
RDF Stream Processing
and the Role of Semantics

Jean-Paul Calbimonte
LSIR EPFL

Stream Reasoning Workshop 2015

Vienna, 10.11.2015

@jpcik

Why Streams?
Internet of Things
Sensor Networks
Mobile Networks
Smart Devices
Participatory Sensing
Transportation

Financial Data
Social Media
Urban Planning
Health Monitoring
Marketing

“It’s a

streaming

world!”[1]

2 Della Valle, et al : It's a Streaming World! Reasoning upon Rapidly Changing Information. IEEE Intelligent Systems

3

“The man who is swimming against the stream
knows the strength of it.”

W. Wilson

≋≋≋≋≋ ⊨ 

4

~~~~~~~~~~~~~~~~~~~~~


input stream continuous 
results



Why  Streams?

Web standards
Data discovery
Data sharing
Web queriesG

o
 W

e
b

Semantics
Vocabularies
Data Harvesting
Data linking
MatchingIn

te
gr

at
io

n Ontologies
Expressivity
Inference
Rule processing
Knowledge basesR

e
as

o
n

in
g

Query languages
Query answering
Efficient processing
Query Federation

P
ro

ce
ss

in
g

5



The RSP Community

6



The RSP Community
Research work
Many Papers
PhD Thesis
Datasets
Prototypes
Benchmarks

RDF Streams
Stream Reasoning
Complex Event Processing
Stream Query Processing
Stream Compression
Semantic Sensor WebM

an
y 

to
p

ic
s

To
n

s 
o

f 
w

o
rk

http://www.w3.org/community/rsp
W3C RSP Community Group

Effort to                     our work on RDF stream processing

discuss
standardize
combine
formalize
evangelize

7



Linked Data on the Web

8

Web of Data
Linked Data

W3C Standards: RDF, SPARQL, etc. 



9

e.g. publish sensor data as RDF/Linked Data?

URIs as names of things

HTTP URIs

useful information when URI 
is dereferenced

Link to other URIs

users

applicationsWEB

Use Linked Data principles for representing, 
querying and processing RDF streams?

static vs. streams

one-off vs. continuous

Querying the Web of Data



