
Stream Reasoning-Related Activities
at KRR Uni Potsdam

Martin Gebser Philipp Obermeier Orkunt Sabuncu
Roland Kaminski Torsten Schaub

Overview

1 Sliding Window-Based Approach with ASP

2 Multi-shot ASP Solving

3 ROSoClingo

4 Conclusion

KRR@UP Stream Reasoning-Related Activities at KRR Uni Potsdam 2 / 18

Sliding Window-Based Approach with ASP

Outline

1 Sliding Window-Based Approach with ASP

2 Multi-shot ASP Solving

3 ROSoClingo

4 Conclusion

KRR@UP Stream Reasoning-Related Activities at KRR Uni Potsdam 3 / 18

Sliding Window-Based Approach with ASP Sliding Windows

Approach Overview

Two Main Aspects

Extension of (Reactive) ASP to allow for sliding-window-based
reasoning: built-in support of data expiration

Encoding technique to re-use learned conflict constraints by

1 statically encode a task wrt. any window contents and
2 dynamically map stream data to static encoding

References

M. Gebser, T. Grote, R. Kaminski, P. Obermeier, O. Sabuncu, T. Schaub.
Stream reasoning with answer set programming: Preliminary report.
KR’12, 2012.

M. Gebser, T. Grote, R. Kaminski, P. Obermeier, O. Sabuncu, T. Schaub.
Answer set programming for stream reasoning.
ASPOCP’12, 2012.

KRR@UP Stream Reasoning-Related Activities at KRR Uni Potsdam 4 / 18

Sliding Window-Based Approach with ASP Sliding Windows

Running Example

Consider the task of continuously matching stream prefixes against regular
expression (a∣b)∗aa.

Example Stream

aabaaab . . . 8

Observation: Only the two last readings are significant.

å Restrict attention to sliding window of length 2!

KRR@UP Stream Reasoning-Related Activities at KRR Uni Potsdam 5 / 18

Sliding Window-Based Approach with ASP Sliding Windows

Running Example

Consider the task of continuously matching stream prefixes against regular
expression (a∣b)∗aa.

Example Stream

aabaaab . . . 8

Observation: Only the two last readings are significant.

å Restrict attention to sliding window of length 2!

KRR@UP Stream Reasoning-Related Activities at KRR Uni Potsdam 5 / 18

Sliding Window-Based Approach with ASP Sliding Windows

Running Example

Consider the task of continuously matching stream prefixes against regular
expression (a∣b)∗aa.

Example Stream

aabaaab . . . 4

Observation: Only the two last readings are significant.

å Restrict attention to sliding window of length 2!

KRR@UP Stream Reasoning-Related Activities at KRR Uni Potsdam 5 / 18

Sliding Window-Based Approach with ASP Sliding Windows

Running Example

Consider the task of continuously matching stream prefixes against regular
expression (a∣b)∗aa.

Example Stream

aabaaab . . . 8

Observation: Only the two last readings are significant.

å Restrict attention to sliding window of length 2!

KRR@UP Stream Reasoning-Related Activities at KRR Uni Potsdam 5 / 18

Sliding Window-Based Approach with ASP Sliding Windows

Running Example

Consider the task of continuously matching stream prefixes against regular
expression (a∣b)∗aa.

Example Stream

aabaaab . . . 8

Observation: Only the two last readings are significant.

å Restrict attention to sliding window of length 2!

KRR@UP Stream Reasoning-Related Activities at KRR Uni Potsdam 5 / 18

Sliding Window-Based Approach with ASP Sliding Windows

Running Example

Consider the task of continuously matching stream prefixes against regular
expression (a∣b)∗aa.

Example Stream

aabaaab . . . 4

Observation: Only the two last readings are significant.

å Restrict attention to sliding window of length 2!

KRR@UP Stream Reasoning-Related Activities at KRR Uni Potsdam 5 / 18

Sliding Window-Based Approach with ASP Sliding Windows

Running Example

Consider the task of continuously matching stream prefixes against regular
expression (a∣b)∗aa.

Example Stream

aabaaab . . . 4

Observation: Only the two last readings are significant.

å Restrict attention to sliding window of length 2!

KRR@UP Stream Reasoning-Related Activities at KRR Uni Potsdam 5 / 18

Sliding Window-Based Approach with ASP Sliding Windows

Running Example

Consider the task of continuously matching stream prefixes against regular
expression (a∣b)∗aa.

Example Stream

aabaaab . . . 8

Observation: Only the two last readings are significant.

å Restrict attention to sliding window of length 2!

KRR@UP Stream Reasoning-Related Activities at KRR Uni Potsdam 5 / 18

Sliding Window-Based Approach with ASP Sliding Windows

Running Example

Consider the task of continuously matching stream prefixes against regular
expression (a∣b)∗aa.

Example Stream

aabaaab . . . 8

Observation: Only the two last readings are significant.

