INCREMENTAL MATERIALISATION IN DATALOG AND ITS RELATIONSHIP TO STREAM REASONING

Boris Motik

University of Oxford

November 9, 2015

<ロ> (四) (四) (三) (三) (三) (三)

TABLE OF CONTENTS

1 RDFox Overview

2 Three Algorithms for Materialisation Maintenance

3 USING INCREMENTAL MAINTENANCE FOR STREAM REASONING

TABLE OF CONTENTS

1 RDFox Overview

2 THREE ALGORITHMS FOR MATERIALISATION MAINTENANCE

3 USING INCREMENTAL MAINTENANCE FOR STREAM REASONING

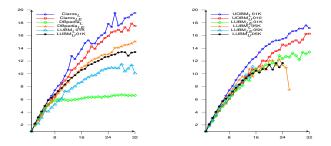
A B > < B</p>

RDFOX: A SCALABLE RDF/DATALOG MAIN-MEMORY REASONER

- http://www.cs.ox.ac.uk/isg/tools/RDFox/
- RAM-based; currently centralised, but a distributed system is in the works
- Datalog reasoning via materialisation
 - Arbitrary (recursive) datalog rules, not just OWL 2 RL
 - Materialisation ⇒ precompute all facts in a preprocessing stage
 - Very effective parallelisation on multi-core architectures
- Efficient reasoning with owl:sameAs via rewriting
 - Known and widely-used technique, but correctness not trivial
- SPARQL query answering
 - Most of SPARQL 1.0 and some of SPARQL 1.1

RDFox Overview

EVALUATION (I): PARALLELISATION OVERHEAD AND SPEEDUP



- Speedup of up to 13x with 16 physical cores
- Increases to 19x with 32 virtual cores

EVALUATION (II): ORACLE'S SPARC T5 (128/1024 CORES, 4 TB)

	LUBM-50K		Claros		DBpedia		
Threads	sec speedup		c speedup sec speedup		sec	speedup	
import	6.8k	_	168	—	952	—	
1	27.0k	1.0x	10.0k	1.0x	31.2k	1.0x	
16	1.7k	15.7x	906.0	11.0x	3.0k	10.4x	
32	1.1k	24.0x	583.3	17.1x	1.8k	17.5x	
48	920.7	29.3x	450.8	22.2x	2.0k	16.0x	
64	721.2 523.6 442.4 400.6	37.4x	374.9 26.7	26.7x	1.2k 1.2k	25.8x 26.7x	
80		51.5x	384.1	384.1 26.0x			
96			60.9x	364.3	27.4x	825	37.8x
112			67.3x	331.4	30.2x	1.3k	24.3x
128	387.4	69.6x	225.7	44.3x	697.9	44.7x	
256	_	—	226.1	44.2x	684.0	45.7x	
384	-	—	189.1	52.9x	546.2	57.2x	
512	-	—	153.5	65.1x	431.8	72.3x	
640	-	—	140.5	71.2x	393.4	79.4x	
768	_	_	130.4	76.7x	366.2	85.3x	
896	-	—	127.0	78.8x	364.9	86.6x	
1024	-	_	124.9	80.1x	358.8	87.0x	
size	B/trp	Triples	B/trp	Triples	B/trp	Triples	
aft imp	124.1	6.7G	80.5	18.8M	58.4	112.7M	
aft mat	101.0	9.2G	36.9	539.2M	39.0	1.5G	
import rate	1	.0M	112k		120k		
mat. rate	6.1M		4.2M		4	.0M	

TABLE OF CONTENTS

2 Three Algorithms for Materialisation Maintenance

3 USING INCREMENTAL MAINTENANCE FOR STREAM REASONING

→ ∃ → < ∃</p>

WHY INCREMENTAL REASONING?

- Common application scenario: continuous small changes in input data
 - Similar to stream reasoning!
- Materialisation can be expensive ⇒ starting from scratch is unacceptable!
- Incremental maintenance: minimise work needed to update materialisation
- State of the art (from the 90s):
 - the Counting algorithm
 - Basic variant applicable only to nonrecursive programs!
 - Extension to recursive programs rather complex
 - the Delete/Rederive (DRed) algorithm
 - Works for nonrecursive rules too

.



