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IoT- Intelligence at Unit for Reasoning & Querying (URQ) 

1.  Representation and linking 

2.  Finding what we need 

3.  Dynamic Problem Solving 
(Stream Reasoning) 
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What	  streams	  do	  I	  need	  and	  
how	  “good”	  are	  they?	  
(Stream	  Discovery	  and	  

Federa;on)	  
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Quality and context-aware stream discovery 

•  What information do I need? 
–  Data interoperability: Semantic descriptions 
–  Interface interoperability: streams as event 

services 
•  How good is it? 

–  ADAPT to quality requirements and preferences 
for data source selection 

–  Efficient processing of event logic 
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Summary of the Approach 

•  How to describe complex event services? 
–  Create an Event Service Ontology with Event Patterns. 

•  How to determine if two event patterns are functionally equivalent? 
–  Create and compare canonical event patterns to find substitutes. 

•  How to create event compositions and choose the optimal? 
–  Top-down traverse to find functionally-equivalent canonical 

patterns. 
•  How to derive event service compositions efficiently? 

–  Construct and utilize an Event Reusability Hierarchy for event 
service composition. 
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Gao,	  F.,	  Ali,	  M.I.,	  Curry,	  E.,	  Mileo,	  A.:	  On	  Discovery	  and	  Integra2on	  of	  Urban	  Data	  Streams	  
for	  Real2me	  Smart	  City	  Applica2ons.	  J.	  Data	  Seman=cs	  (2015)	  to	  appear	  
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Automated Complex Event Implementation System 
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How	  to	  leverage	  the	  IoT	  and	  Seman;c	  
Web	  infrastructure	  for	  (efficient)	  

Web	  Stream	  Reasoning?	  
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The StreamRule idea 
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•  2-tier approach: not all data streams are relevant for complex reasoning 
•  Enrich the ability of complex reasoning over data streams  
•  Keep the solution scalable  
•  Leverage existing engines from both stream processing and non-

monotonic reasoning research areas 

Mileo,	  A.,	  Abdelrahman,	  A.,	  Policarpio,	  S.,	  Hauswirth,	  M.:	  Streamrule:	  A	  nonmonotonic	  
stream	  reasoning	  system	  for	  the	  Seman2c	  Web.	  In:	  RR	  2013,	  247–252	  
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Limitations 
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•  The more expressive the inference task, the longer it takes to perform 
reasoning 

•  Bottleneck when results are returned not as fast as the next input 
arrives 
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Adaptation Heuristics: ongoing work 

•  More than an engineering problem 
–  How to model interactions between RSP and ASP components, 

including different semantics, input split, window-size tuning,… 

•  Design and runtime features 
–  E.g. operational semantics (design) and throughput (runtime) 

•  Streaming rate and window size: where’s the tradeoff? 

•  Reasoning Complexity: how far can we go? How can we parametrise 
the complexity to estimate the execution time 
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Goal 

 
 

Given a fixed streaming size S with fixed complexity C and unit of time U, find a 
window size W such that the time required to process S events using windows of 

size W is less than or equal to one unit of time 
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Tω S,W( )≤U

ClingoTranslator Translator
facts answer setevents answers

Asp 
Rules

Reasoner

Germano,	  S.,	  Pham,	  T.L.,	  Mileo,	  A.:	  Web	  stream	  reasoning	  in	  prac2ce:	  on	  the	  expressivity	  vs.	  
scalability	  tradeoff.	  In:	  Web	  Reasoning	  and	  Rule	  Systems	  -‐	  9th	  Interna=onal	  Conference,	  RR	  
2015,	  Berlin,	  Germany,	  August	  4-‐5,	  2015,	  Proceedings.	  (2015)	  105–112	  
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Experimental setup 

•  Dataset 
–  Simulated randomly generated events of the type 

event(type, name, value, latitude, longitude) 
E.g. event(weather, strong-wind, 2014-11-26T13:00:00, 38.011736, 12.186724) 

•  Reasoning tasks 
–  Ranking event criticality 
–  Contextualizing events based on user status 
–  Default rule to detect changes in event criticality 

•  Run 
–  Streaming size up to 30000 
–  Reasoner triggered 20 times for each S
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Empirical Results 
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T 20000( ) =1232ms
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Empirical Results 

T 20000( ) =1232ms
T 5000( ) = 216ms
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Empirical Results 
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Ongoing work  

•  Relaxing the independence assumption 
–  Extended notion of dependency graph 
–  Possibly use duplication 
–  Smaller input sets given to the same ASP program 
–  Demonstrate correctness of results 

•  Going parallel 
–  Explore parallelism of SPARK for higher scalability  
–  Requires to map an ASP program to SPARK jobs 

•  Correlation between reasoning complexity and execution time 
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Reasoning Complexity 

Streaming rate Window size 



Dealing	  with	  Uncertainty	  
and	  learning	  rela;onal	  

structures	  
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IoT data are messy: deal with uncertainty 

•  Expressive inference  
–  non-monotonicity, noisy, partial and inconsistent data 

•  “ease of” declarative logic-based reasoning to model a problem/
domain. Still we need to manage uncertainty and non-monotonicity 

•  Probabilistic rules for uncertain knowledge and learning by example 
–  represent, use, infer and learn probabilistic knowledge (PrASP) 

28	  

Can we (learn the) answer to questions about uncertain knowledge 
using qualitative (declarative) inference in dynamic environments? 
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What is Streaming PrASP 

A framework that uses: 
 
1.  PrASP as an uncertainty reasoning server to reason over Streaming 

Web Data 
2.  Continuous Query Processing over Linked Data Streams for data 

filtering 
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Nickles,	  M.,	  Mileo,	  A.:	  Web	  stream	  reasoning	  using	  probabilis2c	  answer	  set	  programming.	  
In:	  Web	  Reasoning	  and	  Rule	  Systems	  (RR)	  2014.	  (2014)	  197–205	  
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What	  is	  PrASP	  then?	  

Nickles,	  M.,	  Mileo,	  A.:	  Web	  stream	  reasoning	  using	  probabilis2c	  answer	  set	  programming.	  
In:	  Web	  Reasoning	  and	  Rule	  Systems	  (RR)	  2014.	  (2014)	  197–205	  
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PrASP is… 

… an experimental Statistical Relational Learning (SRL) reasoner based 
on Answer Set Programming (ASP)  
 
 
 
 
 
… represent, use infer and learn probabilistic knowledge 
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PrASP can… 

Ma`hias	  Nickles,	  Alessandra	  Mileo:	  A	  System	  for	  Probabilis2c	  Induc2ve	  Answer	  Set	  
Programming.	  SUM	  2015:	  99-‐105	  
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Streaming PrASP 

•  Streaming new beliefs are added incrementally to a loaded PrASP 
program 

•  Streaming new learning examples are added to the set of learning 
examples E 

•  Assert/Retract, time decay and sliding windows supported 

•  Windows prefixes realized by a caching mechanism (no reactive ASP 
used) for faster processing 

•  Preprocessing based on RDF query processing over streams 
(SPARQL 1.1 + streaming operators) 
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Streaming PrASP framework 
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Ongoing work 

•  More experiments on Web Stream Reasoning with PrASP 

–  Looking for Usecase Scenarios and DATA to test PrASP 
–  Building a set of modules that can be downloaded and used for 

feedback 
•  Continuously exploring options for optimization, especially in the 

learning task 

•  More ambitious goals 
–  Structure Learning 
–  Relation between Streaming ASP and PrASP (currently not using 

Streaming ASP) 
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