å Restrict attention to sliding window of length 2!

KRR@UP Stream Reasoning-Related Activities at KRR Uni Potsdam 5 / 18

Sliding Window-Based Approach with ASP Sliding Windows

Sliding the Window

Stream Data (Expiration after 2 Steps)

read(a,1). read(a,2). read(b,3). ...

Reactive ASP Encoding

#program cumulative t.

#external read((a;b),t). % set False after 2 steps
accept(t) :- read(a,(t;t-1)).

Incremental Instantiation: t = 1

accept(1) :- read(a,1), read(a,0).

read(a,1).

4 Obsolete stream data is erased after expiration!

KRR@UP Stream Reasoning-Related Activities at KRR Uni Potsdam 6 / 18

Sliding Window-Based Approach with ASP Sliding Windows

Sliding the Window

Stream Data (Expiration after 2 Steps)

read(a,1). read(a,2). read(b,3). ...

Reactive ASP Encoding

#program cumulative t.

#external read((a;b),t). % set False after 2 steps
accept(t) :- read(a,(t;t-1)).

Incremental Instantiation: t = 1

accept(1) :- read(a,1), read(a,0).

read(a,1).

4 Obsolete stream data is erased after expiration!

KRR@UP Stream Reasoning-Related Activities at KRR Uni Potsdam 6 / 18

Sliding Window-Based Approach with ASP Sliding Windows

Sliding the Window

Stream Data (Expiration after 2 Steps)

read(a,1). read(a,2). read(b,3). ...

Reactive ASP Encoding

#program cumulative t.

#external read((a;b),t). % set False after 2 steps
accept(t) :- read(a,(t;t-1)).

Incremental Instantiation: t = 1

accept(1) :- read(a,1), read(a,0).

read(a,1).

4 Obsolete stream data is erased after expiration!

KRR@UP Stream Reasoning-Related Activities at KRR Uni Potsdam 6 / 18

Sliding Window-Based Approach with ASP Sliding Windows

Sliding the Window

Stream Data (Expiration after 2 Steps)

read(a,1). read(a,2). read(b,3). ...

Reactive ASP Encoding

#program cumulative t.

#external read((a;b),t). % set False after 2 steps
accept(t) :- read(a,(t;t-1)).

Incremental Instantiation: t = 2

accept(2) :- read(a,2), read(a,1).

read(a,2). read(a,1).

4 Obsolete stream data is erased after expiration!

KRR@UP Stream Reasoning-Related Activities at KRR Uni Potsdam 6 / 18

Sliding Window-Based Approach with ASP Sliding Windows

Sliding the Window

Stream Data (Expiration after 2 Steps)

read(a,1). read(a,2). read(b,3). ...

Reactive ASP Encoding

#program cumulative t.

#external read((a;b),t). % set False after 2 steps
accept(t) :- read(a,(t;t-1)).

Incremental Instantiation: t = 3

accept(3) :- read(a,3), read(a,2).

read(b,3). read(a,2).

4 Obsolete stream data is erased after expiration!

KRR@UP Stream Reasoning-Related Activities at KRR Uni Potsdam 6 / 18

Sliding Window-Based Approach with ASP Sliding Windows

Sliding the Window

Stream Data (Expiration after 2 Steps)

read(a,1). read(a,2). read(b,3). ...

Reactive ASP Encoding

#program cumulative t.

#external read((a;b),t). % set False after 2 steps
accept(t) :- read(a,(t;t-1)).

Incremental Instantiation: t = . . .

accept(t) :- read(a,t), read(a,t-1).

read(_,t). read(_,t-1).

4 Obsolete stream data is erased after expiration!

KRR@UP Stream Reasoning-Related Activities at KRR Uni Potsdam 6 / 18

Sliding Window-Based Approach with ASP Advanced Modeling

Recapitulation

We have seen how an reactive ASP encoding can be expanded relative to
sliding window data by successively

1 generating new (ground) rules

2 defining new (ground) atoms.

8 New propositions handicap the re-use of conflict constraints.

In what follows, we develop modeling approaches to combine online data
with a static problem representation.

Idea: Encode problem wrt. any window contents and dynamically
map stream data (in window) to internal representation!

KRR@UP Stream Reasoning-Related Activities at KRR Uni Potsdam 7 / 18

Sliding Window-Based Approach with ASP Advanced Modeling

Recapitulation

We have seen how an reactive ASP encoding can be expanded relative to
sliding window data by successively

1 generating new (ground) rules

2 defining new (ground) atoms.

8 New propositions handicap the re-use of conflict constraints.

In what follows, we develop modeling approaches to combine online data
with a static problem representation.

Idea: Encode problem wrt. any window contents and dynamically
map stream data (in window) to internal representation!

