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The View from the Database Side 

•  The large Boolean formula F is generated by some 
much smaller program Q 

•  Each Q defines a different problem:  
–  KC, or SAT-solver, or … for formulas F produced by Q 
–  Data complexity: query Q, database D 

•  This talk: 
–  Q is a sentence in FO(∧,∨,∀) 
–  The problem is model counting #F and KC 

•  Color code: blue=fixed, red=input 
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Sources 

•  Jha, S., ICDT 2011 
•  Dalvi, S., JACM 2012 
•  Beame, Li, Roy, S. UAI’2013 
•  Beame, Li, Roy, S. ICDT’2014 

•  Background on 
probabilistic databases: 
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Model Counting 

•  Given Boolean formula F, compute the 
number of models #F 

X1 X2 X3 F 
0 0 0 0 
0 0 1 0 
0 1 0 0 
0 1 1 1 
1 0 0 0 
1 0 1 1 
1 1 0 1 
1 1 1 1 

[Valiant]  #P-hard, even for 2CNF 

Example:  
F = X1 X2 ∨	 X2 X3 ∨	 X3 X1 
 
#F = 4 
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Probability of a Formula 

•  Each variable X has a probability p(X); 
•  P(F) = probability that F=true 

X1 X2 X3 F 
0 0 0 0 
0 0 1 0 
0 1 0 0 
0 1 1 1 
1 0 0 0 
1 0 1 1 
1 1 0 1 
1 1 1 1 

Example:  
F = X1 X2 ∨	 X2 X3 ∨	 X3 X1 
 
P(F) = (1-p1)*p2*p3 + 
            p1*(1-p2)*p3 + 
            p1*p2*(1-p3) + 
            p1*p2*p3 

P(F) = #F / 2n, when p(X) = ½ for all X 5 



Grounding of an FO Sentence 

Example:  Q = ∀d (Rain(d) ⇒ Cloudy(d))     n = 7 
F7(Q) = (Rain1 ⇒ Cloudy1)∧…∧(Rain7⇒Cloudy7) 

Let Q, be an FO sentence, n a natural number. 

Probabilistic Databases, Markov Logic Networks, … 

Def  The grounding, Fn(Q) is: 
•   Fn(∀xQ) = ∧i∈[n] Fn (Q[i/x]) 
•   Fn(∃xQ) = ∨i∈[n] Fn (Q[i/x]) 
•   Fn(Q1 op Q2) = Fn(Q1) op Fn(Q1)  op = ∧, ∨, ¬  



Research Question 

Given an FO sentence Q determine the 
complexity of P(Fn(Q)); PTIME? #P-hard? 

Data complexity: assume fixed Q, input given by n 
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Next: knowledge compilation for Fn(Q)  

In practice, Q is small: 
•  SQL query: 10-20 joins 
•  MLN’s: 10-15 rules 



Outline 
•  Problem statement 

•  Review: FBDD, Decision-DNNF 

•  Hard Queries 

•  Easy Queries 

•  Hard/Easy Queries 

•  Conclusion 
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Knowledge Compilation Targets 

•  FBDD  (Free Binary Decision Diagram) 

•  Decision-DNNF (Decomposable Negation 
Normal Form) 

P(F) computable in linear time in the KC 
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DPLL and Knowledge Compilation 

Fact: Trace of full-search DPLL à KC: 
•  Basic DPLL 

  à decision trees 
•  DPLL + caching 

   à FBDD 
•  DPLL + caching + components  

  à decision-DNNF 

Our interest in KC: lower bounds for DPLL. 
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Research Question 
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Determine the complexity of P(Fn(Q)); 
PTIME? #P-hard? 

