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Colorful Components framework

Input: An undirected graph G with colored vertices.
Goal: Delete edges to get colorful components.
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Minimum Singleton Vertices

Goal: Minimize the number of singleton vertices.
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Maximum Edges in Transitive Closure

Goal: Maximize the number of edges in the transitive closure.
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Minimum Colorful Components

Goal: Minimize the number of colorful components.
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Related Work

Colorful Components asks for the minimum number of edge
deletions.

I NP-hard for ≥ 3 colors + FPT algorithms [Bruckner, Hüffner,
Komusiewicz, Niedermeier, Thiel, Uhlmann 2012]

I APX-hard
I Heuristics [Bruckner, Hüffner, Komusiewicz, Niedermeier, Thiel,

Uhlmann 2012] and [Zheng, Swenson, Lyons, Sankoff 2011]
I Approximation algorithms for a special case [He, Liu, Zha 2000]
I O(log |C|) approximation (from Multi-Multiway Cut)
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Related Work

I MSV and MEC are introduced by [Zheng, Swenson, Lyons,
Sankoff 2011]

I Applications in comparative genomics
I Heuristics
I MSV and MEC are conjectured to be NP-hard
I 2/3 approximation for the dual of MSV (MAX-OREC)

[Tremblay-Savard, Swenson 2012]
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Our Results

1 O(|V | · |E |) exact algorithm for MSV
I The conjecture of [Zheng, Swenson, Lyons, Sankoff 2011] is

disproved
I Exact algorithm for MAX-OREC

2a MEC is APX is hard for 3 colors
I Reduction from Maximum Bounded 3-Dimensional Matching
I Settles the complexity for constant number of colors

2b MEC is NP-hard to approximate within |V |1/3−ε

I Holds for trees and even if the color appears at most twice
I Reduction from the Independent Set

2c
√

2 ·OPT -approximation algorithm for MEC
I Based on the exact algorithm for MSV

3 MCC is hard to approximate within |V |1/2−ε

I Reduction from Minimum Clique Partition
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A lower bound for MSV

Lemma
In any feasible solution, for any color c, the number of singletons is
at least:

sc = max(|V ′| − |N̄(V ′)|)

V ′ = a set of vertices colored with c
N̄(V ′) = neighborhood with color 6= c
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A lower bound for MSV

Proof.
Fix a feasible partition G′ and a color c.
Let V ′ be a set that maximizes sc .

For each non-singleton v ′ ∈ V ′ pick a neighbor n(v ′) in G′.
Any two vertices in V ′ are in different components of G′ ⇒ the
vertices n(v ′) are disjoint.

# non-singletons ≤ |N̄(V ′)|
# singletons is at least |V ′| − |N̄(V ′)|
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Exact algorithm for MSV (sketch)

1. Start with an edgeless graph G′

2. At each step add an alternating path of odd length
3. The path has edges from G and every second edge is in G′

4. # singleton vertices of color c decreases
5. # other singletons does not increase
6. Each connected component of G′ is a singleton, edge or star
7. When there is no alternating path, we match the lower bound
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How to find alternating paths?

I Start with a singleton of col. c
I Connect a vertex of col. c with a vertex of col. 6= c and

viceversa
I Alternate edges in E \ E ′ with edges in E ′
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Where to end the alternating path?

I End vertex is a leaf of a star⇒ remove the leaf from the star

X

I No col. c in the component⇒ one singleton less + vertices of
color c are “switched” between components
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√
2 · OPT-approximation

(Handwaving)

In the worst case: OPT =
(|V |

2

)
and MSV = |V |/2

Approximation ratio: (|V |
2 )

|V |
2

=
√

2 · OPT
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|V |1/3−ε hardness of approximation for MEC
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Hardness of approximating MEC
Lemma
IS of size α⇒ MEC of value

(
αn2

2

)
.

Lemma
MEC of value n5/2 + α2 · n4 ⇒ IS of size α.

Theorem
It is NP-hard to approximate MEC within a factor of |V |1/3−ε.

Proof.
NP-hard: IS < nε or IS ≥ n1−ε ?
OPTMEC ≤ n5/2 + n4+2ε

OPTMEC ≥ n6−2ε/2
The number of vertices of G′ is in Θ(n3)
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APX-hardness of MEC for |C| = 3

Reduction from Max Bounded 3D-matching:
each element is in ≤ 3 triples.

Figure : A subgraph corresponding to a triple tj = (xi , yk , zl )
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APX-hardness of MEC for |C| = 3

All the vertices are matchend⇒ OPTMEC = 6· # triples + # elements

Figure : A triple from T ′ (left) and a triple from T \ T ′ (right).
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Future work

I Other meaningful objective functions.
I Test MSV algorithm on real data.
I Close the gap between the hardness and approximability of

MEC.
I Maximizing the number of edges in the connected components.
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Merci!

Dziȩkujȩ!

Mulţumesc!

Thank you!
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