KRR@UP Stream Reasoning-Related Activities at KRR Uni Potsdam 7 / 18

Sliding Window-Based Approach with ASP Advanced Modeling

Modified Running Example

Consider the task of checking whether the last five readings (over alphabet
{a,b}) from a stream include aaa as a subsequence.

Example Stream

aabaaab . . . 8
↧↧↧↧↧↧↧ ↧

1234567 . . .

Observation: Readings remain in window for five steps.

å Map stream positions to slots represented by remainders of 5?

8 Circular subsequences may lead to false positives.

Idea: Introduce a free slot to disconnect present from past data!

4 Static problem representation captures windows of width 5.

KRR@UP Stream Reasoning-Related Activities at KRR Uni Potsdam 8 / 18

Sliding Window-Based Approach with ASP Advanced Modeling

Modified Running Example

Consider the task of checking whether the last five readings (over alphabet
{a,b}) from a stream include aaa as a subsequence.

Example Stream

aabaaab . . . 8
↧↧↧↧↧↧↧ ↧

1234567 . . .

Observation: Readings remain in window for five steps.

å Map stream positions to slots represented by remainders of 5?

8 Circular subsequences may lead to false positives.

Idea: Introduce a free slot to disconnect present from past data!

4 Static problem representation captures windows of width 5.

KRR@UP Stream Reasoning-Related Activities at KRR Uni Potsdam 8 / 18

Sliding Window-Based Approach with ASP Advanced Modeling

Modified Running Example

Consider the task of checking whether the last five readings (over alphabet
{a,b}) from a stream include aaa as a subsequence.

Example Stream

aabaaab . . . 8
↧↧↧↧↧↧↧ ↧

1234567 . . .

Observation: Readings remain in window for five steps.

å Map stream positions to slots represented by remainders of 5?

8 Circular subsequences may lead to false positives.

Idea: Introduce a free slot to disconnect present from past data!

4 Static problem representation captures windows of width 5.

KRR@UP Stream Reasoning-Related Activities at KRR Uni Potsdam 8 / 18

Sliding Window-Based Approach with ASP Advanced Modeling

Modified Running Example

Consider the task of checking whether the last five readings (over alphabet
{a,b}) from a stream include aaa as a subsequence.

Example Stream

aabaaab . . . 8
↧↧↧↧↧↧↧ ↧

1234567 . . .

Observation: Readings remain in window for five steps.

å Map stream positions to slots represented by remainders of 5?

8 Circular subsequences may lead to false positives.

Idea: Introduce a free slot to disconnect present from past data!

4 Static problem representation captures windows of width 5.

KRR@UP Stream Reasoning-Related Activities at KRR Uni Potsdam 8 / 18

Sliding Window-Based Approach with ASP Advanced Modeling

Modified Running Example

Consider the task of checking whether the last five readings (over alphabet
{a,b}) from a stream include aaa as a subsequence.

Example Stream

aabaaab . . . 8
↧↧↧↧↧↧↧ ↧

1234567 . . .

Observation: Readings remain in window for five steps.

å Map stream positions to slots represented by remainders of 5?

8 Circular subsequences may lead to false positives.

Idea: Introduce a free slot to disconnect present from past data!

4 Static problem representation captures windows of width 5.

KRR@UP Stream Reasoning-Related Activities at KRR Uni Potsdam 8 / 18

Sliding Window-Based Approach with ASP Advanced Modeling

Modified Running Example

Consider the task of checking whether the last five readings (over alphabet
{a,b}) from a stream include aaa as a subsequence.

Example Stream

aabaaab . . . 8
↧↧↧↧↧↧↧ ↧

1234567 . . .

Observation: Readings remain in window for five steps.

å Map stream positions to slots represented by remainders of 5?

8 Circular subsequences may lead to false positives.

Idea: Introduce a free slot to disconnect present from past data!

4 Static problem representation captures windows of width 5.

KRR@UP Stream Reasoning-Related Activities at KRR Uni Potsdam 8 / 18

Sliding Window-Based Approach with ASP Advanced Modeling

Modified Running Example

Consider the task of checking whether the last five readings (over alphabet
{a,b}) from a stream include aaa as a subsequence.

Example Stream

aabaaab . . . 4
↧↧↧↧↧↧↧ ↧

1234567 . . .

Observation: Readings remain in window for five steps.

å Map stream positions to slots represented by remainders of 5?

8 Circular subsequences may lead to false positives.

Idea: Introduce a free slot to disconnect present from past data!

4 Static problem representation captures windows of width 5.

KRR@UP Stream Reasoning-Related Activities at KRR Uni Potsdam 8 / 18

Sliding Window-Based Approach with ASP Advanced Modeling

Modified Running Example

Consider the task of checking whether the last five readings (over alphabet
{a,b}) from a stream include aaa as a subsequence.

Example Stream

aabaaab . . . 4
↧↧↧↧↧↧↧ ↧

1234567 . . .

Observation: Readings remain in window for five steps.

