# Query Compilation: the View from the Database Side 

## Dan Suciu

## University of Washington

Joint with: P. Beame, N. Dalvi, A. Jha, J. Li, S. Roy

## The View from the Database Side

- The large Boolean formula $F$ is generated by some much smaller program Q
- Each Q defines a different problem:
- KC, or SAT-solver, or ... for formulas F produced by Q
- Data complexity: query Q, database D
- This talk:
$-Q$ is a sentence in $F O(\wedge, V, \forall)$
- The problem is model counting \#F and KC
- Color code: blue=fixed, red=input


## Sources

- Jha, S., ICDT 2011
- Dalvi, S., JACM 2012
- Beame, Li, Roy, S. UAl'2013
- Beame, Li, Roy, S. ICDT'2014
- Background on probabilistic databases:

Dan Suciu
Dan Olteanu
Christopher Ré
Christoph Koch

## Model Counting

- Given Boolean formula F, compute the number of models \#F

Example:
F = X1 X2 V X2 X3 V X3 X1
\#F $=4$
[Valiant] \#P-hard, even for 2CNF

| X 1 | X 2 | X 3 | F |
| :---: | :---: | :---: | :---: |
| 0 | 0 | 0 | 0 |
| 0 | 0 | 1 | 0 |
| 0 | 1 | 0 | 0 |
| 0 | 1 | 1 | $\mathbf{1}$ |
| 1 | 0 | 0 | 0 |
| 1 | 0 | 1 | $\mathbf{1}$ |
| 1 | 1 | 0 | $\mathbf{1}$ |
| 1 | $\mathbf{1}$ | 1 | 4 |

## Probability of a Formula

- Each variable $X$ has a probability $p(X)$;
- $P(F)=$ probability that $F=$ true

Example:

$$
\begin{aligned}
& F=X 1 \times 2 \vee \times 2 \times 3 \vee \times 3 \times 1 \\
& P(F)=(1-p 1)^{*} p 2^{*} p 3+ \\
& p 1^{*}(1-p 2)^{*} p 3+ \\
& p 1^{*} p 2^{*}(1-p 3)+ \\
& p 1^{*} p 2^{*} p 3
\end{aligned}
$$

$P(F)=\# F / 2^{n}$, when $p(X)=1 / 2$ for all $X$

| X 1 | X 2 | X 3 | F |
| :---: | :---: | :---: | :---: |
| 0 | 0 | 0 | 0 |
| 0 | 0 | 1 | 0 |
| 0 | 1 | 0 | 0 |
| 0 | 1 | 1 | $\mathbf{1}$ |
| 1 | 0 | 0 | 0 |
| 1 | 0 | 1 | $\mathbf{1}$ |
| 1 | 1 | 0 | $\mathbf{1}$ |
| 1 | 1 | 1 | $5 \mathbf{1}$ |

## Grounding of an FO Sentence

Let $Q$, be an $F O$ sentence, $n$ a natural number.
Def The grounding, $F_{n}(Q)$ is:

- $F_{n}(\forall x Q)=\wedge_{i \in[n]} F_{n}(Q[i / x])$
- $F_{n}(\exists x Q)=V_{i \in[n]} F_{n}(Q[i / x])$
- $F_{n}\left(Q_{1}\right.$ op $\left.Q_{2}\right)=F_{n}\left(Q_{1}\right)$ op $F_{n}\left(Q_{1}\right) \quad$ op $=\wedge, V, \neg$

Example: $\mathrm{Q}=\forall \mathrm{d}($ Rain $(\mathrm{d}) \Rightarrow$ Cloudy $(\mathrm{d})) \quad \mathrm{n}=7$
$F_{7}(Q)=\left(\right.$ Rain $_{1} \Rightarrow$ Cloudy $\left._{1}\right) \wedge \ldots \wedge\left(\right.$ Rain $_{7} \Rightarrow$ Cloudy $\left._{7}\right)$

Probabilistic Databases, Markov Logic Networks, ...

## Research Question

Given an FO sentence $Q$ determine the complexity of $P\left(F_{n}(Q)\right)$; PTIME? \#P-hard?

