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What streams do | need and
how “good” are they?
(Stream Discovery and

Federation)
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Quality and context-aware stream discovery

W3C
* What information do | need? R
— Data interoperability: Semantic descriptions

— Interface interoperability: streams as event
services

« How good is it?
— ADAPT to quality requirements and preferences
for data source selection
— Efficient processing of event logic
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Quality and context-aware stream discovery

 What information do | need? m——
— Interface interoperability: streams as event
services
— ADAPT to quality requirements and preferences
for data source selection

— Data interoperability: Semantic descriptions e O -
Architectures
« How good is it?
— Efficient processing of event logic
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Quality and context-aware stream discovery

* What information do | need?
— Data interoperability: Semantic descriptions

— Interface interoperability: streams as event Architectures
services

« How good is it?
— ADAPT to quality requirements and preferences
for data source selection
— Efficient processing of event logic

constraint
checking
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Quality and context-aware stream discovery

« What information do | need? S

— Data interoperability: Semantic descriptions ervice Oriented
Architectures

— Interface interoperability: streams as event
services
constraint
checking

« How good is it?
— ADAPT to quality requirements and preferences
for data source selection

— Efficient processing of event logic
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Summary of the Approach

How to describe complex event services?
— Create an Event Service Ontology with Event Patterns.
How to determine if two event patterns are functionally equivalent?
— Create and compare canonical event patterns to find substitutes.
How to create event compositions and choose the optimal?

— Top-down traverse to find functionally-equivalent canonical
patterns.

How to derive event service compositions efficiently?

— Construct and utilize an Event Reusability Hierarchy for event
service composition.

Gao, F., Ali, M.1., Curry, E., Mileo, A.: On Discovery and Integration of Urban Data Streams
for Realtime Smart City Applications. J. Data Semantics (2015) to appear

Stream Reasoning Workshop, Vienna, 9th November 2015
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How to leverage the loT and Semantic
Web infrastructure for (efficient)
Web Stream Reasoning?

Stream Reasoning Workshop, Vienna, 9th November 2015
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The StreamRule idea

« 2-tier approach: not all data streams are relevant for complex reasoning
« Enrich the ability of complex reasoning over data streams
« Keep the solution scalable

« Leverage existing engines from both stream processing and non-
monotonic reasoning research areas

| RDF Stream Rule-based
" Processing Filtered Stream Non-monotonic
£ .
g | Reasoning Answers >
gl

| =/ < Query > 1 < Logic Program >

Mileo, A., Abdelrahman, A., Policarpio, S., Hauswirth, M.: Streamrule: A nonmonotonic
stream reasoning system for the Semantic Web. In: RR 2013, 247-252

Stream Reasoning Workshop, Vienna, 9th November 2015
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Limitations

« The more expressive the inference task, the longer it takes to perform

reasoning
« Bottleneck when results are returned not as fast as the next input

arrives
| RDF Stream N Rule-based

" Processing Filtered Stream Non-monotonic
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Limitations

Streams

The more expressive the inference task, the longer it takes to perform

reasoning
Bottleneck when results are returned not as fast as the next input

arrives

| RDF Stream N Rule-based
Processing Filtered Stream Non-monotonic
| Reasoning Answers >

| Adaptation
< Query > < Logic Program >
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Adaptation Heuristics: ongoing work

More than an engineering problem

— How to model interactions between RSP and ASP components,
including different semantics, input split, window-size tuning,...

« Design and runtime features
— E.g. operational semantics (design) and throughput (runtime)

« Streaming rate and window size: where’s the tradeoff?