å Map stream positions to slots represented by remainders of 5?

8 Circular subsequences may lead to false positives.

Idea: Introduce a free slot to disconnect present from past data!

4 Static problem representation captures windows of width 5.

KRR@UP Stream Reasoning-Related Activities at KRR Uni Potsdam 8 / 18

Sliding Window-Based Approach with ASP Advanced Modeling

Modified Running Example

Consider the task of checking whether the last five readings (over alphabet
{a,b}) from a stream include aaa as a subsequence.

Example Stream

aabaaab . . . 8
↧↧↧↧↧↧↧ ↧

1234567 . . .

Observation: Readings remain in window for five steps.

å Map stream positions to slots represented by remainders of 5?

8 Circular subsequences may lead to false positives.

Idea: Introduce a free slot to disconnect present from past data!

4 Static problem representation captures windows of width 5.

KRR@UP Stream Reasoning-Related Activities at KRR Uni Potsdam 8 / 18

Sliding Window-Based Approach with ASP Advanced Modeling

Modified Running Example

Consider the task of checking whether the last five readings (over alphabet
{a,b}) from a stream include aaa as a subsequence.

Example Stream

aabaaab . . . 8
↧↧↧↧↧↧↧ ↧

1234012 . . .

Observation: Readings remain in window for five steps.

å Map stream positions to slots represented by remainders of 5?

8 Circular subsequences may lead to false positives.

Idea: Introduce a free slot to disconnect present from past data!

4 Static problem representation captures windows of width 5.

KRR@UP Stream Reasoning-Related Activities at KRR Uni Potsdam 8 / 18

Sliding Window-Based Approach with ASP Advanced Modeling

Modified Running Example

Consider the task of checking whether the last five readings (over alphabet
{a,b}) from a stream include aaa as a subsequence.

Example Stream

aabaaab . . . 8
↧↧↧↧↧↧↧ ↧

1234012 . . .

Observation: Readings remain in window for five steps.

å Map stream positions to slots represented by remainders of 5?

8 Circular subsequences may lead to false positives.

Idea: Introduce a free slot to disconnect present from past data!

4 Static problem representation captures windows of width 5.

KRR@UP Stream Reasoning-Related Activities at KRR Uni Potsdam 8 / 18

Sliding Window-Based Approach with ASP Advanced Modeling

Modified Running Example

Consider the task of checking whether the last five readings (over alphabet
{a,b}) from a stream include aaa as a subsequence.

Example Stream

aabaaab . . . 8
↧↧↧↧↧↧↧ ↧

1234501 . . .

Observation: Readings remain in window for five steps.

å Map stream positions to slots represented by remainders of 5?

8 Circular subsequences may lead to false positives.

Idea: Introduce a free slot to disconnect present from past data!

4 Static problem representation captures windows of width 5.

KRR@UP Stream Reasoning-Related Activities at KRR Uni Potsdam 8 / 18

Sliding Window-Based Approach with ASP Advanced Modeling

Modified Running Example

Consider the task of checking whether the last five readings (over alphabet
{a,b}) from a stream include aaa as a subsequence.

Example Stream

aabaaab . . . 8
↧↧↧↧↧↧↧ ↧

1234501 . . .

Observation: Readings remain in window for five steps.

å Map stream positions to slots represented by remainders of 5?

8 Circular subsequences may lead to false positives.

Idea: Introduce a free slot to disconnect present from past data!

4 Static problem representation captures windows of width 5.

KRR@UP Stream Reasoning-Related Activities at KRR Uni Potsdam 8 / 18

Sliding Window-Based Approach with ASP Advanced Modeling

Static “Free Slot” Approach

Reactive ASP Encoding

next(T,(T+1) \ 6) :- T = 0..5.

{ b_read(a,T) } :- next(T,_).

single(T) :- b_read(a,T).

double(T) :- b_read(a,T), single(S), next(S,T).

accept :- b_read(a,T), double(S), next(S,T).

Static program part is instantiated once (initially).

Successive slots are determined via modulo-6 arithmetic.

Internal representation of readings is generated by choice rules.

Subsequences aaa are traced wrt. internal representation.

å Dynamic parts must map readings to internal representation!

KRR@UP Stream Reasoning-Related Activities at KRR Uni Potsdam 9 / 18

Sliding Window-Based Approach with ASP Advanced Modeling

Static “Free Slot” Approach

Reactive ASP Encoding

next(T,(T+1) \ 6) :- T = 0..5.

{ b_read(a,T) } :- next(T,_).

single(T) :- b_read(a,T).

double(T) :- b_read(a,T), single(S), next(S,T).

accept :- b_read(a,T), double(S), next(S,T).

Static program part is instantiated once (initially).

Successive slots are determined via modulo-6 arithmetic.

Internal representation of readings is generated by choice rules.

Subsequences aaa are traced wrt. internal representation.

å Dynamic parts must map readings to internal representation!