Data complexity: assume fixed $Q$, input given by $n$
In practice, Q is small:

- SQL query: 10-20 joins
- MLN's: 10-15 rules

Next: knowledge compilation for $\mathrm{F}_{\mathrm{n}}(\mathrm{Q})$

## Outline

- Problem statement
- Review: FBDD, Decision-DNNF
- Hard Queries
- Easy Queries
- Hard/Easy Queries
- Conclusion


## Knowledge Compilation Targets

- FBDD (Free Binary Decision Diagram)
- Decision-DNNF (Decomposable Negation Normal Form)
$P(F)$ computable in linear time in the KC


## Knowledge Compilation Targets,

 Children of $\wedge$have disjoint


## FBDD:

Decision-, sink-nodes

Decision-DNNF
add: decomposable- $\wedge$-nodes

## DPLL and Knowledge Compilation

Fact: Trace of full-search DPLL $\rightarrow \mathrm{KC}$ :

- Basic DPLL
$\rightarrow$ decision trees
- DPLL + caching $\rightarrow$ FBDD
- DPLL + caching + components
$\rightarrow$ decision-DNNF

Our interest in KC: lower bounds for DPLL.

## Research Question

Given an FO sentence Q

## Determine the complexity of $P\left(F_{n}(Q)\right)$; PTIME? \#P-hard?

Determine the size of $K C$ for $F_{n}(Q)$
"Data complexity": fixed Q, input given by n

## Outline

- Problem statement
- Review: FBDD, Decision-DNNF
- Hard Queries
- Easy Queries
- Hard/Easy Queries
- Conclusion


## Background

## Theorem [Bollig\&Wegener'98] Any FBDD for $F=\Lambda_{(i, j) \in E}\left(R_{i} \vee T_{j}\right)$ has size $2^{\Omega(\sqrt{n})}$

## Where

$$
\begin{aligned}
& R_{1}, \ldots, R_{n}, T_{1}, \ldots, T_{n}=\text { Boolean Variables } \\
& E=\ldots(\text { some complex relation } \subseteq[n] \times[n])
\end{aligned}
$$

$$
\begin{aligned}
& \text { For } p=a \operatorname{prime}, n=p^{2}, \\
& E=\{(1+i, 1+j) \mid i=a+b p, j=c+d p, c=a+b d \bmod p\} \\
& |E|=p^{3}=n^{3 / 2}
\end{aligned}
$$

## $\mathrm{H}_{0}$ is Hard for FBDDs

$$
H_{0}=\forall x \forall y(R(x) \vee S(x, y) \vee T(y))
$$

$$
F_{n}\left(H_{0}\right)=\Lambda_{i \in[n], i \in[n]}\left(R_{i} \vee S_{i j} \vee T_{j}\right)
$$

By [B\&W], any FBDD has size $2^{\Omega(\sqrt{n}) \text {. We strengthen: }}$

Th. [Beame'14] Any FBDD for $F_{n}\left(H_{0}\right)$ has size $\geq 2^{n-1} / n$.

What about Decision-DNNFs?

# Decision-DNNF to FBDD 

Optimal
[Razgon]
We proved this in [Beame'13]:
Theorem If F has a Decision-DNNF with N nodes, then F has an FBDD with at most $\mathrm{N}^{1+\log (\mathrm{N})}$ nodes.


## $\mathrm{H}_{0}$ is Hard for Decision-DNNFs

## Corollary Any Decision-DNNF for $F_{n}\left(H_{0}\right)$ has size $2^{\Omega(\sqrt{n})}$

Proof. N-node Decision-DNNF to $\mathrm{N}^{1+\log (N)}$ nodes FBDD.

$$
\begin{aligned}
& N^{1+\log (N)}>2^{n-1} / n \\
& \log ^{n}(N)+\log ^{2}(N)>n-1-\log (n) \\
& \log ^{2}(N)=\Omega(n) \\
& \log (N)=\Omega(\sqrt{ } n)
\end{aligned}
$$

## Generalization

C = a positive clause; at $(x)=$ set of atoms containing variable $x$
Definition $C$ is hierarchical if forall $x, y$ : $\operatorname{at}(x) \subseteq \operatorname{at}(y)$ or $\operatorname{at}(x) \supseteq \operatorname{at}(y)$ or $\operatorname{at}(x) \cap \operatorname{at}(y)=\varnothing$
A query Q in $\mathrm{FO}(\wedge, \vee, \forall)$ is hierarchical if all its clauses are

Hierarchical


Non-hierarchical

$$
H_{0}=R(x) \vee S(x, y) \vee T(y)
$$



Thrm. If Q is non-hierarchical, any Decision-DNNF has size $2^{\Omega(\sqrt{n})}$.

