
Query Compilation: the View
from the Database Side

Dan Suciu
University of Washington

1
Joint with: P. Beame, N. Dalvi, A. Jha, J. Li, S. Roy

The View from the Database Side

•  The large Boolean formula F is generated by some
much smaller program Q

•  Each Q defines a different problem:
–  KC, or SAT-solver, or … for formulas F produced by Q
–  Data complexity: query Q, database D

•  This talk:
–  Q is a sentence in FO(∧,∨,∀)
–  The problem is model counting #F and KC

•  Color code: blue=fixed, red=input

2

Sources

•  Jha, S., ICDT 2011
•  Dalvi, S., JACM 2012
•  Beame, Li, Roy, S. UAI’2013
•  Beame, Li, Roy, S. ICDT’2014

•  Background on
probabilistic databases:

3

Model Counting

•  Given Boolean formula F, compute the
number of models #F

X1 X2 X3 F
0 0 0 0
0 0 1 0
0 1 0 0
0 1 1 1
1 0 0 0
1 0 1 1
1 1 0 1
1 1 1 1

[Valiant] #P-hard, even for 2CNF

Example:
F = X1 X2 ∨	 X2 X3 ∨	 X3 X1

#F = 4

4

Probability of a Formula

•  Each variable X has a probability p(X);
•  P(F) = probability that F=true

X1 X2 X3 F
0 0 0 0
0 0 1 0
0 1 0 0
0 1 1 1
1 0 0 0
1 0 1 1
1 1 0 1
1 1 1 1

Example:
F = X1 X2 ∨	 X2 X3 ∨	 X3 X1

P(F) = (1-p1)*p2*p3 +
 p1*(1-p2)*p3 +
 p1*p2*(1-p3) +
 p1*p2*p3

P(F) = #F / 2n, when p(X) = ½ for all X 5

Grounding of an FO Sentence

Example: Q = ∀d (Rain(d) ⇒ Cloudy(d)) n = 7
F7(Q) = (Rain1 ⇒ Cloudy1)∧…∧(Rain7⇒Cloudy7)

Let Q, be an FO sentence, n a natural number.

Probabilistic Databases, Markov Logic Networks, …

Def The grounding, Fn(Q) is:
•  Fn(∀xQ) = ∧i∈[n] Fn (Q[i/x])
•  Fn(∃xQ) = ∨i∈[n] Fn (Q[i/x])
•  Fn(Q1 op Q2) = Fn(Q1) op Fn(Q1) op = ∧, ∨, ¬

Research Question

Given an FO sentence Q determine the
complexity of P(Fn(Q)); PTIME? #P-hard?

Data complexity: assume fixed Q, input given by n

7
Next: knowledge compilation for Fn(Q)

In practice, Q is small:
•  SQL query: 10-20 joins
•  MLN’s: 10-15 rules

Outline
•  Problem statement

•  Review: FBDD, Decision-DNNF

•  Hard Queries

•  Easy Queries

•  Hard/Easy Queries

•  Conclusion

8

Knowledge Compilation Targets

•  FBDD (Free Binary Decision Diagram)

•  Decision-DNNF (Decomposable Negation
Normal Form)

P(F) computable in linear time in the KC

9

X

Y

0

Z

1

U

0 1

0
1 0 1

1 0

FBDD:
Decision-, sink-nodes

Decision-DNNF
add: decomposable-∧-nodes

Knowledge Compilation Targets

∧

X Z

Y

0 1

0
1 1

U
0 1 0

1

Children of ∧ 
have disjoint

 sets of
variables

10

0 1

0

DPLL and Knowledge Compilation

Fact: Trace of full-search DPLL à KC:
•  Basic DPLL

 à decision trees
•  DPLL + caching

 à FBDD
•  DPLL + caching + components

 à decision-DNNF

Our interest in KC: lower bounds for DPLL.
11

Research Question

12

Determine the complexity of P(Fn(Q));
PTIME? #P-hard?