・ 同 ト ・ ヨ ト ・ ヨ ト

э.

EXAMPLE

 $C_0(x) \leftarrow A(x)$ $C_0(x) \leftarrow B(x)$ $C_i(x) \leftarrow C_{i-1}(x)$ for $1 \le i \le n$ $C_0(x) \leftarrow C_n(x)$

- Associate with each fact a counter initialised to zero
- Increment the counter after each derivation

글 🕨 🖌 글

EXAMPLE

 $C_0(x) \leftarrow A(x)$ $C_0(x) \leftarrow B(x)$ $C_i(x) \leftarrow C_{i-1}(x)$ for $1 \le i \le n$ $C_0(x) \leftarrow C_n(x)$

- Associate with each fact a counter initialised to zero
- Increment the counter after each derivation

э

EXAMPLE

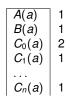
- Associate with each fact a counter initialised to zero
- Increment the counter after each derivation

EXAMPLE

- Associate with each fact a counter initialised to zero
- Increment the counter after each derivation

EXAMPLE

- Associate with each fact a counter initialised to zero
- Increment the counter after each derivation

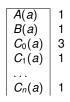


EXAMPLE

 $C_0(x) \leftarrow A(x)$ $C_0(x) \leftarrow B(x)$ $C_i(x) \leftarrow C_{i-1}(x)$ for $1 \le i \le n$ $C_0(x) \leftarrow C_n(x)$

Associate with each fact a counter initialised to zero

Increment the counter after each derivation



EXAMPLE

- Associate with each fact a counter initialised to zero
- Increment the counter after each derivation
- Delete A(a):
 - Decrease its counter

EXAMPLE

 $C_0(x) \leftarrow A(x)$ $C_0(x) \leftarrow B(x)$ $C_i(x) \leftarrow C_{i-1}(x)$ for $1 \le i \le n$ $C_0(x) \leftarrow C_n(x)$

- Associate with each fact a counter initialised to zero
- Increment the counter after each derivation
- Delete A(a):
 - Decrease its counter
 - The counter of A(a) reaches zero, so propagate deletion

EXAMPLE

 $C_0(x) \leftarrow A(x)$ $C_0(x) \leftarrow B(x)$ $C_i(x) \leftarrow C_{i-1}(x)$ for $1 \le i \le n$ $C_0(x) \leftarrow C_n(x)$

- Associate with each fact a counter initialised to zero
- Increment the counter after each derivation
- Delete A(a):
 - Decrease its counter
 - The counter of A(a) reaches zero, so propagate deletion
- Problem of this variant: delete B(a)
 - Decrease its counter

.

EXAMPLE

 $C_0(x) \leftarrow A(x)$ $C_0(x) \leftarrow B(x)$ $C_i(x) \leftarrow C_{i-1}(x)$ for $1 \le i \le n$ $C_0(x) \leftarrow C_n(x)$

- Associate with each fact a counter initialised to zero
- Increment the counter after each derivation
- Delete A(a):
 - Decrease its counter
 - The counter of A(a) reaches zero, so propagate deletion
- Problem of this variant: delete B(a)
 - Decrease its counter
 - The counter of B(a) reaches zero, so propagate deletion

・ 同 ト ・ ヨ ト ・ ヨ

EXAMPLE

 $C_0(x) \leftarrow A(x)$ $C_0(x) \leftarrow B(x)$ $C_i(x) \leftarrow C_{i-1}(x)$ for $1 \le i \le n$ $C_0(x) \leftarrow C_n(x)$

- Associate with each fact a counter initialised to zero
- Increment the counter after each derivation
- Delete A(a):
 - Decrease its counter
 - The counter of A(a) reaches zero, so propagate deletion
- Problem of this variant: delete B(a)
 - Decrease its counter
 - The counter of *B*(*a*) reaches zero, so propagate deletion
 - However, $C_0(a)$ still has a cyclic derivation from $C_n(a)$
 - \Rightarrow The algorithm does not delete $C_0(a), \ldots, C_n(a)!$
 - Reference counting is not a general garbage collection method