## Discussion

Exponential size of KC not surprising, because:

Theorem \#F $\mathrm{F}_{\mathrm{n}}\left(\mathrm{H}_{0}\right)$ is \#P-hard.
(Same holds for any non-hierarchical Q)

Proof:
[Provan\&Ball'82] PP2CNF is \#P-complete:

$$
F=\Lambda_{(i, j) \in E}\left(R_{i} \vee T_{j}\right)
$$

## Research Question

Given an FO sentence Q in $\mathrm{FO}(\wedge, \vee, \nabla)$

Non-hierarchical Q
(e.g. $\mathrm{H}_{0}$ )

| Is $P\left(F_{n}(Q)\right)$ in PTIME? <br> Or \#P-hard? | \#P-hard |
| :--- | :--- |
| How large is <br> Knowledge Compilation <br> for $F_{n}(Q) ?$ | decision-DNNF <br> has size $2^{\Omega( }(\sqrt{n})$ |

What about hierarchical queries?

## Outline

- Problem statement
- Review: FBDD, Decision-DNNF
- Hard Queries
- Easy Queries
- Hard/Easy Queries
- Conclusion


## Easy Queries

- Let Q in $\mathrm{FO}(\wedge, \vee, \forall)$. Then $\mathrm{F}_{\mathrm{n}}(\mathrm{Q})$ has a polynomial-size OBDD iff it is both hierarchical and inversion-free.
- Recall: OBDD = FBDD with fixed variable order $П$


## Inversion-Free Queries

Definition An inversion in $Q$ is a sequence of co-occurring vars:

$$
\left(x_{0}, y_{0}\right),\left(x_{1}, y_{1}\right), \ldots,\left(x_{k}, y_{k}\right), \quad \text { such that: }
$$

- at $\left(x_{0}\right) \nsubseteq \operatorname{at}\left(y_{0}\right)$, at $\left(x_{1}\right)=a t\left(y_{1}\right), \ldots, \operatorname{at}\left(x_{k-1}\right)=a t\left(y_{k-1}\right), \operatorname{at}\left(x_{k}\right) \perp \operatorname{at}\left(y_{k}\right)$
- For all $i=1, . ., k-1$ there exists two atoms in Q of the form:

$$
S_{i}\left(\ldots, x_{i-1}, \ldots, y_{i-1}, \ldots\right) \text { and } S_{i}\left(\ldots, x_{i}, \ldots, y_{i}, \ldots\right)
$$

Inversion-free implies hierarchical, but converse fails
$\mathrm{Q}=\left[\mathrm{R}\left(\mathrm{x}_{0}\right) \mathrm{V}\left(\mathrm{x}_{0}, \mathrm{y}_{0}\right)\right] \wedge\left[\mathrm{S}\left(\mathrm{x}_{1}, \mathrm{y}_{1}\right) \vee \mathrm{T}\left(\mathrm{x}_{1}\right)\right]$

Inversion-free
Inversion

$$
H_{1}=\left[R\left(x_{0}\right) \vee S\left(x_{0}, y_{0}\right)\right] \wedge\left[S\left(x_{1}, y_{1}\right) \vee T\left(y_{1}\right)\right]
$$

## Easy Queries

Theorem [Jha\&S.11] Let Q in $\mathrm{FO}(\wedge, \vee, \forall)$ 1. If $Q$ has inversion then $O B D D$ for $F_{n}(Q)$ has size $2^{\Omega(n)}$ 2. Else, $F_{n}(Q)$ has OBDD of width $2^{\# a t o m s(Q)}$ (linear size)

Proof (part 2 only - next slide)

## $C_{1}=R(x) \vee S(x, y)$ $\wedge \mathrm{C}_{2}=\mathrm{T}\left(\mathrm{x}^{\prime}\right) \wedge S\left(x^{\prime}, y^{\prime}\right)=Q=[R(x) \vee S(x, y)] \wedge\left[T\left(x^{\prime}\right) \vee S\left(x^{\prime}, y^{\prime}\right)\right]$



## Research Question

Given an FO sentence Q in $\mathrm{FO}(\wedge, \vee, \forall)$
Non-
hierarchical Q Inversion
(e.g. $\mathrm{H}_{0}$ ) -free Q

| Is $P\left(F_{n}(Q)\right)$ in PTIME? <br> Or \#P-hard? | \#P-hard | PTIME |
| :--- | :--- | :--- |
| How large is | decision- | Poly-size |

Knowledge compilation for $F_{n}(Q)$ ? DNNF has size $2^{\Omega(\sqrt{n})}$

What about hierarchical queries w/ inversion?

