
INCREMENTAL MATERIALISATION IN DATALOG AND ITS
RELATIONSHIP TO STREAM REASONING

Boris Motik

University of Oxford

November 9, 2015



TABLE OF CONTENTS

1 RDFOX OVERVIEW

2 THREE ALGORITHMS FOR MATERIALISATION MAINTENANCE

3 USING INCREMENTAL MAINTENANCE FOR STREAM REASONING

Boris Motik Incremental Materialisation and its Relationship to Stream Reasoning 0/12



RDFox Overview

TABLE OF CONTENTS

1 RDFOX OVERVIEW

2 THREE ALGORITHMS FOR MATERIALISATION MAINTENANCE

3 USING INCREMENTAL MAINTENANCE FOR STREAM REASONING

Boris Motik Incremental Materialisation and its Relationship to Stream Reasoning 0/12



RDFox Overview

RDFOX: A SCALABLE RDF/DATALOG MAIN-MEMORY REASONER

http://www.cs.ox.ac.uk/isg/tools/RDFox/

RAM-based; currently centralised, but a distributed system is in the works

Datalog reasoning via materialisation
Arbitrary (recursive) datalog rules, not just OWL 2 RL
Materialisation⇒ precompute all facts in a preprocessing stage
Very effective parallelisation on multi-core architectures

Efficient reasoning with owl :sameAs via rewriting
Known and widely-used technique, but correctness not trivial

SPARQL query answering
Most of SPARQL 1.0 and some of SPARQL 1.1
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RDFox Overview

EVALUATION (I): PARALLELISATION OVERHEAD AND SPEEDUP
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Speedup of up to 13x with 16 physical cores

Increases to 19x with 32 virtual cores
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RDFox Overview

EVALUATION (II): ORACLE’S SPARC T5 (128/1024 CORES, 4 TB)

LUBM-50K Claros DBpedia
Threads sec speedup sec speedup sec speedup
import 6.8k — 168 — 952 —
1 27.0k 1.0x 10.0k 1.0x 31.2k 1.0x
16 1.7k 15.7x 906.0 11.0x 3.0k 10.4x
32 1.1k 24.0x 583.3 17.1x 1.8k 17.5x
48 920.7 29.3x 450.8 22.2x 2.0k 16.0x
64 721.2 37.4x 374.9 26.7x 1.2k 25.8x
80 523.6 51.5x 384.1 26.0x 1.2k 26.7x
96 442.4 60.9x 364.3 27.4x 825 37.8x
112 400.6 67.3x 331.4 30.2x 1.3k 24.3x
128 387.4 69.6x 225.7 44.3x 697.9 44.7x
256 — — 226.1 44.2x 684.0 45.7x
384 — — 189.1 52.9x 546.2 57.2x
512 — — 153.5 65.1x 431.8 72.3x
640 — — 140.5 71.2x 393.4 79.4x
768 — — 130.4 76.7x 366.2 85.3x
896 — — 127.0 78.8x 364.9 86.6x
1024 — — 124.9 80.1x 358.8 87.0x
size B/trp Triples B/trp Triples B/trp Triples
aft imp 124.1 6.7G 80.5 18.8M 58.4 112.7M
aft mat 101.0 9.2G 36.9 539.2M 39.0 1.5G
import rate 1.0M 112k 120k
mat. rate 6.1M 4.2M 4.0M
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Three Algorithms for Materialisation Maintenance
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Three Algorithms for Materialisation Maintenance

WHY INCREMENTAL REASONING?

Common application scenario: continuous small changes in input data
Similar to stream reasoning!

Materialisation can be expensive⇒ starting from scratch is unacceptable!

Incremental maintenance: minimise work needed to update materialisation

State of the art (from the 90s):
the Counting algorithm

Basic variant applicable only to nonrecursive programs!
Extension to recursive programs rather complex

the Delete/Rederive (DRed) algorithm
Works for nonrecursive rules too
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Three Algorithms for Materialisation Maintenance

BASIC COUNTING (NONRECURSIVE VARIANT)

EXAMPLE

C0(x)← A(x) C0(x)← B(x) Ci (x)← Ci−1(x) for 1 ≤ i ≤ n C0(x)← Cn(x)

A(a) 1
B(a) 1

C0(a)
C1(a) 1
. . .
Cn(a) 1

Associate with each fact a counter initialised to zero

Increment the counter after each derivation
Delete A(a):