< ロ > < 同 > < 回 > < 回 >

EXAMPLE

1

1

 $C_0(x) \leftarrow A(x)$ $C_0(x) \leftarrow B(x)$ $C_i(x) \leftarrow C_{i-1}(x)$ for $1 \le i \le n$ $C_0(x) \leftarrow C_n(x)$

<ロ> <同> <同> < 同> < 同> < 同> = 同

EXAMPLE	
$C_0(x) \leftarrow A(x)$	$C_0(x) \leftarrow B(x)$ $C_i(x) \leftarrow C_{i-1}(x)$ for $1 \le i \le n$ $C_0(x) \leftarrow C_n(x)$
$ \begin{array}{c c} A(a) & 1 \\ B(a) & 1 \\ C_0(a) & 1 \end{array} $	 Associate with each fact an array of counters, one per iteration

<ロ> <同> <同> <同> < 同> < 同>

Э

Example	
$C_0(x) \leftarrow A(x)$	$C_0(x) \leftarrow B(x)$ $C_i(x) \leftarrow C_{i-1}(x)$ for $1 \le i \le n$ $C_0(x) \leftarrow C_n(x)$
$ \begin{array}{c c} A(a) & 1 \\ B(a) & 1 \\ C_0(a) & 2 \end{array} $	 Associate with each fact an array of counters, one per iteration

<ロ> <同> <同> <同> < 同> < 同>

EXAMPLE	
$C_0(x) \leftarrow A(x)$	$C_0(x) \leftarrow B(x)$ $C_i(x) \leftarrow C_{i-1}(x)$ for $1 \le i \le n$ $C_0(x) \leftarrow C_n(x)$
$ \begin{array}{c c} A(a) & 1 \\ B(a) & 1 \\ C_0(a) & 2 \\ C_1(a) & 1 \end{array} $	 Associate with each fact an array of counters, one per iteration

<ロ> <同> <同> <同> < 同> < 同>

Example							
$C_0(x) \leftarrow A(x)$	$C_0(x) \leftarrow B(x)$ C	$C_i(x) \leftarrow C_{i-1}(x)$ for $1 \le i \le n$	$C_0(x) \leftarrow C_n(x)$				
$ \begin{array}{c c} A(a) & 1 \\ B(a) & 1 \\ C_0(a) & 2 \\ C_1(a) & 1 \\ \cdots \end{array} $	Associat per itera	te with each fact an array o tion	of counters, one				

EXAMPLE			
$C_0(x) \leftarrow A(x)$	$C_0(x) \leftarrow B(x)$	$C_i(x) \leftarrow C_{i-1}(x)$ for $1 \le i \le n$	$C_0(x) \leftarrow C_n(x)$
$ \begin{array}{ c c c c c }\hline A(a) & 1 & & \\ B(a) & 1 & & \\ C_0(a) & 2 & & \\ C_1(a) & 1 & & \\ & \ddots & & & \\ C_n(a) & & 1 & \\ \end{array} $		ciate with each fact an array eration	of counters, one

<ロ> <同> <同> <同> < 同> < 同>

EXAMP	LE			
<i>C</i> ₀ ($(x) \leftarrow A(x)$	$C_0(x) \leftarrow B(x)$	$C_i(x) \leftarrow C_{i-1}(x)$ for $1 \le i \le n$	$C_0(x) \leftarrow C_n(x)$
$egin{array}{c} A(a) \ B(a) \ C_0(a) \ C_1(a) \ \dots \ C_n(a) \end{array}$	1 1 2 1 1		ciate with each fact an array eration	of counters, one

EXAMPLE				
$C_0(x) \leftarrow$	$A(x)$ $C_0($	$(x) \leftarrow B(x)$	$C_i(x) \leftarrow C_{i-1}(x)$ for $1 \le i \le n$	$C_0(x) \leftarrow C_n(x)$
$ \begin{array}{c c} A(a) & 0 \\ B(a) & 0 \\ C_0(a) & 2 \\ C_1(a) \\ \dots \\ C_n(a) \end{array} $	1 1 1	per ite	training the each fact an array eration $B(a)$ by undoing	·