Determine the size of KC  for Fn(Q) 

Given an FO sentence Q  

“Data complexity”: fixed Q, input given by n 



Outline 
•  Problem statement 

•  Review: FBDD, Decision-DNNF 

•  Hard Queries 

•  Easy Queries 

•  Hard/Easy Queries 

•  Conclusion 
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Background 
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Where 
•  R1, …, Rn, T1, …, Tn  = Boolean Variables 
•  E = …(some complex relation ⊆[n] × [n]) 

Theorem  [Bollig&Wegener’98]  Any FBDD  
for F = ∧(i,j) ∈ E (Ri ∨ Tj) has size 2Ω(√n) 

For p = a prime, n = p2,  
E =  {(1+i, 1+j)| i =a+bp, j=c+dp, c=a+bd mod p} 
|E| = p3 = n3/2  



H0  is Hard for FBDDs 
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By [B&W], any FBDD has size 2Ω(√n). We strengthen: 

Th. [Beame’14] Any FBDD for Fn(H0) has size ≥  2n-1/n. 

What about Decision-DNNFs? 

H0  = ∀x∀y (R(x) ∨ S(x,y) ∨ T(y)) 

Fn(H0) = ∧i∈[n], i∈[n] (Ri ∨ Sij ∨ Tj) 



Decision-DNNF to FBDD 

Theorem If F has a Decision-DNNF with N nodes, 
then F has an FBDD with at most N1+log(N) nodes. 

We proved this in [Beame’13]: 

Proof idea ∧ 

0 1 0 1 

No-op 

0 0 1 

Problem: 

∧ ∧ 

X 0 1 

No-op 

Solution:  
copy the 
smaller 
child 

∧ ∧ 

X 0 1 

Optimal 
 [Razgon] 



H0  is Hard for Decision-DNNFs 
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Corollary Any Decision-DNNF for Fn(H0) has size 2Ω(√n) 

Proof. N-node Decision-DNNF to N1+log(N) nodes FBDD. 
 

 N1+log(N)  > 2n-1/n ,   
 log(N) + log2(N) > n – 1 – log(n) 
 log2(N) = Ω(n)  
 log(N) = Ω(√n) 



Generalization 
C = a positive clause;    at(x) = set of atoms containing variable x 

R S x 
y 

T 

Non-hierarchical 

R S 

x 

z 

Hierarchical 

y 

Q = R(x,y) ∨S(x,z) H0 = R(x) ∨ S(x,y) ∨ T(y) 

Definition  C is hierarchical  if forall x, y: 
     at(x) ⊆ at(y)   or   at(x) ⊇ at(y)   or   at(x) ∩ at(y) = ∅ 

A query Q in FO(∧,∨,∀) is hierarchical if all its clauses are 

Thrm. If Q is non-hierarchical, any Decision-DNNF has size 2Ω(√n). 



Discussion 

Exponential size of KC not surprising, because: 
 
Theorem #Fn(H0) is #P-hard. 
(Same holds for any non-hierarchical Q) 

Proof: 
[Provan&Ball’82] PP2CNF is #P-complete: 

  F = ∧(i,j)∈E (Ri ∨ Tj) 
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Research Question 
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Non-hierarchical Q 
(e.g. H0) 

Is P(Fn(Q)) in PTIME?  
Or #P-hard? 

#P-hard 

How large is 
Knowledge Compilation 
for Fn(Q)? 

decision-DNNF 
has size 2Ω(√n) 

Given an FO sentence Q in FO(∧,∨,∀)  

What about hierarchical queries ? 



Outline 
•  Problem statement 

•  Review: FBDD, Decision-DNNF 

•  Hard Queries 

•  Easy Queries 

•  Hard/Easy Queries 

•  Conclusion 
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Easy Queries 

•  Let Q in FO(∧,∨,∀).  Then Fn(Q) has a 
polynomial-size OBDD iff it is both 
hierarchical and inversion-free. 

•  Recall: OBDD = FBDD with fixed variable 
order Π 
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Inversion-Free Queries 
Definition  An inversion in Q is a sequence of co-occurring vars: 
 

  (x0,y0), (x1,y1), …, (xk,yk),        such that: 
 
•  at(x0) ⊈ at(y0),  at(x1)=at(y1),…, at(xk-1)=at(yk-1), at(xk) ⊉ at(yk) 
•  For all i=1,..,k-1 there exists two atoms in Q of the form: 

 Si(…,xi-1,…,yi-1,…)  and  Si(…,xi, …, yi, …) 