KRR@UP Stream Reasoning-Related Activities at KRR Uni Potsdam 9 / 18

Sliding Window-Based Approach with ASP Advanced Modeling

Static “Free Slot” Approach

Reactive ASP Encoding

next(T,(T+1) \ 6) :- T = 0..5.

{ b_read(a,T) } :- next(T,_).

single(T) :- b_read(a,T).

double(T) :- b_read(a,T), single(S), next(S,T).

accept :- b_read(a,T), double(S), next(S,T).

Ground Instantiation

next(0,1). next(3,4).

next(1,2). next(4,5).

next(2,3). next(5,0).

KRR@UP Stream Reasoning-Related Activities at KRR Uni Potsdam 9 / 18

Sliding Window-Based Approach with ASP Advanced Modeling

Static “Free Slot” Approach

Reactive ASP Encoding

next(T,(T+1) \ 6) :- T = 0..5.

{ b_read(a,T) } :- next(T,_).

single(T) :- b_read(a,T).

double(T) :- b_read(a,T), single(S), next(S,T).

accept :- b_read(a,T), double(S), next(S,T).

Static program part is instantiated once (initially).

Successive slots are determined via modulo-6 arithmetic.

Internal representation of readings is generated by choice rules.

Subsequences aaa are traced wrt. internal representation.

å Dynamic parts must map readings to internal representation!

KRR@UP Stream Reasoning-Related Activities at KRR Uni Potsdam 9 / 18

Sliding Window-Based Approach with ASP Advanced Modeling

Static “Free Slot” Approach

Reactive ASP Encoding

next(T,(T+1) \ 6) :- T = 0..5.

{ b_read(a,T) } :- next(T,_).

single(T) :- b_read(a,T).

double(T) :- b_read(a,T), single(S), next(S,T).

accept :- b_read(a,T), double(S), next(S,T).

Static program part is instantiated once (initially).

Successive slots are determined via modulo-6 arithmetic.

Internal representation of readings is generated by choice rules.

Subsequences aaa are traced wrt. internal representation.

å Dynamic parts must map readings to internal representation!

KRR@UP Stream Reasoning-Related Activities at KRR Uni Potsdam 9 / 18

Sliding Window-Based Approach with ASP Advanced Modeling

Static “Free Slot” Approach

Reactive ASP Encoding

next(T,(T+1) \ 6) :- T = 0..5.

{ b_read(a,T) } :- next(T,_).

single(T) :- b_read(a,T).

double(T) :- b_read(a,T), single(S), next(S,T).

accept :- b_read(a,T), double(S), next(S,T).

Static program part is instantiated once (initially).

Successive slots are determined via modulo-6 arithmetic.

Internal representation of readings is generated by choice rules.

Subsequences aaa are traced wrt. internal representation.

å Dynamic parts must map readings to internal representation!

KRR@UP Stream Reasoning-Related Activities at KRR Uni Potsdam 9 / 18

Sliding Window-Based Approach with ASP Advanced Modeling

Online Data vs. Internal Representation

Stream Data (Expiration after 5 steps)

read(a,1). read(a,2). read(b,3). ...

read ⇒ b_read

#program cumulative(t).

#external read((a;b),t). % set False after 5 steps
:- read(a,t), not b_read(a,t \ 6).

b_read ⇒ read

#program volatile(t).

#external volatile(t). % set True for steps t to t+5
:- b_read(a,t \ 6), not read(a,t), volatile(t).

å Constraints expire when window progresses (by six steps)

KRR@UP Stream Reasoning-Related Activities at KRR Uni Potsdam 10 / 18

Sliding Window-Based Approach with ASP Advanced Modeling

Online Data vs. Internal Representation

Stream Data (Expiration after 5 steps)

read(a,1). read(a,2). read(b,3). ...

read ⇒ b_read

#program cumulative(t).

#external read((a;b),t). % set False after 5 steps
:- read(a,t), not b_read(a,t \ 6).

b_read ⇒ read

#program volatile(t).

#external volatile(t). % set True for steps t to t+5
:- b_read(a,t \ 6), not read(a,t), volatile(t).

å Constraints expire when window progresses (by six steps)

KRR@UP Stream Reasoning-Related Activities at KRR Uni Potsdam 10 / 18

Sliding Window-Based Approach with ASP Advanced Modeling

Online Data vs. Internal Representation

Stream Data (Expiration after 5 steps)

read(a,1). read(a,2). read(b,3). ...

read ⇒ b_read

#program cumulative(t).

#external read((a;b),t). % set False after 5 steps
:- read(a,t), not b_read(a,t \ 6).

b_read ⇒ read

#program volatile(t).

#external volatile(t). % set True for steps t to t+5
:- b_read(a,t \ 6), not read(a,t), volatile(t).