~~~~~~~

RDF Streams

10

~~~~~~~~~~~~~~ 
stream of RDF data

A bit of semantics in the data
Well defined ontology models
Web standards



Continuous extensions of RDF

11

• As you know, “RDF -> standard model for data interchange on the Web” 
(http://www.w3.org/RDF/)

<sub
1
pred

1
obj

1
>

<sub
2
pred

2
obj

2
>

• Extend RDF to model data streams

• A data stream is an (infinite) ordered sequence of data items

• A data item is a self-consumable informative unit

Simple model: 

Subject Predicate Object



Data items

12

• With data item we can refer to:
1. A triple

2. A graph

<:alice :isWith :bob>

<:alice :posts :p>

<:p :who :bob> 

<:p :where :redRoom>

:graph1



RDF stream model

13

• A commonly adopted RDF stream model
• A RDF triple is an event

• Application time: point-based

<:alice :isWith :bob>:[1]

<:alice :isWith :carl>:[3]

<:bob :isWith :diana>:[6]

...

e1 e2 e3 e4S

t3 6 91

:alice :isWith :bob

:alice :isWith :carl

:bob :isWith :diana

:diana :isWith :carl



RSP Data Model

14 https://github.com/streamreasoning/RSP-QL/blob/master/Semantics.md

Timestamped Graph

:g1 {:axel :isIn :RedRoom. :darko :isIn :RedRoom} 

{:g1 prov:generatedAtTime "2001-10-26T21:32:52"}

 Many/One-triple graphs
 Multiple time predicates
 Implicit timestamp
 Different timestamp representations
 Contemporaneity

Allows:

A RDF stream S consists of a sequence of timestamped graphs (with a partial order)

RDF Stream

:g1 {:axel :isIn :RedRoom. :darko :isIn :RedRoom} {:g1,prov:generatedAtTime,t1} 

:g2 {:axel :isIn :BlueRoom. } {:g2,prov:generatedAtTime,t2} 

:g3 {:minh :isIn :RedRoom. } {:g3,prov:generatedAtTime,t3} ... 

Substream, time-bounded substream, window, window function, …



Querying RDF: SPARQL

15

SELECT ?room WHERE{

:alice :posts ?post 

?post :where  ?room

}

<:alice :posts :p>

<:p :who :bob> 

<:p :where :redRoom>

SELECT COUNT(?post) WHERE{

?person :posts  ?post

:post   :who   :bob

}

Where is alice?

How many posts about bob?

How about streams?



Querying data streams – The CQL model

16

Streams Relations

…
<s,τ>
…

<s1>
<s2>
<s3>

infinite
unbounded
sequence

finite
bag

Mapping: T  R

stream-to-relation

relation-to-stream

relation-to-relation

Stream Relation R(t)

Relational algerbra

*Stream operators

Sliding windows



CQL-like extensions for RDF stream queries

17

RDF 
Streams

RDF 
Mappings

S2R operators

R2S operators

SPARQL operators

*Stream operators

Sliding windows



Ontology-based access for data streams

Mappings to native streams
Delegated execution
Live transformation of results

18

SPARQLStream

Virtual RDF Stream

DSMS CEP Sensor 
middleware

…

rewritten 
queries

users, applications

query processing Morph-streams

data layer

“Query virtual RDF streams”[1]

Push:
Using Websockets! 
Two way communication
Responsive answers



Similar (not equals!) query languages

19

SELECT ?sensor

FROM NAMED STREAM <http://www.cwi.nl/SRBench/observations> [NOW-3 HOURS SLIDE 10 

MINUTES]

WHERE { 

?observation om-owl:procedure ?sensor ; 

om-owl:observedProperty weather:WindSpeed ; 

om-owl:result [ om-owl:floatValue ?value ] . } 

GROUP BY ?sensor HAVING ( AVG(?value) >= "74"^^xsd:float )

SELECT ?sensor 

WHERE { 

STREAM <http://www.cwi.nl/SRBench/observations> [RANGE 10800s SLIDE 600s] {

?observation om-owl:procedure ?sensor ; 

om-owl:observedProperty weather:WindSpeed ; 

om-owl:result [ om-owl:floatValue ?value ] .} } 

GROUP BY ?sensor HAVING ( AVG(?value) >= "74"^^xsd:float )

SELECT ?sensor