Inversion-free implies hierarchical, but converse fails 

Inversion-free Inversion 

Q=[R(x0)∨S(x0,y0)] ∧	 [S(x1,y1)∨T(x1)] 

H1=[R(x0)∨S(x0,y0)] ∧	 [S(x1,y1)∨T(y1)] 



Easy Queries 

24 

Theorem [Jha&S.11] Let Q in FO(∧,∨,∀) 
1.  If Q has inversion then OBDD for Fn(Q)  has size 2Ω(n)  
2.  Else, Fn(Q) has OBDD of width 2#atoms(Q) (linear size) 

Proof (part 2 only – next slide) 



OBDD for 
Q  = C1∧ C2 
has width = 
width1 × width2 
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T1 

S11 

S12 

1 T2 

S21 

S22 

1 0 

0 

1 0 

1 

0 1 

0 1

0 1 

0 1 

Same 
variable 

order Π in both 
OBDDs! 

Q = [R(x)∨S(x,y)]∧[T(x’)∨S(x’,y’)] ∧ C1 = R(x)∨S(x,y) C2 = T(x’)	 ∧S(x’,y’) = 

25 
25 

R1 

S11 

S12 

1 R2 

S21 

S22 

1 0 

1 

0 1 

0 

1 0 

1 0

1 

1 0 

0 

         x = 1 

         x = 2 

F(C1) = (R1∨S11)∧(R1∨S12)∧( R2∨S21)∧(R2∨S22) n = 2 
Π = R1T1S11S12R2T2S21S22 

x = 1 x = 2 



Research Question 

Non-
hierarchical Q 
(e.g. H0) 

 
Inversion 
-free Q 

Is P(Fn(Q)) in PTIME?  
Or #P-hard? 

#P-hard PTIME 

How large is 
Knowledge compilation 
for Fn(Q)? 

decision-
DNNF 
has size 2Ω(√n) 

Poly-size 

Given an FO sentence Q in FO(∧,∨,∀)  

What about hierarchical queries w/ inversion? 



Outline 
•  Problem statement 

•  Review: FBDD, Decision-DNNF 

•  Hard Queries 

•  Easy Queries 

•  Hard/Easy Queries 

•  Conclusion 
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Easy/Hard Queries 

Will describe a class of queries Q such that: 
•  Computing probability is easy  

(P(Fn(Q)) in PTIME) 
•  Compiling Fn(Q) is hard  

(Exponential-size Decision-DNNF) 

•  Implication: inherent limitation of DPLL-
based algorithms for model counting 



The Queries Hk 

H0= R(x)∨S(x,y)∨T(y) 

H2= [R(x0)∨S1(x0,y0)] ∧	 [S1(x1,y1)∨S2(x1,y1)]  ∧[S2(x2,y2)∨T(y2)] 

H1= [R(x0)∨S(x0,y0)] ∧ [S(x1,y1)∨T(y1)] 

. . . 

H3= [R(x0)∨S1(x0,y0)] ∧[S1(x1,y1)∨S2(x1,y1)] ∧[S2(x2,y2)∨S3(x2,y2)]∧[S3(x3,y3)∨T(y3)] 

Inversion: at(x0) ⊃ at(y0), at(x1) ⊂ at(y1) 

Longer inversion:  
at(x0) ⊃ at(y0) , at(x1) = at(y1), at(x2) = at(y2), at(x3) ⊂ at(y3): 

Non-hierarchical 

Hierarchical 



Easy/Hard Queries 
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The clauses of Hk (dropping∀) 
 

Hk0 =  R(x0)∨S1(x0,y0) 
Hk1 =	 S1(x1,y1)∨S2(x1,y1) 
Hk2 =	 S2(x2,y2)∨S3(x2,y2) 
…	 
…	 
Hkk =	 Sk(xk,yk)∨T(yk) 

f(Z0, Z1, …, Zk) = a Boolean function in k+1 variables 
Q = f(Hk0, Hk1 , …, Hkk), 
  
Example:  f = Z0 ∧Z1 ∧…  ∧ Zk  then f(Hk0, Hk1 , …, Hkk) = Hk 



Easy/Hard Queries 

31 

 f(Z0, Z1, …, Zk) = Boolean function in k+1 vars 
Q = f(Hk0, Hk1 , …, Hkk) 

Theorem [Beame’14] Any FBDD for Fn(Q) has size 2Ω(n) 

Any Decision-DNNF has size ≥ 2Ω(√n).  