## Outline

- Problem statement
- Review: FBDD, Decision-DNNF
- Hard Queries
- Easy Queries
- Hard/Easy Queries
- Conclusion


## Easy/Hard Queries

Will describe a class of queries $Q$ such that:

- Computing probability is easy
( $\mathrm{P}\left(\mathrm{F}_{\mathrm{n}}(\mathrm{Q})\right.$ ) in PTIME)
- Compiling $F_{n}(Q)$ is hard
(Exponential-size Decision-DNNF)
- Implication: inherent limitation of DPLLbased algorithms for model counting


## The Queries $\mathrm{H}_{\mathrm{k}}$

```
H0}=R(x)VS(x,y)\veeT(y
```

Non-hierarchical

```
H1}=[R(\mp@subsup{x}{0}{})\veeS(\mp@subsup{x}{0}{},\mp@subsup{y}{0}{})]^[S(\mp@subsup{x}{1}{},\mp@subsup{y}{1}{})\veeT(\mp@subsup{y}{1}{})
```

Hierarchical

Inversion: at $\left(x_{0}\right) \supset \operatorname{at}\left(\mathrm{y}_{0}\right)$, at $\left(\mathrm{x}_{1}\right) \subset \operatorname{at}\left(\mathrm{y}_{1}\right)$
$\mathrm{H}_{3}=\left[R\left(\mathrm{x}_{0}\right) \vee \mathrm{S}_{1}\left(\mathrm{x}_{0}, \mathrm{y}_{0}\right)\right] \wedge\left[\mathrm{S}_{1}\left(\mathrm{x}_{1}, \mathrm{y}_{1}\right) \vee \mathrm{S}_{2}\left(\mathrm{x}_{1}, \mathrm{y}_{1}\right)\right] \wedge\left[\mathrm{S}_{2}\left(\mathrm{x}_{2}, \mathrm{y}_{2}\right) \vee \mathrm{S}_{3}\left(\mathrm{x}_{2}, \mathrm{y}_{2}\right)\right] \wedge\left[\mathrm{S}_{3}\left(\mathrm{x}_{3}, \mathrm{y}_{3}\right) \vee \mathrm{T}\left(\mathrm{y}_{3}\right)\right]$

$$
\begin{aligned}
& \text { Longer inversion: } \\
& \operatorname{at}\left(x_{0}\right) \supset \operatorname{at}\left(y_{0}\right), \operatorname{at}\left(x_{1}\right)=\operatorname{at}\left(y_{1}\right), \operatorname{at}\left(x_{2}\right)=\operatorname{at}\left(y_{2}\right), \operatorname{at}\left(x_{3}\right) \subset \operatorname{at}\left(y_{3}\right):
\end{aligned}
$$

## Easy/Hard Queries

The clauses of $H_{k}$ (dropping $\nabla$ )

$$
\begin{aligned}
& H_{k 0}=R\left(x_{0}\right) \vee S_{1}\left(x_{0}, y_{0}\right) \\
& H_{k 1}=S_{1}\left(x_{1}, y_{1}\right) \vee S_{2}\left(x_{1}, y_{1}\right) \\
& H_{k 2}=S_{2}\left(x_{2}, y_{2}\right) \vee S_{3}\left(x_{2}, y_{2}\right) \\
& \ldots \\
& \ldots \\
& H_{k k}=S_{k}\left(x_{k}, y_{k}\right) \vee T\left(y_{k}\right)
\end{aligned}
$$

$f\left(Z_{0}, Z_{1}, \ldots, Z_{k}\right)=a$ Boolean function in $k+1$ variables $Q=f\left(H_{k 0}, H_{k 1}, \ldots, H_{k k}\right)$,

Example: $f=Z_{0} \wedge Z_{1} \wedge \ldots \wedge Z_{k}$ then $f\left(H_{k 0}, H_{k 1}, \ldots, H_{k k}\right)=H_{k}$

## Easy/Hard Queries

$f\left(Z_{0}, Z_{1}, \ldots, Z_{k}\right)=$ Boolean function in $k+1$ vars
$\mathrm{Q}=\mathrm{f}\left(\mathrm{H}_{\mathrm{k} 0}, \mathrm{H}_{\mathrm{k} 1}, \ldots, \mathrm{H}_{\mathrm{kk}}\right)$
Theorem [Beame'14] Any FBDD for $F_{n}(Q)$ has size $2^{\Omega(n)}$ Any Decision-DNNF has size $\geq 2^{\Omega(\sqrt{n n})}$.