Decrease its counter
The counter of A(a) reaches zero, so propagate deletion

Problem of this variant: delete B(a)

Decrease its counter
The counter of B(a) reaches zero, so propagate deletion
However, C0(a) still has a cyclic derivation from Cn(a)
⇒ The algorithm does not delete C0(a), . . . ,Cn(a)!
Reference counting is not a general garbage collection method
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Three Algorithms for Materialisation Maintenance

COUNTING AND RECURSION

EXAMPLE

C0(x)← A(x) C0(x)← B(x) Ci (x)← Ci−1(x) for 1 ≤ i ≤ n C0(x)← Cn(x)

A(a) 1
B(a) 1

C0(a)
C1(a)
. . .
Cn(a)

Associate with each fact an array of counters, one
per iteration

Delete A(a) and B(a) by undoing derivations
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Three Algorithms for Materialisation Maintenance

INEFFICIENCY OF RECURSIVE COUNTING

EXAMPLE

C0(x)← A(x) C0(x)← B(x) Ci (x)← Ci−1(x) for 1 ≤ i ≤ n C0(x)← Cn(x)

A(a) 1
B(a) 1
C0(a)

1

2

1

1
C1(a)

1

1
. . .
Cn(a)

1

1

Add C0(a) explicitly

We must update all counts to reflect the new state
although there is no change in the available facts!
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Three Algorithms for Materialisation Maintenance

THE DRED ALGORITHM AT A GLANCE

Delete/Rederive (DRed): state of the art incremental maintenance algorithm

EXAMPLE

C0(x)← A(x) C0(x)← B(x) Ci (x)← Ci−1(x) for 1 ≤ i ≤ n C0(x)← Cn(x)

A(a)
B(a)

C0(a)
C1(a)
. . .
Cn(a)

Materialise initial facts
Delete A(a) using DRed:

1 Delete all facts with a derivation from A(a)

C0(x)D ← A(x)D

C0(x)D ← B(x)D

Ci (x)D ← Ci−1(x)D for 1 ≤ i ≤ n
C0(x)D ← Cn(x)D

2 Rederive facts that have an alternative derivation

C0(x)← C0(x)D ∧ A(x)
C0(x)← C0(x)D ∧ B(x)
Ci (x)← Ci (x)D ∧ Ci−1(x) for 1 ≤ i ≤ n
C0(x)← C0(x)D ∧ Cn(x)
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Three Algorithms for Materialisation Maintenance

IMPROVEMENT: THE FORWARD/BACKWARD/FORWARD ALGORITHM

Facts often have many derivations, so many facts get deleted in the first step

The Forward/Backward/Forward algorithm looks for alternatives immediately

A(a)
B(a)
C0(a)
C1(a)
. . .
Cn(a)

Delete A(a) using FBF:

1 Is A(a) derivable in any other way?
2 No⇒ delete
3 As in DRed, identify C0(a) as derivable from A(a)
4 Apply the rules to C0(a) ‘backwards’⇒ by C0(x)← B(x), we get B(a)
5 B(a) is explicit so it is derivable
6 So C0(a) is derivable too
7 Stop propagation and terminate

B. Motik, Y. Nenov, R. Piro, and I. Horrocks.:

Incremental Update of Datalog Materialisation: the Backward/Forward Algorithm. AAAI 2015

Combining Rewriting and Incremental Materialisation Maintenance for Datalog Programs with
Equality. IJCAI 2015
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Three Algorithms for Materialisation Maintenance

EVALUATION (III): INCREMENTAL REASONING

Table 2: Experimental results

Dataset |E�| |I \ I0|
Rematerialise DRed B/F

Time Derivations Time Derivations Time Derivations
(s) Fwd (s) |D| DR2 DR4 DR5 (s) |C| Bwd Sat Del Prop

L
U

B
M

-1
k-

L

100 113 139.4 212.5M 0.0 1.0k 1.1k 0.8k 1.0k 0.0 0.5k 0.2k 0.3k 0.2k
|E| = 133.6M 5.0k 5.5k 101.8 212.5M 0.2 55.5k 67.2k 46.9k 59.8k 0.2 23.0k 9.3k 13.7k 7.4k
|I| = 182.4M 2.5M 2.7M 138.5 208.8M 39.4 10.3M 15.2M 6.6M 11.5M 32.8 10.0M 4.1M 5.6M 3.7M
Mt = 121.5s 5.0M 5.5M 91.8 205.0M 54.8 17.8M 26.3M 10.5M 18.9M 62.3 18.8M 7.8M 10.1M 7.5M
Md = 212.5M 7.5M 8.3M 89.2 201.3M 71.5 24.3M 35.5M 13.6M 24.3M 85.4 26.7M 11.0M 14.0M 11.2M