Determine the size of KC for Fn(Q)

Given an FO sentence Q

“Data complexity”: fixed Q, input given by n

Outline
•  Problem statement

•  Review: FBDD, Decision-DNNF

•  Hard Queries

•  Easy Queries

•  Hard/Easy Queries

•  Conclusion

13

Background

14

Where
•  R1, …, Rn, T1, …, Tn = Boolean Variables
•  E = …(some complex relation ⊆[n] × [n])

Theorem [Bollig&Wegener’98] Any FBDD
for F = ∧(i,j) ∈ E (Ri ∨ Tj) has size 2Ω(√n)

For p = a prime, n = p2,
E = {(1+i, 1+j)| i =a+bp, j=c+dp, c=a+bd mod p}
|E| = p3 = n3/2

H0 is Hard for FBDDs

15

By [B&W], any FBDD has size 2Ω(√n). We strengthen:

Th. [Beame’14] Any FBDD for Fn(H0) has size ≥ 2n-1/n.

What about Decision-DNNFs?

H0 = ∀x∀y (R(x) ∨ S(x,y) ∨ T(y))

Fn(H0) = ∧i∈[n], i∈[n] (Ri ∨ Sij ∨ Tj)

Decision-DNNF to FBDD

Theorem If F has a Decision-DNNF with N nodes,
then F has an FBDD with at most N1+log(N) nodes.

We proved this in [Beame’13]:

Proof idea ∧

0 1 0 1

No-op

0 0 1

Problem:

∧ ∧

X 0 1

No-op

Solution:
copy the
smaller
child

∧ ∧

X 0 1

Optimal
 [Razgon]

H0 is Hard for Decision-DNNFs

17

Corollary Any Decision-DNNF for Fn(H0) has size 2Ω(√n)

Proof. N-node Decision-DNNF to N1+log(N) nodes FBDD.

 N1+log(N) > 2n-1/n ,
 log(N) + log2(N) > n – 1 – log(n)
 log2(N) = Ω(n)
 log(N) = Ω(√n)

Generalization
C = a positive clause; at(x) = set of atoms containing variable x

R S x
y

T

Non-hierarchical

R S

x

z

Hierarchical

y

Q = R(x,y) ∨S(x,z) H0 = R(x) ∨ S(x,y) ∨ T(y)

Definition C is hierarchical if forall x, y:
 at(x) ⊆ at(y) or at(x) ⊇ at(y) or at(x) ∩ at(y) = ∅

A query Q in FO(∧,∨,∀) is hierarchical if all its clauses are

Thrm. If Q is non-hierarchical, any Decision-DNNF has size 2Ω(√n).

Discussion

Exponential size of KC not surprising, because:

Theorem #Fn(H0) is #P-hard.
(Same holds for any non-hierarchical Q)

Proof:
[Provan&Ball’82] PP2CNF is #P-complete:

 F = ∧(i,j)∈E (Ri ∨ Tj)

19

Research Question

20

Non-hierarchical Q
(e.g. H0)

Is P(Fn(Q)) in PTIME?
Or #P-hard?

#P-hard

How large is
Knowledge Compilation
for Fn(Q)?

decision-DNNF
has size 2Ω(√n)

Given an FO sentence Q in FO(∧,∨,∀)

What about hierarchical queries ?

Outline
•  Problem statement

•  Review: FBDD, Decision-DNNF

•  Hard Queries

•  Easy Queries

•  Hard/Easy Queries

•  Conclusion

21

Easy Queries

•  Let Q in FO(∧,∨,∀). Then Fn(Q) has a
polynomial-size OBDD iff it is both
hierarchical and inversion-free.