Theorem [Dalvi'12] Assume f is monotone, let $L$ be its DNF lattice, $\mu$ its Möbius function

- If $\mu(\hat{0}, \hat{1})=0$ then $P\left(F_{n}(Q)\right)$ is in PTIME
- If $\mu(\hat{0}, \hat{1}) \neq 0$ then $P\left(F_{n}(Q)\right)$ is in \#P-hard


## Proof Highlights

## Theorem [Beame'14] Any FBDD for $F_{n}(Q)$ has size $2^{\Omega(n)}$

Proof part 1: any FBDD for $F_{n}\left(H_{k}\right)$ has size $\geq 2^{n-1 / n}$

## Proof part 2:

Convert a N -node FBDD for $\mathrm{F}_{\mathrm{n}}\left(\mathrm{f}\left(\mathrm{H}_{\mathrm{k} 0}, \mathrm{H}_{\mathrm{k} 1}, \ldots, \mathrm{H}_{\mathrm{kk}}\right)\right.$ ), to a $\mathrm{O}\left(\mathrm{n}^{3} \mathrm{~N}\right)$-node multi-output FBDD
for $k+1$ functions: $F_{n}\left(H_{k 0}\right), F_{n}\left(H_{k 1}\right), \ldots, \quad F_{n}\left(H_{k k}\right)$
Convert the latter to an FBDD for $F_{n}\left(H_{k}\right)$

## Proof Highlights

Theorem [Dalvi' 12 ] If $\mu=0$ then $P\left(F_{n}(Q)\right)$ is in PTIME
By example on $f=Z_{0} \wedge Z_{2} \vee Z_{0} \wedge Z_{3} \vee Z_{1} \wedge Z_{3}$

$$
\begin{array}{rlr}
\mathrm{Q}_{\mathrm{W}}= & H_{30} \wedge \mathrm{H}_{32} \vee & { }^{*} \mathrm{Q}_{1}{ }^{* /} \\
& H_{30} \wedge \mathrm{H}_{33} \vee & /^{*} \mathrm{Q}_{2}{ }^{* /} \\
& H_{31} \wedge \mathrm{H}_{33} & /^{*} \mathrm{Q}_{3}{ }^{* /}
\end{array}
$$

Recall:

$$
\mathrm{H}_{3}=\mathrm{H}_{30} \wedge \ldots \wedge \mathrm{H}_{33}
$$

$$
P\left(Q_{W}\right)=P\left(Q_{1}\right)+P\left(Q_{2}\right)+P\left(Q_{3}\right)+
$$

$$
-P\left(Q_{1} \wedge Q_{2}\right)-P\left(Q_{2} \wedge Q_{3}\right)-P\left(Q_{1} \wedge Q_{3}\right)
$$

$$
+P\left(Q_{1} \wedge Q_{2} \wedge Q_{3}\right)
$$

$$
=\mathrm{H}_{3}(\text { hard ! })
$$

$$
\text { Also }=\mathrm{H}_{3}
$$

The remaining terms are inversion-free, hence PTIME

## The DNF Lattice

## Definition.

The DNF lattice $L$ of a monotone $D N F f=t_{1} \vee t_{2} \vee \ldots$ is:

- Elements of $L$ are terms $t_{i 1} \wedge t_{i 2} \wedge \ldots$;
- Order is logical implication

$$
f=Z_{0} \wedge Z_{2} \vee Z_{0} \wedge Z_{3} \vee Z_{1} \wedge Z_{3}
$$



$$
Z_{Z_{0} \wedge Z_{2} \wedge Z_{3} \wedge Z_{1} \wedge Z_{2} \wedge Z_{3} \wedge Z_{3}}
$$

Nodes • in PTIME,

## Research Question

Given an FO sentence Q
Non- Inversion $\mathrm{Q}=$ hierarchical Q -free Q $f\left(\mathrm{H}_{\mathrm{k} 0}, \ldots, \mathrm{H}_{\mathrm{kk}}\right)$
(e.g. $\mathrm{H}_{0}$ )

| $\left.\begin{array}{l}\text { Is P(F } \\ n\end{array}(Q)\right)$ |
| :--- | :--- | :--- | :--- |
| in PTIME? |
| Or \#P-hard? |$\quad$ \#P-hard $\quad$ PTIME | PTIME |
| :--- |
| or |
| \#P-hard |

## Outline

- Problem statement
- Review: FBDD, Decision-DNNF
- Hard Queries
- Easy Queries
- Hard/Easy Queries
- Conclusion


## The View from the Database Side

High level idea:

- Boolean function F generated by small program Q

For FO sentence Q in $\mathrm{FO}(\wedge, \vee, \forall)$

- Hard/hard
- Easy/easy
- Easy/hard

Separation of grounded v.s. lifted inference:

- Limitation of DPLL-based algorithms
- Inclusion/exclusion possible only on the FO sentence


## Möbius Über Alles