FROM STREAM <http://www.cwi.nl/SRBench/observations> [RANGE 1h STEP 10m] 

WHERE { 

?observation om-owl:procedure ?sensor ; 

om-owl:observedProperty weather:WindSpeed ; 

om-owl:result [ om-owl:floatValue ?value ] . } 

GROUP BY ?sensor HAVING ( AVG(?value) >= "74"^^xsd:float )

SPARQLStream

CQELS

C-SPARQL



Classification of existing systems

20

M
o

d
e

l

C
o

n
ti

n
u

o
u

s
ex

e
cu

ti
o

n

U
n

io
n

, J
o

in
, 

O
p

ti
o

n
al

, 
Fi

lt
e

r

A
gg

re
ga

te
s

Ti
m

e
 

w
in

d
o

w

Tr
ip

le
 

w
in

d
o

w

R
2

S 
o

p
e

ra
to

r

Se
q

u
e

n
ce

, 
C

o
-

o
cu

rr
e

n
ce

TA-SPARQL TA-RDF ✗ ✔ Limited ✗ ✗ ✗ ✗

tSPARQL tRDF ✗ ✔ ✗ ✗ ✗ ✗ ✗

Streaming
SPARQL

RDF 
Stream

✔ ✔ ✗ ✔ ✔ ✗ ✗

C-SPARQL
RDF 

Stream
✔ ✔ ✔ ✔ ✔ Rstream

only
time 

function

CQELS
RDF 

Stream
✔ ✔ ✔ ✔ ✔ Istream

only
✗

SPARQLStrea
m

(Virtual) 
RDF 

Stream 

✔ ✔ ✔ ✔ ✗ ✔ ✗

EP-SPARQL
RDF 

Stream
✔ ✔ ✔ ✗ ✗ ✗ ✔

Instans RDF ✔ ✔ ✔ ✗ ✗ ✗ ✗

Disclaimer: other features may be missing



21

PREFIX e: <http://somevocabulary.org/> 

PREFIX s: <http://someinvasivesensornetwork.org/streams#> 

PREFIX g: <http://somesocialnetwork.org/graphs#> 

PREFIX : <http://acrasycompany.org/rsp> 

REGISTER STREAM :GallehaultWasTheBar

UNDER ENTAILMENT REGIME <http://www.w3.org/ns/entailment/RIF> AS CONSTRUCT ISTREAM { 

?poi rdf:type :Gallehault ; 

:count ?howmanycouples ; 

:for (?somebody ?someoneelse) } 

FROM NAMED WINDOW :veryLongWindow ON s:1 [RANGE PT4H STEP PT1H] 

FROM NAMED WINDOW :longWindow ON s:1 [FROM NOW-PT35M TO NOW-PT5M STEP PT5M] 

FROM NAMED WINDOW :shortWindow ON s:1 [RANGE PT10M STEP PT5M] 

FROM NAMED GRAPH g:SocialGraph 

FROM GRAPH g:POIs 

WHERE { 

?poi rdf:type e:bar . 

WINDOW :veryLongWindow { 

{?somebody e:enters ?poi} BEGIN AT ?t3 

{?someoneelse e:enters ?poi} BEGIN AT ?t4 

FILTER(?t3>?t4) 

} 

WINDOW :longWindow { 

{ ?somebody e:isCloseTo ?someoneelse MINUS { 

?somebody e:isCloseTo ?yetanotherone . 

FILTER (?yetanotherone != ?someoneelse) } 

} WITH DURATION ?duration 

FILTER (?duration>="PT30M"^^xsd:duration) 

} 

WINDOW :shortWindow { 

{ ?somebody e:exits ?bar} BEGIN AT ?t1 

{ ?someoneelse e:exits ?bar } BEGIN AT ?t2 

FILTER (abs(?t2-?t1)<"PT1M"^^xsd:duration ) 

}

GRAPH g:SocialGraph { 

FILTER NOT EXIST { ?somebody e:knows ?someoneelse } 

} 

FILTER (?somebody != ?someoneelse) 

} 

AGGREGATE { GROUP BY ?poi COUNT(?somebody) AS ?howmanycouples } 

RSP-QL
Continuously look for bars 

where people are falling in 

love (because of a book )Register stream

Time windows

Sequencing

Duration

Stored Graphs

Aggregates

Access to time

Reasoning

They entered the same bar

They are close to each other, 
with no-one else

They get out together

Didn’t know each other



Semantics of SPARQL for Streams

22

• EP-SPARQL: a unified language for event processing and stream reasoning. Anicic, D., Fodor, P., Rudolph, 

S., & Stojanovic, N. In WWW (p. 635-644). ACM. 2011. 

• C-SPARQL: a Continuous Query Language for RDF Data Streams. Barbieri, D. F., Braga, D., Ceri, S., Della

Valle, E., & Grossniklaus, M. Int. J. Semantic Computing, 4(1), 3-25. 2010. 

• Enabling query technologies for the semantic sensor web. Calbimonte, J.-P., Jeung, H., Corcho, Ó., & 

Aberer, K. Int. J. Semantic Web Inf. Syst., 8(1), 43-63. 2012. 

• A Native and Adaptive Approach for Unified Processing of Linked Streams and Linked Data. Phuoc, D. L., 

Dao-Tran, M., Parreira, J. X., & Hauswirth, M.In ISWC (Vol. 7031, p. 370-388). Springer. 2011. 

