Query Compilation: the View from the Database Side

Dan Suciu University of Washington

Joint with: P. Beame, N. Dalvi, A. Jha, J. Li, S. Roy

The View from the Database Side

- The large Boolean formula F is generated by some much smaller program Q
- Each Q defines a different problem:
 - KC, or SAT-solver, or ... for formulas F produced by Q
 - Data complexity: query Q, database D
- This talk:
 - Q is a sentence in $FO(\Lambda, V, \forall)$
 - The problem is model counting #F and KC
- Color code: blue=fixed, red=input

Sources

- Jha, S., ICDT 2011
- Dalvi, S., JACM 2012
- Beame, Li, Roy, S. UAI'2013
- Beame, Li, Roy, S. ICDT'2014

 Background on probabilistic databases:

Model Counting

Given Boolean formula F, compute the number of models #F

Example: F = X1 X2 V X2 X3 V X3 X1

#F = 4

[Valiant] #P-hard, even for 2CNF

X1	X2	X3	F
0	0	0	0
0	0	1	0
0	1	0	0
0	1	1	1
1	0	0	0
1	0	1	1
1	1	0	1
1	1	1	41

Probability of a Formula

- Each variable X has a probability p(X);
- P(F) = probability that F=true

Example: F = X1 X2 V X2 X3 V X3 X1

 $P(F) = #F / 2^n$, when $p(X) = \frac{1}{2}$ for all X

X1	X2	X3	F
0	0	0	0
0	0	1	0
0	1	0	0
0	1	1	1
1	0	0	0
1	0	1	1
1	1	0	1
1	1	1	5

Grounding of an FO Sentence

Let Q, be an FO sentence, n a natural number.

Def The grounding, $F_n(Q)$ is: • $F_n(\forall xQ) = \bigwedge_{i \in [n]} F_n(Q[i/x])$ • $F_n(\exists xQ) = \bigvee_{i \in [n]} F_n(Q[i/x])$ • $F_n(Q_1 \text{ op } Q_2) = F_n(Q_1) \text{ op } F_n(Q_1) \text{ op } = \bigwedge, \bigvee, \neg$

Example: $\mathbf{Q} = \forall d (\operatorname{Rain}(d) \Rightarrow \operatorname{Cloudy}(d))$ $\mathbf{n} = \mathbf{7}$ $\mathbf{F}_7(\mathbf{Q}) = (\operatorname{Rain}_1 \Rightarrow \operatorname{Cloudy}_1) \land \dots \land (\operatorname{Rain}_7 \Rightarrow \operatorname{Cloudy}_7)$

Probabilistic Databases, Markov Logic Networks, ...

Research Question

Given an FO sentence Q determine the complexity of $P(F_n(Q))$; PTIME? #P-hard?

Data complexity: assume fixed Q, input given by n

In practice, **Q** is small:

- SQL query: 10-20 joins
- MLN's: 10-15 rules

Next: knowledge compilation for $F_n(Q)$

Outline

- Problem statement
- Review: FBDD, Decision-DNNF
- Hard Queries
- Easy Queries
- Hard/Easy Queries
- Conclusion

Knowledge Compilation Targets

- FBDD (Free Binary Decision Diagram)
- Decision-DNNF (Decomposable Negation Normal Form)

P(F) computable in linear time in the KC

FBDD: Decision-, sink-nodes Decision-DNNF add: decomposable- Λ -nodes

DPLL and Knowledge Compilation

Fact: Trace of full-search DPLL \rightarrow KC:

Basic DPLL

 \rightarrow decision trees

- DPLL + caching
 → FBDD
- DPLL + caching + components
 → decision-DNNF

Our interest in KC: lower bounds for DPLL.

Research Question

Given an FO sentence Q

Determine the complexity of P(F_n(Q)); PTIME? #P-hard?