10.0M 11.0M 99.5 197.5M 127.9 30.0M 43.1M 15.9M 28.1M 102.2 34.1M 14.0M 17.4M 15.0M

U
O

B
M

-1
k-

U
o 100 160 3482.0 3.6G 8797.6 1.8G 2.6G 53.2M 2.6G 5.4 0.8k 0.5k 1.3k 0.5k

|E| = 254.8M 5.0k 85.2k 3417.8 3.6G 9539.3 1.8G 2.6G 53.2M 2.6G 28.2 105.9k 17.9k 42.1k 104.1k
|I| = 2.2G 17.0M 130.9M 3903.1 3.4G 8934.3 1.8G 2.7G 63.7M 2.5G 988.8 175.8M 47.6M 104.0M 196.7M
Mt = 5034.0s 34.0M 269.0M 4084.1 3.2G 9492.5 1.9G 2.8G 68.4M 2.4G 1877.2 340.7M 87.5M 182.3M 401.1M
Md = 3.6G 51.0M 422.8M 4010.0 3.0G 10659.3 1.9G 2.9G 71.5M 2.2G 2772.7 513.7M 125.2M 246.8M 622.0M

68.0M 581.4M 3981.9 2.8G 11351.6 1.9G 2.9G 73.3M 2.1G 3737.3 687.0M 162.5M 289.5M 848.6M

C
la

ro
s-

L

100 212 62.9 128.6M 0.0 0.8k 1.0k 0.2k 0.5k 0.0 0.6k 0.3k 0.7k 0.5k
|E| = 18.8M 5.0k 11.3k 62.8 128.6M 0.4 37.8k 50.7k 10.9k 23.9k 0.4 29.1k 18.8k 35.3k 26.8k
|I| = 74.2M 0.6M 1.3M 62.3 125.6M 32.3 4.1M 5.5M 1.1M 2.5M 14.9 3.1M 2.0M 3.6M 3.0M
Mt = 78.9s 1.2M 2.6M 61.2 122.6M 53.2 7.8M 10.8M 2.0M 4.8M 33.6 6.1M 3.8M 6.7M 6.0M
Md = 128.6M 1.7M 4.0M 60.5 119.5M 73.6 11.4M 15.9M 2.8M 6.8M 47.8 8.9M 5.6M 9.5M 9.1M

2.3M 5.5M 60.0 116.3M 91.0 14.8M 20.9M 3.6M 8.6M 60.6 11.7M 7.3M 12.0M 12.3M

C
la

ro
s-

L
E

100 0.5k 3992.8 12.6G 0.0 1.3k 2.0k 0.3k 0.9k 0.0 1.0k 0.7k 1.0k 1.1k
|E| = 18.8M 2.5k 178.9k 5235.1 12.6G 8077.4 5.5M 11.7G 176.6k 11.7G 10.3 216.4k 161.2k 8.8M 320.0k
|I| = 533.7M 5.0k 427.5k 4985.1 12.6G 7628.2 6.0M 11.7G 186.0k 11.7G 16.5 485.6k 369.0k 8.9M 769.3k
Mt = 4024.5s 7.5k 609.6k 4855.0 12.6G 7419.1 6.5M 11.7G 193.9k 11.7G 19.5 683.4k 516.8k 9.0M 1.1M
Md = 12.9G 10.0k 780.8k 5621.3 12.6G 7557.9 6.8M 11.7G 207.6k 11.7G 3907.2 6.0M 723.0M 11.7G 16.9M

Test Datasets Table 2 summarises the properties of the
four datasets we used in our tests.

LUBM (Guo, Pan, and Heflin 2005) is a well-known RDF
benchmark. We extracted the datalog fragment of the LUBM
ontology as described by Grosof et al. (2003), providing us
with the ‘lower bound’ on the ontology’s consequences. We
generated the data for 1000 universities, and we designate
the resulting dataset as LUBM-1k-L.