<ロ> <同> <同> <同> < 同> < 同>

EXAMP	LE			
<i>C</i> ₀ (.	$(x) \leftarrow A(x)$	$C_0(x) \leftarrow B(x)$	$C_i(x) \leftarrow C_{i-1}(x)$ for $1 \le i \le n$	$C_0(x) \leftarrow C_n(x)$
$\begin{array}{c} \overline{A(a)}\\ \overline{B(a)}\\ C_0(a)\\ C_1(a)\\ \cdots\\ C_n(a) \end{array}$	0 0 1 1	per ite	ciate with each fact an array eration e $A(a)$ and $B(a)$ by undoing	·

<ロ> <同> <同> <同> < 同> < 同>

Э

EXAMPLE			
$C_0(x) \leftarrow A(x)$	$C_0(x) \leftarrow B(x)$	$C_i(x) \leftarrow C_{i-1}(x)$ for $1 \le i \le n$	$C_0(x) \leftarrow C_n(x)$
$ \begin{array}{ c c c c c }\hline A(a) & 0 & \\ \hline B(a) & 0 & \\ \hline C_0(a) & 0 & \\ \hline C_1(a) & 0 & \\ \hline & & \\ & & \\ \hline & & \\ C_n(a) & & 1 \end{array} $	per ite	tiate with each fact an array eration B(a) and $B(a)$ by undoing	,

<ロ> <同> <同> <同> < 同> < 同>

EXAMPLE			
$C_0(x) \leftarrow A(x)$	$C_0(x) \leftarrow B(x)$	$C_i(x) \leftarrow C_{i-1}(x)$ for $1 \le i \le n$	$C_0(x) \leftarrow C_n(x)$
$ \begin{array}{ c c c c }\hline A(a) & 0 & \\ \hline B(a) & 0 & \\ \hline C_0(a) & 0 & \\ \hline C_1(a) & 0 & \\ \hline & \ddots & & \\ \hline C_n(a) & 0 & \\ \end{array} $	per ite	ciate with each fact an array eration e $A(a)$ and $B(a)$ by undoing	,

<ロ> <同> <同> <同> < 同> < 同>

EXAMPLE				
$C_0(x) \leftarrow A(x)$	$(x) \qquad C_0(x) \leftarrow$	$B(x)$ $C_i(x) \leftarrow C_{i-1}$	(x) for $1 \le i \le n$	$C_0(x) \leftarrow C_n(x)$
$\begin{array}{c c} \hline A(a) & 0 \\ \hline B(a) & 0 \\ \hline C_0(a) & 0 \\ \hline C_1(a) & 0 \\ \hline \dots & \\ \hline C_n(a) & \end{array}$	0	Associate with eac per iteration Delete <i>A</i> (<i>a</i>) and <i>B</i>		,

<ロ> <同> <同> <同> < 同> < 同>

INEFFICIENCY OF RECURSIVE COUNTING

Example						
<i>C</i> ₀ ($(x) \leftarrow A(x)$	$C_0(x) \leftarrow B(x)$	$C_i(x) \leftarrow C_{i-1}(x)$ for $1 \le i \le n$	$C_0(x) \leftarrow C_n(x)$		
$\begin{array}{c} A(a)\\ B(a)\\ C_0(a)\\ C_1(a) \end{array}$	1 1 2 1	1				
 С _п (а)	1					

INEFFICIENCY OF RECURSIVE COUNTING

Example						
$C_0(x) \leftarrow A(x)$	$C_0(x) \leftarrow B(x)$	$C_i(x) \leftarrow C_{i-1}(x)$ for $1 \le i \le n$	$C_0(x) \leftarrow C_n(x)$			
$ \begin{array}{c c} A(a) & 1 \\ B(a) & 1 \\ C_0(a) & 1 \\ C_1(a) & 1 \\ \cdots \\ C_n(a) \\ \end{array} $	1 ■ Add	$C_0(a)$ explicitly				

INEFFICIENCY OF RECURSIVE COUNTING

Example							
$C_0(x) \leftarrow A(x)$	$C_0(x) \leftarrow B(x)$ $C_i(x) \leftarrow C_{i-1}(x)$ for $1 \le i \le n$ $C_0(x) \leftarrow C_n(x)$						
$ \begin{array}{ c c c c c }\hline A(a) & 1 & & \\ B(a) & 1 & & \\ C_0(a) & 1 & 2 & 1 & \\ C_1(a) & 1 & & \\ & \ddots & & \\ & & C_n(a) & & 1 & \\ \end{array} $	 Add C₀(a) explicitly We must update all counts to reflect the new state although there is no change in the available facts! 						