Theorem [Dalvi’12] Assume f is monotone,  
let L be its DNF lattice, µ its Möbius function 
 
•  If  µ(   ,   ) = 0 then P(Fn(Q)) is in PTIME 

•  If  µ(   ,   ) ≠ 0 then P(Fn(Q)) is in #P-hard 1̂ 0̂ 

1̂ 0̂ 



Proof Highlights 
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Theorem [Beame’14] Any FBDD for Fn(Q) has size 2Ω(n)  

Proof part 1: any FBDD for Fn(Hk) has size ≥ 2n-1/n 

Proof part 2:  
Convert a N-node FBDD for Fn(f(Hk0, Hk1 , …, Hkk)),  
to a O(n3 N)-node multi-output FBDD  
for k+1 functions: Fn(Hk0),  Fn(Hk1),…,   Fn(Hkk) 
 
Convert the latter to an FBDD for Fn(Hk) 



Proof Highlights 

P(QW) =   P(Q1) + P(Q2) + P(Q3) + 
             -  P(Q1 ∧ Q2)  - P(Q2 ∧ Q3) – P(Q1 ∧ Q3)  
             +  P(Q1 ∧ Q2 ∧ Q3) 

Also = H3 
= H3 (hard !) 

QW = H30∧H32   ∨   /* Q1 */ 
          H30∧H33   ∨    /* Q2 */ 
          H31∧H33            /* Q3 */ 

The remaining terms are inversion-free, hence PTIME 

Theorem [Dalvi’12] If  µ = 0 then P(Fn(Q)) is in PTIME 
By example on f = Z0∧Z2  ∨  Z0∧Z3  ∨  Z1∧Z3 

Recall: 
H3 = H30 ∧ … ∧ H33 



The DNF Lattice 

Z0∧Z2 Z0∧Z3  Z1∧Z3 

 Z0∧ Z1∧Z3 Z0∧Z2∧Z3 

Z0∧ Z1∧ Z2 ∧ Z3 

1̂ 

Definition.  
The DNF lattice L of a monotone DNF f =   t1 ∨ t2 ∨ … is: 
•  Elements of L are terms ti1 ∧ ti2 ∧ …; 
•  Order is logical implication  

Nodes � in PTIME, 
Nodes �  #P hard. 

1̂ 
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f = Z0∧Z2  ∨  Z0∧Z3  ∨  Z1∧Z3 Fact: if  µ = 0 
then P(Fn(Q)) 
is in PTIME 



Research Question 

Non-
hierarchical Q 
(e.g. H0) 

Inversion 
-free Q 

Q = 
f(Hk0,…,Hkk) 

Is P(Fn(Q))  
in PTIME?  
Or #P-hard? 

#P-hard PTIME PTIME 
or 
#P-hard 

How large is 
Knowledge 
Compilation 
for Fn(Q)? 

 
size 2Ω(√n) 

 
Poly-size 

 
size 2Ω(√n) 

 

Given an FO sentence Q  



Outline 
•  Problem statement 

•  Review: FBDD, Decision-DNNF 

•  Hard Queries 

•  Easy Queries 

•  Hard/Easy Queries 

•  Conclusion 
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The View from the Database Side 

High level idea:  
•  Boolean function F generated by small program Q 
 
For FO sentence Q in FO(∧,∨,∀) 
•  Hard/hard 
•  Easy/easy 
•  Easy/hard 
 
Separation of grounded v.s. lifted inference: 
•  Limitation of DPLL-based algorithms 
•  Inclusion/exclusion possible only on the FO sentence 
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Möbius Über Alles 

#P-hard 

PTIME 

Poly-size FBDD, dec-DNNF 

Poly-size OBDD =  
     = inversion-free 

Read Once 

QJ 

QV 

QW Q9 

H0 

H1 
H2 

QU Open 

H3 

hierarchical 

Non-hierarchical 