« Reasoning Complexity: how far can we go? How can we parametrise
the complexity to estimate the execution time

Stream Reasoning Workshop, Vienna, 9th November 2015
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Goal

Reasoner
events facts . answer set answers
—— | | Translator » Clingo »| Translator | ———
Asp
Rules
—

Given a fixed streaming size S with fixed complexity C and unit of time U, find a
window size W such that the time required to process S events using windows of
size W is less than or equal to one unit of time

T, (S,W)<U

Germano, S., Pham, T.L., Mileo, A.: Web stream reasoning in practice: on the expressivity vs.
scalability tradeoff. In: Web Reasoning and Rule Systems - 9th International Conference, RR
2015, Berlin, Germany, August 4-5, 2015, Proceedings. (2015) 105-112

Stream Reasoning Workshop, Vienna, 9th November 2015
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Experimental setup

 Dataset

— Simulated randomly generated events of the type

event(type, name, value, latitude, longitude)
E.qg. event(weather, strong-wind, 2014-11-26T13:00:00, 38.011736, 12.186724)

 Reasoning tasks

— Ranking event criticality

— Contextualizing events based on user status

— Default rule to detect changes in event criticality
* Run

— Streaming size up to 30000

— Reasoner triggered 20 times for each S

Stream Reasoning Workshop, Vienna, 9th November 2015
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Empirical Results
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Ongoing work

* Relaxing the independence assumption
— Extended notion of dependency graph
— Possibly use duplication
— Smaller input sets given to the same ASP program
— Demonstrate correctness of results
« Going parallel
— Explore parallelism of SPARK for higher scalability
— Requires to map an ASP program to SPARK jobs
« Correlation between reasoning complexity and execution time

Streaming rate Window size

Reasoning Complexity

Stream Reasoning Workshop, Vienna, 9th November 2015
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loT data are messy: deal with uncertainty

« Expressive inference
— non-monotonicity, noisy, partial and inconsistent data

» ‘“ease of” declarative logic-based reasoning to model a problem/
domain. Still we need to manage uncertainty and non-monotonicity

« Probabilistic rules for uncertain knowledge and learning by example
— represent, use, infer and learn probabilistic knowledge (PrASP)

Can we (learn the) answer to questions about uncertain knowledge
using qualitative (declarative) inference in dynamic environments?

Stream Reasoning Workshop, Vienna, 9th November 2015
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What is Streaming PrASP

A framework that uses:

1. PrASP as an uncertainty reasoning server to reason over Streaming
Web Data

2. Continuous Query Processing over Linked Data Streams for data
filtering

Nickles, M., Mileo, A.: Web stream reasoning using probabilistic answer set programming.
In: Web Reasoning and Rule Systems (RR) 2014. (2014) 197-205

Stream Reasoning Workshop, Vienna, 9th November 2015
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What is Streaming PrASP

A framework that uses:

1. PrASP as an uncertainty reasoning server to reason over Streaming
Web Data

2. Continuous Query Processing over Linked Data Streams for data
filtering

Nickles, M., Mileo, A.: Web stream reasoning using probabilistic answer set programming.
In: Web Reasoning and Rule Systems (RR) 2014. (2014) 197-205

What is PrASP then?

Stream Reasoning Workshop, Vienna, 9th November 2015
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PrASP is...

... an experimental Statistical Relational Learning (SRL) reasoner based
on Answer Set Programming (ASP)

PrASP can...

... represent, use infer and learn probabilistic knowledge

Matthias Nickles, Alessandra Mileo: A System for Probabilistic Inductive Answer Set
Programming. SUM 2015: 99-105

Stream Reasoning Workshop, Vienna, 9th November 2015
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Streaming PrASP

« Streaming new beliefs are added incrementally to a loaded PrASP
program

«  Streaming new learning examples are added to the set of learning
examples E

» Assert/Retract, time decay and sliding windows supported

« Windows prefixes realized by a caching mechanism (no reactive ASP
used) for faster processing

* Preprocessing based on RDF query processing over streams
(SPARQL 1.1 + streaming operators)

Stream Reasoning Workshop, Vienna, 9th November 2015
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Streaming PrASP framework
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Streaming PrASP framework
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Ongoing work

* More experiments on Web Stream Reasoning with PrASP

— Looking for Usecase Scenarios and DATA to test PrASP

— Building a set of modules that can be downloaded and used for
feedback

« Continuously exploring options for optimization, especially in the
learning task

 More ambitious goals
— Structure Learning

— Relation between Streaming ASP and PrASP (currently not using
Streaming ASP)

Stream Reasoning Workshop, Vienna, 9th November 2015
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