<ロト < 同ト < ヨト < ヨト

THE DRED ALGORITHM AT A GLANCE

Delete/Rederive (DRed): state of the art incremental maintenance algorithm

$$C_0(x) \leftarrow A(x) \qquad C_0(x) \leftarrow B(x) \qquad C_i(x) \leftarrow C_{i-1}(x) \text{ for } 1 \le i \le n \qquad C_0(x) \leftarrow C_n(x)$$

EVAMPLE

イロト イポト イラト イラ

Delete/Rederive (DRed): state of the art incremental maintenance algorithm

EXAMPLE
$$C_0(x) \leftarrow A(x)$$
 $C_0(x) \leftarrow B(x)$ $C_i(x) \leftarrow C_{i-1}(x)$ for $1 \le i \le n$ $C_0(x) \leftarrow C_n(x)$

Materialise initial facts

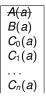
$$\begin{array}{c} A(a) \\ B(a) \\ C_0(a) \\ C_1(a) \\ \cdots \\ C_n(a) \end{array}$$

Delete/Rederive (DRed): state of the art incremental maintenance algorithm

EXAMPLE $C_0(x) \leftarrow A(x)$ $C_0(x) \leftarrow B(x)$ $C_i(x) \leftarrow C_{i-1}(x)$ for $1 \le i \le n$ $C_0(x) \leftarrow C_n(x)$

Materialise initial facts

Delete A(a) using DRed:



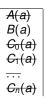
4 3 5 4 3

Delete/Rederive (DRed): state of the art incremental maintenance algorithm

EXAMPLE $C_0(x) \leftarrow A(x)$ $C_0(x) \leftarrow B(x)$ $C_i(x) \leftarrow C_{i-1}(x)$ for $1 \le i \le n$ $C_0(x) \leftarrow C_n(x)$

- Materialise initial facts
- Delete A(a) using DRed:
 - **1** Delete all facts with a derivation from A(a)

$$\begin{array}{l} C_0(x)^D \leftarrow A(x)^D \\ C_0(x)^D \leftarrow B(x)^D \\ C_i(x)^D \leftarrow C_{i-1}(x)^D \text{ for } 1 \le i \le n \\ C_0(x)^D \leftarrow C_n(x)^D \end{array}$$



Delete/Rederive (DRed): state of the art incremental maintenance algorithm

EXAMPLE $C_0(x) \leftarrow A(x)$ $C_0(x) \leftarrow B(x)$ $C_i(x) \leftarrow C_{i-1}(x)$ for 1 < i < n $C_0(x) \leftarrow C_0(x)$ Materialise initial facts Delete A(a) using DRed: **1** Delete all facts with a derivation from A(a)A(a) $C_0(x)^D \leftarrow A(x)^D$ B(a) $C_0(x)^D \leftarrow B(x)^D$ $C_0(a)$ $C_1(a)$... $C_i(x)^D \leftarrow C_{i-1}(x)^D$ for 1 < i < n $C_{n}(x)^{D} \leftarrow C_{n}(x)^{D}$ Rederive facts that have an alternative derivation $C_0(x) \leftarrow C_0(x)^D \wedge A(x)$ $C_0(x) \leftarrow C_0(x)^D \wedge B(x)$ $C_i(x) \leftarrow C_i(x)^D \wedge C_{i-1}(x)$ for 1 < i < n

周 ト イ ヨ ト イ ヨ

 $C_0(x) \leftarrow C_0(x)^D \wedge C_n(x)$

- Facts often have many derivations, so many facts get deleted in the first step
- The Forward/Backward/Forward algorithm looks for alternatives immediately