•  Recall: OBDD = FBDD with fixed variable
order Π

22

Inversion-Free Queries
Definition An inversion in Q is a sequence of co-occurring vars:

 (x0,y0), (x1,y1), …, (xk,yk), such that:

•  at(x0) ⊈ at(y0), at(x1)=at(y1),…, at(xk-1)=at(yk-1), at(xk) ⊉ at(yk)
•  For all i=1,..,k-1 there exists two atoms in Q of the form:

 Si(…,xi-1,…,yi-1,…) and Si(…,xi, …, yi, …)

Inversion-free implies hierarchical, but converse fails

Inversion-free Inversion

Q=[R(x0)∨S(x0,y0)] ∧	 [S(x1,y1)∨T(x1)]

H1=[R(x0)∨S(x0,y0)] ∧	 [S(x1,y1)∨T(y1)]

Easy Queries

24

Theorem [Jha&S.11] Let Q in FO(∧,∨,∀)
1.  If Q has inversion then OBDD for Fn(Q) has size 2Ω(n)
2.  Else, Fn(Q) has OBDD of width 2#atoms(Q) (linear size)

Proof (part 2 only – next slide)

OBDD for
Q = C1∧ C2
has width =
width1 × width2

25

T1

S11

S12

1 T2

S21

S22

1 0

0

1 0

1

0 1

0 1

0 1

0 1

Same
variable

order Π in both
OBDDs!

Q = [R(x)∨S(x,y)]∧[T(x’)∨S(x’,y’)] ∧ C1 = R(x)∨S(x,y) C2 = T(x’)	 ∧S(x’,y’) =

25
25

R1

S11

S12

1 R2

S21

S22

1 0

1

0 1

0

1 0

1 0

1

1 0

0

 x = 1

 x = 2

F(C1) = (R1∨S11)∧(R1∨S12)∧(R2∨S21)∧(R2∨S22) n = 2
Π = R1T1S11S12R2T2S21S22

x = 1 x = 2

Research Question

Non-
hierarchical Q
(e.g. H0)

Inversion
-free Q

Is P(Fn(Q)) in PTIME?
Or #P-hard?

#P-hard PTIME

How large is
Knowledge compilation
for Fn(Q)?

decision-
DNNF
has size 2Ω(√n)

Poly-size

Given an FO sentence Q in FO(∧,∨,∀)

What about hierarchical queries w/ inversion?

Outline
•  Problem statement

•  Review: FBDD, Decision-DNNF

•  Hard Queries

•  Easy Queries

•  Hard/Easy Queries

•  Conclusion

27

Easy/Hard Queries

Will describe a class of queries Q such that:
•  Computing probability is easy

(P(Fn(Q)) in PTIME)
•  Compiling Fn(Q) is hard

(Exponential-size Decision-DNNF)

•  Implication: inherent limitation of DPLL-
based algorithms for model counting

The Queries Hk

H0= R(x)∨S(x,y)∨T(y)

H2= [R(x0)∨S1(x0,y0)] ∧	 [S1(x1,y1)∨S2(x1,y1)] ∧[S2(x2,y2)∨T(y2)]

H1= [R(x0)∨S(x0,y0)] ∧ [S(x1,y1)∨T(y1)]

. . .

H3= [R(x0)∨S1(x0,y0)] ∧[S1(x1,y1)∨S2(x1,y1)] ∧[S2(x2,y2)∨S3(x2,y2)]∧[S3(x3,y3)∨T(y3)]

Inversion: at(x0) ⊃ at(y0), at(x1) ⊂ at(y1)

Longer inversion:
at(x0) ⊃ at(y0) , at(x1) = at(y1), at(x2) = at(y2), at(x3) ⊂ at(y3):

Non-hierarchical

Hierarchical

Easy/Hard Queries

30

The clauses of Hk (dropping∀)

Hk0 = R(x0)∨S1(x0,y0)
Hk1 =	 S1(x1,y1)∨S2(x1,y1)
Hk2 =	 S2(x2,y2)∨S3(x2,y2)
…	
…	
Hkk =	 Sk(xk,yk)∨T(yk)

f(Z0, Z1, …, Zk) = a Boolean function in k+1 variables
Q = f(Hk0, Hk1 , …, Hkk),

Example: f = Z0 ∧Z1 ∧… ∧ Zk then f(Hk0, Hk1 , …, Hkk) = Hk

Easy/Hard Queries

31

 f(Z0, Z1, …, Zk) = Boolean function in k+1 vars
Q = f(Hk0, Hk1 , …, Hkk)

Theorem [Beame’14] Any FBDD for Fn(Q) has size 2Ω(n)

Any Decision-DNNF has size ≥ 2Ω(√n).

