representation in STARQL

CREATE STREAM S_out AS

CONSTRUCT { ?sens rdf:type :tooHigh }<NOW>

FROM S_in [ NOW , NOW - 1 minute ]-> 1 minute,

ABOX, TBOX

WHERE { ?sens rdf:type TempSens }

SEQUENCE BY StdSeq AS seq

HAVING FORALL i IN seq FORALL ?x

IF { ?sens :hasVal ?x }<i> THEN ?x > 90
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Types of Reasoning in STARQL

Local temporal reasoning on states

Representation in STARQL

CREATE STREAM S_out AS

CONSTRUCT { ?sens rdf:type :tooHigh }<NOW>

FROM S_in [ NOW , NOW - 1 minute ]-> 1 minute,

ABOX, TBOX

WHERE { ?sens rdf:type TempSens }

SEQUENCE BY StdSeq AS seq

HAVING FORALL i IN seq FORALL ?x

IF { ?sens :hasVal ?x }<i> THEN ?x > 90
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Types of Reasoning in STARQL

Reasoning involved in constructing the state sequence
(in particular for checking consistency of mini ABoxes)

Representation in STARQL

CREATE STREAM S_out AS

CONSTRUCT { ?sens rdf:type :tooHigh }<NOW>

FROM S_in [ NOW , NOW - 1 minute ]-> 1 minute,

ABOX, TBOX

WHERE { ?sens rdf:type TempSens }

SEQUENCE BY StdSeq AS seq

HAVING FORALL i IN seq FORALL ?x

IF { ?sens :hasVal ?x }<i> THEN ?x > 90
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Theoretical Results

▶ State elimination
▶ State abstraction means additional layer in OBDA stack
▶ Nonetheless, it can be eliminated

(Ö., Möller, Neuenstadt 2014, 2015)

▶ Relation to LTL approaches
▶ Backend systems mostly have domain independent languages
▶ LTL like query languages not domain independent
▶ TCQs: CQs combined with LTL (Borgwardt et al. 13)
▶ A fragment of STARQL embeds a safe fragment of TCQs

(Ö., Möller, Neuenstadt 2015)
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Practical Results

▶ Implemented STARQL sub-module with optimizations
▶ Transformation realized to backend EXAREME
▶ Optimizations for distributed stream processing in EXAREME

▶ Multiple Query/multiple stream handling
▶ Monitor different components (turbines, sensors)
▶ Monitor different hand-crafted well-proven patterns

▶ Specific statistical and time-series operators
▶ Pearson-correlation (e.g. for detecting out faulty sensors)
▶ Calls for specific optimizations (local-sensitive hashing)
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Future Work



Stream Reasoning for NLP

▶ Intention: Use stream semantics and techniques for natural
language processing (NLP)

▶ One of the (very few) application scenarios where
stream-processing historical data makes sense

▶ You could read a text in “parallel” but here, “order really
matters”:

▶ Meaning of sentence depends on meanings of preceding
sentences

▶ Discoure representation theory (DRT): Capture super-sentence
meaning by discourse structures

▶ Calls for state-based stream processing with a scopus storing
discourse structures
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Challenges
▶ Need for state-based stream processing with a scopus storing

discourse structures
▶ Discourse structure dynamically updated
▶ In general may grow arbitrarily

▶ Need for abduction style reasoning (Sherlock Holmes style
reasoning)

▶ From observations to possible explanations
▶ Have to constrain search space, anytime abduction

▶ Different orders to incorporate
▶ sentence (arrival) ordering (so)
▶ causal ordering (co)
▶ temporal ordering(s) (to)

Example
▶ Bob cried. Alice consoled him. (so corresponds to to)
▶ Bob cried. Alice insulted him. (so corresponds to co)
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Thank you for your attention!
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