UOBM (Ma et al. 2006) extends LUBM. Instead of the
datalog fragment of the UOBM ontology, we used the ‘up-
per bound’ datalog program by Zhou et al. (2013) that en-
tails the UOBM ontology. This program is interesting be-
cause facts in the materialisation often have many deriva-
tions, and it was already used by Motik et al. (2014) to
test RDFox. The bodies of several rules in the program by
Motik et al. (2014) contain redundant atoms; for example,
R(x, y) ^R(x, y0)! A(x). This introduces a source of in-
efficiency that would not allow us to effectively compare the
two algorithms, so we removed all such atoms manually ob-
taining the ‘upper bound optimised’ program. We generated
data for 1000 universities, and we designate the resulting
dataset as UOBM-1k-Uo.

Claros integrates information about major art collections
in museums and research institutes. We used two Claros
variants: Claros-L uses the datalog subset of the Claros on-
tology, and Claros-LE extends Claros-L with several ‘hard’
rules that lead to multiple derivations of facts.

Motik et al. (2014) describe all of these datasets in more
detail. In addition to the above mentioned optimisation of
UOBM, in this paper we do not axiomatise owl:sameAs as

a congruence relation: derivations with owl:sameAs tend to
proliferate so an efficient incremental algorithm would have
to treat this property directly; we leave developing such an
extension to our future work. Please note that omitting the
axiomatisation of owl:sameAs has a significant impact on
materialisation times, so the times presented in this paper
are not comparable to the ones given by Motik et al. (2014).

Results Table 2 summarises our results. For each dataset,
column ‘Dataset’ shows the numbers of explicit (|E|) and
implicit (|I|) facts, and the time (Mt) and the number of
derivations (Md) for materialisation. Columns |E�| and
|I \ I 0| show the numbers of removed explicit and implicit
facts, respectively. For rematerialisation, we show the time
and the number of derivations. For DRed, we show the time,
the size of set D after step DR2, and the numbers of deriva-
tions in steps DR2, DR4, and DR5. Finally, for B/F, we
show the time, the size of set C upon algorithm’s termina-
tion, the number of rule instances considered in backward
chaining in line 16, the number of forward derivations in
line 27, and the number of forward derivations in line 8.

Discussion As one can see from the table, the B/F algo-
rithm consistently outperformed the DRed algorithm, with
minor improvements for LUBM-1k-L and Claros-L, to up
to orders of magnitude for UOBM-1k-Uo and Claros-LE. In
all cases, B/F considered fewer facts for possible deletion
than DRed, with the difference reaching an order of magni-
tude in the case of Claros-LE. The reduction in the number
of considered facts had a direct impact on the number of
forward derivations, which can be seen as ‘core operations’
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APPLICATION: CONTEXT-AWARE MOBILE SERVICES (SAMSUNG)

Use sensors (WiFi, GPS, . . .) to identify the context
E.g., ‘at home’, ‘in a shop’, ‘with a friend’ . . .

Adapt behaviour depending on the context
‘If with a friend who has birthday, remind to congratulate’

Declaratively describe contexts and adaptations
Use a bunch of rules
E.g., ‘If can see home WiFi, then context is “at home”’

Interpret rules in real-time via incremental reasoning
We used DRed

User detect events by registering continuous queries

The streaming aspect was lightweight:
The database always reflects the ‘current’ state of the world
Continuous queries just monitor this ‘current’ state
Queries cannot refer to states at different time points
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QUERYING/REASONING ACROSS TIME-POINTS

QUERYING A STREAM OF EVENTS

The database is an ever-filling set of events with time-points

E.g., ‘Quote for AAPL at 9am is $121’

Queries must explicitly refer to events

E.g., ‘The price of AAPL at 9.05am?’ makes no sense⇒ no global world-view

⇒ ‘The quote for AAPL at time t with t < 9.05am and no quote from t to 9.05am’

QUERYING AN EVOLVING WORLD VIEW

There is a complete database state (‘world view’) for each time-point t

We can have inertia rules

E.g., ‘The price a stock at any point t is the price of the most recent quote’

Now ‘The price of AAPL at 9.05am?’ is correct as we have a notion of ‘Price at time t ’

Windowing could be viewed as an implementation detail

Prevents memory from filling, but does not play part in the definition of a model

Can we use incremental materialisation algorithms for stream reasoning?
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