Theorem [Dalvi’12] Assume f is monotone,
let L be its DNF lattice, µ its Möbius function

•  If µ(,) = 0 then P(Fn(Q)) is in PTIME

•  If µ(,) ≠ 0 then P(Fn(Q)) is in #P-hard 1̂ 0̂

1̂ 0̂

Proof Highlights

32

Theorem [Beame’14] Any FBDD for Fn(Q) has size 2Ω(n)

Proof part 1: any FBDD for Fn(Hk) has size ≥ 2n-1/n

Proof part 2:
Convert a N-node FBDD for Fn(f(Hk0, Hk1 , …, Hkk)),
to a O(n3 N)-node multi-output FBDD
for k+1 functions: Fn(Hk0), Fn(Hk1),…, Fn(Hkk)

Convert the latter to an FBDD for Fn(Hk)

Proof Highlights

P(QW) = P(Q1) + P(Q2) + P(Q3) +
 - P(Q1 ∧ Q2) - P(Q2 ∧ Q3) – P(Q1 ∧ Q3)
 + P(Q1 ∧ Q2 ∧ Q3)

Also = H3
= H3 (hard !)

QW = H30∧H32 ∨ /* Q1 */
 H30∧H33 ∨ /* Q2 */
 H31∧H33 /* Q3 */

The remaining terms are inversion-free, hence PTIME

Theorem [Dalvi’12] If µ = 0 then P(Fn(Q)) is in PTIME
By example on f = Z0∧Z2 ∨ Z0∧Z3 ∨ Z1∧Z3

Recall:
H3 = H30 ∧ … ∧ H33

The DNF Lattice

Z0∧Z2 Z0∧Z3 Z1∧Z3

 Z0∧ Z1∧Z3 Z0∧Z2∧Z3

Z0∧ Z1∧ Z2 ∧ Z3

1̂

Definition.
The DNF lattice L of a monotone DNF f = t1 ∨ t2 ∨ … is:
•  Elements of L are terms ti1 ∧ ti2 ∧ …;
•  Order is logical implication

Nodes � in PTIME,
Nodes � #P hard.

1̂

34

f = Z0∧Z2 ∨ Z0∧Z3 ∨ Z1∧Z3 Fact: if µ = 0
then P(Fn(Q))
is in PTIME

Research Question

Non-
hierarchical Q
(e.g. H0)

Inversion
-free Q

Q =
f(Hk0,…,Hkk)

Is P(Fn(Q))
in PTIME?
Or #P-hard?

#P-hard PTIME PTIME
or
#P-hard

How large is
Knowledge
Compilation
for Fn(Q)?

size 2Ω(√n)

Poly-size

size 2Ω(√n)

Given an FO sentence Q

Outline
•  Problem statement

•  Review: FBDD, Decision-DNNF

•  Hard Queries

•  Easy Queries

•  Hard/Easy Queries

•  Conclusion

36

The View from the Database Side

High level idea:
•  Boolean function F generated by small program Q

For FO sentence Q in FO(∧,∨,∀)
•  Hard/hard
•  Easy/easy
•  Easy/hard

Separation of grounded v.s. lifted inference:
•  Limitation of DPLL-based algorithms
•  Inclusion/exclusion possible only on the FO sentence

37

Möbius Über Alles

#P-hard

PTIME

Poly-size FBDD, dec-DNNF

Poly-size OBDD =
 = inversion-free

Read Once

QJ

QV

QW Q9

H0

H1
H2

QU Open

H3

hierarchical

Non-hierarchical