å Constraints expire when window progresses (by six steps)

KRR@UP Stream Reasoning-Related Activities at KRR Uni Potsdam 10 / 18

Sliding Window-Based Approach with ASP Advanced Modeling

Online Data vs. Internal Representation

Stream Data (Expiration after 5 steps)

read(a,1). read(a,2). read(b,3). ...

read ⇒ b_read

#program cumulative(t).

#external read((a;b),t). % set False after 5 steps
:- read(a,t), not b_read(a,t \ 6).

b_read ⇒ read

#program volatile(t).

#external volatile(t). % set True for steps t to t+5
:- b_read(a,t \ 6), not read(a,t), volatile(t).

å Constraints expire when window progresses (by six steps)

KRR@UP Stream Reasoning-Related Activities at KRR Uni Potsdam 10 / 18

Sliding Window-Based Approach with ASP Advanced Modeling

Online Data vs. Internal Representation

Stream Data (Expiration after 5 steps)

read(a,1). read(a,2). read(b,3). ...

read ⇒ b_read

#program cumulative(t).

#external read((a;b),t). % set False after 5 steps
:- read(a,t), not b_read(a,t \ 6).

b_read ⇒ read

#program volatile(t).

#external volatile(t). % set True for steps t to t+5
:- b_read(a,t \ 6), not read(a,t), volatile(t).

Observation: Dynamic parts confined to data and its mapping.
KRR@UP Stream Reasoning-Related Activities at KRR Uni Potsdam 10 / 18

Multi-shot ASP Solving

Outline

1 Sliding Window-Based Approach with ASP

2 Multi-shot ASP Solving

3 ROSoClingo

4 Conclusion

KRR@UP Stream Reasoning-Related Activities at KRR Uni Potsdam 11 / 18

Multi-shot ASP Solving Motivation

Motivation

Claim ASP is an under-the-hood technology

That is, in practice, it mainly serves as a solving engine
within an encompassing software environment

Single-shot solving: ground ∣ solve

Multi-shot solving: ground ∣ solve

å continuously changing logic programs

Application areas

Agents, Assisted Living, Robotics, Planning, Query-answering, etc

Implementation clingo 4

KRR@UP Stream Reasoning-Related Activities at KRR Uni Potsdam 12 / 18

Multi-shot ASP Solving Motivation

Motivation

Claim ASP is an under-the-hood technology

That is, in practice, it mainly serves as a solving engine
within an encompassing software environment

Single-shot solving: ground ∣ solve

Multi-shot solving: ground ∣ solve

å continuously changing logic programs

Application areas

Agents, Assisted Living, Robotics, Planning, Query-answering, etc

Implementation clingo 4

KRR@UP Stream Reasoning-Related Activities at KRR Uni Potsdam 12 / 18

Multi-shot ASP Solving Motivation

Motivation

Claim ASP is an under-the-hood technology

That is, in practice, it mainly serves as a solving engine
within an encompassing software environment

Single-shot solving: ground ∣ solve

Multi-shot solving: ground ∣ solve

å continuously changing logic programs

Application areas

Agents, Assisted Living, Robotics, Planning, Query-answering, etc

Implementation clingo 4

KRR@UP Stream Reasoning-Related Activities at KRR Uni Potsdam 12 / 18

Multi-shot ASP Solving Motivation

Motivation

Claim ASP is an under-the-hood technology

That is, in practice, it mainly serves as a solving engine
within an encompassing software environment

Single-shot solving: ground ∣ solve

Multi-shot solving: ground ∣ solve

å continuously changing logic programs

Application areas

Agents, Assisted Living, Robotics, Planning, Query-answering, etc

Implementation clingo 4

KRR@UP Stream Reasoning-Related Activities at KRR Uni Potsdam 12 / 18

Multi-shot ASP Solving Motivation

Motivation

Claim ASP is an under-the-hood technology

That is, in practice, it mainly serves as a solving engine
within an encompassing software environment

Single-shot solving: ground ∣ solve

Multi-shot solving: ground∗ ∣ solve∗

å continuously changing logic programs

Application areas

Agents, Assisted Living, Robotics, Planning, Query-answering, etc

Implementation clingo 4

KRR@UP Stream Reasoning-Related Activities at KRR Uni Potsdam 12 / 18

Multi-shot ASP Solving Motivation

Motivation

Claim ASP is an under-the-hood technology

That is, in practice, it mainly serves as a solving engine
within an encompassing software environment

Single-shot solving: ground ∣ solve

Multi-shot solving: (ground∗ ∣ solve∗)∗

å continuously changing logic programs

Application areas

Agents, Assisted Living, Robotics, Planning, Query-answering, etc

Implementation clingo 4

KRR@UP Stream Reasoning-Related Activities at KRR Uni Potsdam 12 / 18

Multi-shot ASP Solving Motivation

Motivation

Claim ASP is an under-the-hood technology

That is, in practice, it mainly serves as a solving engine
within an encompassing software environment