• RSP-QL Semantics: a Unifying Query Model to Explain Heterogeneity of RDF Stream Processing Systems. 

D. Dell’Aglio, E. Della Valle, J.-P. Calbimonte, O. Corcho. Int. J. Semantic Web Inf. Syst, 10(4). (in press). 

2015.

• LARS: A Logic-based Framework for Analyzing Reasoning over Streams. Beck, H., Dao-Tran, M., Eiter, T., 

Fink, M. In AAAI. 2015. 



23

e.g. publish sensor data as RDF/Linked Data?

URIs as names of things

HTTP URIs

useful information when URI 
is dereferenced

Link to other URIs

users

applicationsWEB

Use Linked Data principles for representing, 
querying and processing RDF streams?

static vs. streams

one-off vs. continuous

Querying the Web of Data



URIs as Names of Things

24

http://mysensorweb.me/mytemperature/20151110Z10:00:00

Different concepts 

http://mysensorweb.me/mytemperature/latest

http://mysensorweb.me/mytemperature/lastMinute

http://mysensorweb.me/mytemperature/lastMonth

Different granularities

Different uses

http://mysensorweb.me/mytemperature/avgLastMonth

http://mysensorweb.me/mytemperature



HTTP URIs

25

http://mysensorweb.me/mytemperature/latest

Internet of Things

How about XMPP, CoAP, MQTT?
Websockets?



De-referenceable URIs

26

GET http://mysensorweb.me/mytemperature/latest

:Obs1 a my:TemperatureObservation;

my:hasValue 33.5 ;

my:hasUnit u:Celsius;

my:atTime “20151110Z10:00:00”.

GET http://mysensorweb.me/mytemperature

Get the whole stream?

GET http://mysensorweb.me/mytemperature/lastMonth

Get continuous updates?



Link to other URIs

27

• Broken links?

• Mix streaming and stored data

• Persist or not persist?

• Volatile links?

http://mysensorweb.me/mytemperature/20151110Z10:00:00



Stonebreaker et al. The 8 requirement of Real-TimeStream Processing. SIGMOD Record. 2005.

Looking back 10 years ago…

“8 requirements of  

real-time stream 

processing”[2]

Do we address them?
Do we have more requirements?
Do we need to do more?

Keep data moving
Query with stream SQL
Handle imperfections
Predictable outcomes
Integrate stored data
Data safety & availability
Partition & scale
Respond Instantaneously8

 R
e

q
u

ir
e

m
e

n
ts

28



Reactive Systems
Keep data moving
Query with stream SQL
Handle imperfections
Predictable outcomes
Integrate stored data
Data safety & availability
Partition & scale
Respond Instantaneously8

 R
e

q
u

ir
e

m
e

n
ts

Event-Driven

Jonas Boner. Go Reactive: Event-Driven, Scalable, Resilient & Responsive Systems. 2013.

Events:

re
a

ct
 t

o

ScalableLoad:

ResilientFailure:

ResponsiveUsers:

Do we address them?
Do we have more requirements?
Do we need to do more?

29



Reactive RSPs
Keep data moving
Query with stream SQL
Handle imperfections
Predictable outcomes
Integrate stored data
Data safety & availability
Partition & scale
Respond Instantaneously8

 R
e

q
u

ir
e

m
e

n
ts We go beyond only these

30

Data Heterogeneity
Data Modeling
Stream Reasoning
Data discovery
Stream data linking
Query optimization
… more

Reactive Principles
Needed if we want to build relevant systems



Reactive RSP workflows

31

Morph
Streams

CSPARQL

s

Etalis

TrOWL

s

s CQELS

SLD

s

Minimal agreements: standards, serialization, interfaces
Formal models for RSPs and reasoning
Working prototypes/systems!

Event-driven message passing
Async communication
Immutable streams
Transparent Remoting
Parallel and distributed
Supervised Failure Handling
Responsive processing

Reactive RSPs



Muchas gracias!

Jean-Paul Calbimonte
LSIR EPFL

@jpcik