 $egin{array}{c} A(a) \ B(a) \ C_0(a) \ C_1(a) \ \dots \ C_n(a) \end{array}$

B. Motik, Y. Nenov, R. Piro, and I. Horrocks .:

- Incremental Update of Datalog Materialisation: the Backward/Forward Algorithm. AAAI 2015
- Combining Rewriting and Incremental Materialisation Maintenance for Datalog Programs with Equality. IJCAI 2015

- Facts often have many derivations, so many facts get deleted in the first step
- The Forward/Backward/Forward algorithm looks for alternatives immediately

 $egin{array}{c} A(a) \ B(a) \ C_0(a) \ C_1(a) \ \dots \ C_n(a) \end{array}$

Delete *A*(*a*) using FBF:

B. Motik, Y. Nenov, R. Piro, and I. Horrocks.:

- Incremental Update of Datalog Materialisation: the Backward/Forward Algorithm. AAAI 2015
- Combining Rewriting and Incremental Materialisation Maintenance for Datalog Programs with Equality. IJCAI 2015

- Facts often have many derivations, so many facts get deleted in the first step
- The Forward/Backward/Forward algorithm looks for alternatives immediately

A(a)
B(a)Pelete A(a) using FBF:
 \blacksquare Is A(a) derivable in any other way? $C_0(a)$
 $C_1(a)$ $C_1(a)$ \dots
 $C_n(a)$ $C_n(a)$

B. Motik, Y. Nenov, R. Piro, and I. Horrocks.:

- Incremental Update of Datalog Materialisation: the Backward/Forward Algorithm. AAAI 2015
- Combining Rewriting and Incremental Materialisation Maintenance for Datalog Programs with Equality. IJCAI 2015

4 3 5 4

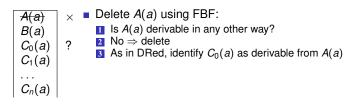
- Facts often have many derivations, so many facts get deleted in the first step
- The Forward/Backward/Forward algorithm looks for alternatives immediately

B. Motik, Y. Nenov, R. Piro, and I. Horrocks.:

- Incremental Update of Datalog Materialisation: the Backward/Forward Algorithm. AAAI 2015
- Combining Rewriting and Incremental Materialisation Maintenance for Datalog Programs with Equality. IJCAI 2015

.

- Facts often have many derivations, so many facts get deleted in the first step
- The Forward/Backward/Forward algorithm looks for alternatives immediately



B. Motik, Y. Nenov, R. Piro, and I. Horrocks.:

- Incremental Update of Datalog Materialisation: the Backward/Forward Algorithm. AAAI 2015
- Combining Rewriting and Incremental Materialisation Maintenance for Datalog Programs with Equality. IJCAI 2015

.

- Facts often have many derivations, so many facts get deleted in the first step
- The Forward/Backward/Forward algorithm looks for alternatives immediately

B. Motik, Y. Nenov, R. Piro, and I. Horrocks.:

- Incremental Update of Datalog Materialisation: the Backward/Forward Algorithm. AAAI 2015
- Combining Rewriting and Incremental Materialisation Maintenance for Datalog Programs with Equality. IJCAI 2015

4 日 ト 4 周 ト 4 戸 ト 4 戸

- Facts often have many derivations, so many facts get deleted in the first step
- The Forward/Backward/Forward algorithm looks for alternatives immediately

B. Motik, Y. Nenov, R. Piro, and I. Horrocks.:

- Incremental Update of Datalog Materialisation: the Backward/Forward Algorithm. AAAI 2015
- Combining Rewriting and Incremental Materialisation Maintenance for Datalog Programs with Equality. IJCAI 2015