Single-shot solving: ground ∣ solve

Multi-shot solving: (input ∣ ground∗ ∣ solve∗)∗

å continuously changing logic programs

Application areas

Agents, Assisted Living, Robotics, Planning, Query-answering, etc

Implementation clingo 4

KRR@UP Stream Reasoning-Related Activities at KRR Uni Potsdam 12 / 18

Multi-shot ASP Solving Motivation

Motivation

Claim ASP is an under-the-hood technology

That is, in practice, it mainly serves as a solving engine
within an encompassing software environment

Single-shot solving: ground ∣ solve

Multi-shot solving: (input ∣ ground∗ ∣ solve∗∣ theory)∗

å continuously changing logic programs

Application areas

Agents, Assisted Living, Robotics, Planning, Query-answering, etc

Implementation clingo 4

KRR@UP Stream Reasoning-Related Activities at KRR Uni Potsdam 12 / 18

Multi-shot ASP Solving Motivation

Motivation

Claim ASP is an under-the-hood technology

That is, in practice, it mainly serves as a solving engine
within an encompassing software environment

Single-shot solving: ground ∣ solve

Multi-shot solving: (input ∣ ground∗ ∣ solve∗∣ theory ∣ . . .)∗

å continuously changing logic programs

Application areas

Agents, Assisted Living, Robotics, Planning, Query-answering, etc

Implementation clingo 4

KRR@UP Stream Reasoning-Related Activities at KRR Uni Potsdam 12 / 18

Multi-shot ASP Solving Motivation

Motivation

Claim ASP is an under-the-hood technology

That is, in practice, it mainly serves as a solving engine
within an encompassing software environment

Single-shot solving: ground ∣ solve

Multi-shot solving: (input ∣ ground∗ ∣ solve∗∣ theory ∣ . . .)∗

å continuously changing logic programs

Application areas

Agents, Assisted Living, Robotics, Planning, Query-answering, etc

Implementation clingo 4

KRR@UP Stream Reasoning-Related Activities at KRR Uni Potsdam 12 / 18

Multi-shot ASP Solving Motivation

Motivation

Claim ASP is an under-the-hood technology

That is, in practice, it mainly serves as a solving engine
within an encompassing software environment

Single-shot solving: ground ∣ solve

Multi-shot solving: (input ∣ ground∗ ∣ solve∗∣ theory ∣ . . .)∗

å continuously changing logic programs

Application areas

Agents, Assisted Living, Robotics, Planning, Query-answering, etc

Implementation clingo 4

KRR@UP Stream Reasoning-Related Activities at KRR Uni Potsdam 12 / 18

Multi-shot ASP Solving Motivation

Motivation

Claim ASP is an under-the-hood technology

That is, in practice, it mainly serves as a solving engine
within an encompassing software environment

Single-shot solving: ground ∣ solve

Multi-shot solving: (input ∣ ground∗ ∣ solve∗∣ theory ∣ . . .)∗

å continuously changing logic programs

Application areas

Agents, Assisted Living, Robotics, Planning, Query-answering, etc

Implementation clingo 4

KRR@UP Stream Reasoning-Related Activities at KRR Uni Potsdam 12 / 18

Multi-shot ASP Solving Motivation

Clingo = ASP + Control

ASP
#program <name> [(<parameters>)]

Example #program play(t).

#external <atom> [: <body>]

Example #external mark(X,Y,P,t) : field(X,Y), player(P).

Control
Lua (www.lua.org)

Example prg:solve(), prg:ground(parts), ...

Python (www.python.org)

Example prg.solve(), prg.ground(parts), ...

Integration

in ASP: embedded scripting language (#script)
in Lua/Python: library import (import gringo)

KRR@UP Stream Reasoning-Related Activities at KRR Uni Potsdam 13 / 18

Multi-shot ASP Solving Motivation

Clingo = ASP + Control

ASP
#program <name> [(<parameters>)]

Example #program play(t).

#external <atom> [: <body>]

Example #external mark(X,Y,P,t) : field(X,Y), player(P).

Control
Lua (www.lua.org)

Example prg:solve(), prg:ground(parts), ...

Python (www.python.org)

Example prg.solve(), prg.ground(parts), ...

Integration

in ASP: embedded scripting language (#script)
in Lua/Python: library import (import gringo)

KRR@UP Stream Reasoning-Related Activities at KRR Uni Potsdam 13 / 18

Multi-shot ASP Solving Motivation

Clingo = ASP + Control

ASP
#program <name> [(<parameters>)]

Example #program play(t).

#external <atom> [: <body>]

Example #external mark(X,Y,P,t) : field(X,Y), player(P).

Control
Lua (www.lua.org)

Example prg:solve(), prg:ground(parts), ...

Python (www.python.org)

Example prg.solve(), prg.ground(parts), ...

Integration

in ASP: embedded scripting language (#script)
in Lua/Python: library import (import gringo)

KRR@UP Stream Reasoning-Related Activities at KRR Uni Potsdam 13 / 18

Multi-shot ASP Solving Motivation

Clingo = ASP + Control

ASP
#program <name> [(<parameters>)]

Example #program play(t).

#external <atom> [: <body>]

Example #external mark(X,Y,P,t) : field(X,Y), player(P).

Control
Lua (www.lua.org)

Example prg:solve(), prg:ground(parts), ...

Python (www.python.org)

Example prg.solve(), prg.ground(parts), ...

Integration

in ASP: embedded scripting language (#script)
in Lua/Python: library import (import gringo)

KRR@UP Stream Reasoning-Related Activities at KRR Uni Potsdam 13 / 18

Multi-shot ASP Solving Motivation

Clingo = ASP + Control

ASP
#program <name> [(<parameters>)]

Example #program play(t).

#external <atom> [: <body>]

Example #external mark(X,Y,P,t) : field(X,Y), player(P).

Control
Lua (www.lua.org)

Example prg:solve(), prg:ground(parts), ...

Python (www.python.org)

Example prg.solve(), prg.ground(parts), ...

Integration

in ASP: embedded scripting language (#script)
in Lua/Python: library import (import gringo)

KRR@UP Stream Reasoning-Related Activities at KRR Uni Potsdam 13 / 18

Multi-shot ASP Solving Motivation

Clingo = ASP + Control

ASP
#program <name> [(<parameters>)]

Example #program play(t).

#external <atom> [: <body>]

Example #external mark(X,Y,P,t) : field(X,Y), player(P).

Control
Lua (www.lua.org)

Example prg:solve(), prg:ground(parts), ...

Python (www.python.org)

Example prg.solve(), prg.ground(parts), ...

Integration

in ASP: embedded scripting language (#script)
in Lua/Python: library import (import gringo)

KRR@UP Stream Reasoning-Related Activities at KRR Uni Potsdam 13 / 18

Multi-shot ASP Solving Motivation

Vanilla clingo

Emulating clingo in clingo 4

#script (python)

def main(prg):

parts = []

parts.append(("base", []))

prg.ground(parts)

prg.solve()

#end.

KRR@UP Stream Reasoning-Related Activities at KRR Uni Potsdam 14 / 18

Multi-shot ASP Solving Motivation

Vanilla clingo

Emulating clingo in clingo 4

#script (python)

def main(prg):

parts = []

parts.append(("base", []))

prg.ground(parts)

prg.solve()

#end.

KRR@UP Stream Reasoning-Related Activities at KRR Uni Potsdam 14 / 18

Multi-shot ASP Solving Motivation

Vanilla clingo

Emulating clingo in clingo 4

#script (python)

def main(prg):

parts = []

parts.append(("base", []))

prg.ground(parts)

prg.solve()

#end.

KRR@UP Stream Reasoning-Related Activities at KRR Uni Potsdam 14 / 18

ROSoClingo

Outline

1 Sliding Window-Based Approach with ASP

2 Multi-shot ASP Solving

3 ROSoClingo

4 Conclusion

KRR@UP Stream Reasoning-Related Activities at KRR Uni Potsdam 15 / 18

ROSoClingo

ROSoClingo

ROSoClingo provides a highly capable reasoning framework for ROS
by integrating the reactive answer set solver clingo

Representation methodology based on reactive ASP

clingo can react to incoming requests, environment changes, and new
sensory information
Exogenous events are modelled by clingo’s external directives
Execution failures are directly incorporated in the encoding

Single framework declaratively controlling robots to do complex action
planning while adapting to new information and environment changes

Available at potassco.sourceforge.net

KRR@UP Stream Reasoning-Related Activities at KRR Uni Potsdam 16 / 18

potassco.sourceforge.net

Conclusion

Outline

1 Sliding Window-Based Approach with ASP

2 Multi-shot ASP Solving

3 ROSoClingo

4 Conclusion

KRR@UP Stream Reasoning-Related Activities at KRR Uni Potsdam 17 / 18

Conclusion

Summary and Outlook

Stream Reasoning Approach for ASP

Extended (Reactive) ASP by built-in support of sliding windows

Developed modeling approaches to reason over transient data with
re-use of conflict constraint

Clingo = Control + ASP

Operative framework to continuously process ASP programs

Interleaving of ASP grounding/solving with imperative control,
among others, essential for stream reasoning

KRR@UP Stream Reasoning-Related Activities at KRR Uni Potsdam 18 / 18

Conclusion

Summary and Outlook

Applications (Hybris project) driving our future refinements and extensions

Warehouse logistics

Robocup logistics

KRR@UP Stream Reasoning-Related Activities at KRR Uni Potsdam 18 / 18

	Sliding Window-Based Approach with ASP
	Multi-shot ASP Solving
	ROSoClingo
	Conclusion