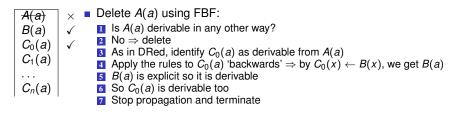
- Facts often have many derivations, so many facts get deleted in the first step
- The Forward/Backward/Forward algorithm looks for alternatives immediately

$$\begin{array}{|c|c|c|c|c|c|} \hline A(a) & \times & \blacksquare & \text{Delete } A(a) \text{ using FBF:} \\ \hline B(a) & \checkmark & \blacksquare & \texttt{Is } A(a) \text{ derivable in any other way?} \\ \hline C_0(a) & \checkmark & \blacksquare & \texttt{Sain DRed, identify } C_0(a) \text{ as derivable from } A(a) \\ \hline C_1(a) & \blacksquare & \texttt{Apply the rules to } C_0(a) \text{ 'backwards'} \Rightarrow \texttt{by } C_0(x) \leftarrow B(x), \texttt{ we get } B(a) \\ \hline C_n(a) & \blacksquare & \texttt{So } C_0(a) \text{ is derivable foo} \\ \hline \end{array}$$

B. Motik, Y. Nenov, R. Piro, and I. Horrocks.:

- Incremental Update of Datalog Materialisation: the Backward/Forward Algorithm. AAAI 2015
- Combining Rewriting and Incremental Materialisation Maintenance for Datalog Programs with Equality. IJCAI 2015

- Facts often have many derivations, so many facts get deleted in the first step
- The Forward/Backward/Forward algorithm looks for alternatives immediately



B. Motik, Y. Nenov, R. Piro, and I. Horrocks.:

- Incremental Update of Datalog Materialisation: the Backward/Forward Algorithm. AAAI 2015
- Combining Rewriting and Incremental Materialisation Maintenance for Datalog Programs with Equality. IJCAI 2015

イロト イポト イラト イラ

EVALUATION (III): INCREMENTAL REASONING

Dataset		$ E^- $	$ I \setminus I' $	Rematerialise		DRed					B/F				
				Time	Derivations	Time		Derivations		Time		Derivations			
			I I	(s)	Fwd	(s)	D	DR2	DR4	DR5	(s)	C	Bwd	Sat	Del Prop
	LUBM-1k-L	100	113	139.4	212.5M	0.0	1.0k	1.1k	0.8k	1.0k	0.0	0.5k	0.2k	0.3k	0.2k
E = 133.6M		5.0k	5.5k	101.8	212.5M	0.2	55.5k	67.2k	46.9k	59.8k	0.2	23.0k	9.3k	13.7k	7.4k
I = 182.4M		2.5M	2.7M	138.5	208.8M	39.4	10.3M	15.2M	6.6M	11.5M	32.8	10.0M	4.1M	5.6M	3.7M
$M_t = 121.5s$		5.0M	5.5M	91.8	205.0M	54.8	17.8M	26.3M	10.5M	18.9M	62.3	18.8M	7.8M	10.1M	7.5M
$M_d = 212.5 M$		7.5M	8.3M	89.2	201.3M	71.5	24.3M	35.5M	13.6M	24.3M	85.4	26.7M	11.0M	14.0M	11.2M
		10.0M	11.0M	99.5	197.5M	127.9	30.0M	43.1M	15.9M	28.1M	102.2	34.1M	14.0M	17.4M	15.0M
	UOBM-1k-Uo	100	160	3482.0	3.6G	8797.6	1.8G	2.6G	53.2M	2.6G	5.4	0.8k	0.5k	1.3k	0.5k
E = 254.8M		5.0k	85.2k	3417.8	3.6G	9539.3	1.8G	2.6G	53.2M	2.6G	28.2	105.9k	17.9k	42.1k	104.1k
I = 2.2G		17.0M	130.9M	3903.1	3.4G	8934.3	1.8G	2.7G	63.7M	2.5G	988.8	175.8M	47.6M	104.0M	196.7M
$M_t = 5034.0s$		34.0M	269.0M	4084.1	3.2G	9492.5	1.9G	2.8G	68.4M	2.4G	1877.2	340.7M	87.5M	182.3M	401.1M
$M_d = 3.6G$		51.0M	422.8M	4010.0	3.0G	10659.3	1.9G	2.9G	71.5M	2.2G	2772.7	513.7M	125.2M	246.8M	622.0M
		68.0M	581.4M	3981.9	2.8G	11351.6	1.9G	2.9G	73.3M	2.1G	3737.3	687.0M	162.5M	289.5M	848.6M
	Claros-L	100	212	62.9	128.6M	0.0	1 0.8k	1.0k	0.2k	0.5k	0.0	0.6k	1 0.3k	0.7k	0.5k
E = 18.8 M		5.0k	11.3k	62.8	128.6M	0.4	37.8k	50.7k	10.9k	23.9k	0.4	29.1k	18.8k	35.3k	26.8k
I = 74.2M		0.6M	1.3M	62.3	125.6M	32.3	4.1M	5.5M	1.1M	2.5M	14.9	3.1M	2.0M	3.6M	3.0M
$M_t = 78.9 s$		1.2M	2.6M	61.2	122.6M	53.2	7.8M	10.8M	2.0M	4.8M	33.6	6.1M	3.8M	6.7M	6.0M
$M_d = 128.6 M$		1.7M	4.0M	60.5	119.5M	73.6	11.4M	15.9M	2.8M	6.8M	47.8	8.9M	5.6M	9.5M	9.1M
		2.3M	5.5M	60.0	116.3M	91.0	14.8M	20.9M	3.6M	8.6M	60.6	11.7M	7.3M	12.0M	12.3M
	tros-LE	100	0.5k	3992.8	12.6G	0.0	1.3k	2.0k	0.3k	0.9k	0.0	1.0k	0.7k	1.0k	1.1k
E = 18.8 M		2.5k	178.9k	5235.1	12.6G	8077.4	5.5M	11.7G	176.6k	11.7G	10.3	216.4k	161.2k	8.8M	320.0k
I = 533.7M		5.0k	427.5k	4985.1	12.6G	7628.2	6.0M	11.7G	186.0k	11.7G	16.5	485.6k	369.0k	8.9M	769.3k
$M_t = 4024.5s$	Cla	7.5k	609.6k	4855.0	12.6G	7419.1	6.5M	11.7G	193.9k	11.7G	19.5	683.4k	516.8k	9.0M	1.1M
$M_d = 12.9G$		10.0k	780.8k	5621.3	12.6G	7557.9	6.8M	11.7G	207.6k	11.7G	3907.2	6.0M	723.0M	11.7G	16.9M

・ 同 ト ・ ヨ ト ・ ヨ

TABLE OF CONTENTS

1 RDFox Overview

2 THREE ALGORITHMS FOR MATERIALISATION MAINTENANCE

3 USING INCREMENTAL MAINTENANCE FOR STREAM REASONING

4 3 5 4

APPLICATION: CONTEXT-AWARE MOBILE SERVICES (SAMSUNG)

- Use sensors (WiFi, GPS, ...) to identify the context
 - E.g., 'at home', 'in a shop', 'with a friend' ...
- Adapt behaviour depending on the context
 - 'If with a friend who has birthday, remind to congratulate'
- Declaratively describe contexts and adaptations
 - Use a bunch of rules
 - E.g., 'If can see home WiFi, then context is "at home"
- Interpret rules in real-time via incremental reasoning
 - We used DRed
- User detect events by registering continuous queries
- The streaming aspect was lightweight:
 - The database always reflects the 'current' state of the world
 - Continuous queries just monitor this 'current' state
 - Queries cannot refer to states at different time points

QUERYING/REASONING ACROSS TIME-POINTS

QUERYING A STREAM OF EVENTS

- The database is an ever-filling set of events with time-points
- E.g., 'Quote for AAPL at 9am is \$121'
- Queries must explicitly refer to events
- E.g., 'The price of AAPL at 9.05am?' makes no sense \Rightarrow no global world-view
- \Rightarrow 'The quote for AAPL at time t with t < 9.05 am and no quote from t to 9.05 am'

QUERYING AN EVOLVING WORLD VIEW

- There is a complete database state ('world view') for each time-point t
- We can have inertia rules
- E.g., 'The price a stock at any point t is the price of the most recent quote'
- Now 'The price of AAPL at 9.05am?' is correct as we have a notion of 'Price at time t'
- Windowing could be viewed as an implementation detail
 - Prevents memory from filling, but does not play part in the definition of a model
- Can we use incremental materialisation algorithms for stream reasoning?

• • • • • • • • •