Determine the size of KC for $F_n(Q)$

"Data complexity": fixed Q, input given by n

Outline

- Problem statement
- Review: FBDD, Decision-DNNF
- Hard Queries
- Easy Queries
- Hard/Easy Queries
- Conclusion

Background

Theorem [Bollig&Wegener'98] Any FBDD for $F = \Lambda_{(i,j) \in E} (R_i \vee T_j)$ has size $2^{\Omega(\sqrt{n})}$

Where

R₁, ..., R_n, T₁, ..., T_n = Boolean Variables
E = ...(some complex relation ⊆[n] × [n])

H_0 is Hard for FBDDs

$$H_0 = \forall x \forall y (R(x) \lor S(x,y) \lor T(y))$$

$$\mathsf{F}_{\mathsf{n}}(\mathsf{H}_{0}) = \bigwedge_{i \in [\mathsf{n}], i \in [\mathsf{n}]} (\mathsf{R}_{i} \lor \mathsf{S}_{ij} \lor \mathsf{T}_{j})$$

By [B&W], any FBDD has size $2^{\Omega(\sqrt{n})}$. We strengthen:

Th. [Beame'14] Any FBDD for $F_n(H_0)$ has size $\geq 2^{n-1}/n$.

What about Decision-DNNFs?

H₀ is Hard for Decision-DNNFs

Corollary Any Decision-DNNF for $F_n(H_0)$ has size $2^{\Omega(\sqrt{n})}$

Proof. N-node Decision-DNNF to $N^{1+\log(N)}$ nodes FBDD.

$$\begin{split} & \mathsf{N}^{1+\log(\mathsf{N})} > 2^{\mathsf{n}-1}/\mathsf{n} \ , \\ & \log(\mathsf{N}) + \log^2(\mathsf{N}) > \mathsf{n} - 1 - \log(\mathsf{n}) \\ & \log^2(\mathsf{N}) = \Omega(\mathsf{n}) \\ & \log(\mathsf{N}) = \Omega(\sqrt{\mathsf{n}}) \end{split}$$

Generalization

C = a positive clause; at(x) = set of atoms containing variable x

<u>Definition</u> C is hierarchical if forall x, y: at(x) \subseteq at(y) or at(x) \supseteq at(y) or at(x) \cap at(y) = \emptyset

A query Q in FO(Λ , V, \forall) is hierarchical if all its clauses are

Hierarchical

Non-hierarchical

Thrm. If Q is non-hierarchical, any Decision-DNNF has size $2^{\Omega(\sqrt{n})}$.

Discussion

Exponential size of KC not surprising, because:

Theorem $\#F_n(H_0)$ is #P-hard. (Same holds for any non-hierarchical Q)

Proof: [Provan&Ball'82] PP2CNF is #P-complete:

$$\mathsf{F} = \Lambda_{(i,j) \in \mathsf{E}} (\mathsf{R}_i \lor \mathsf{T}_j)$$

Research Question

Given an FO sentence Q in FO(Λ , \forall , \forall)

	Non-hierarchical Q (e.g. H ₀)
Is P(F _n (Q)) in PTIME? Or #P-hard?	#P-hard
How large is Knowledge Compilation for $F_n(Q)$?	decision-DNNF has size $2^{\Omega(\sqrt{n})}$

What about hierarchical queries ?

Outline

- Problem statement
- Review: FBDD, Decision-DNNF
- Hard Queries
- Easy Queries
- Hard/Easy Queries
- Conclusion

Easy Queries

Let Q in FO(∧, ∨, ∀). Then F_n(Q) has a polynomial-size OBDD iff it is both hierarchical <u>and</u> inversion-free.

 Recall: OBDD = FBDD with fixed variable order

Inversion-Free Queries

Definition An inversion in Q is a sequence of co-occurring vars:

 $(x_0, y_0), (x_1, y_1), \dots, (x_k, y_k),$ such that:

- $at(x_0) \subseteq at(y_0)$, $at(x_1)=at(y_1), \dots, at(x_{k-1})=at(y_{k-1})$, $at(x_k) \supseteq at(y_k)$
- For all i=1,...,k-1 there exists two atoms in Q of the form: S_i(...,x_{i-1},...,y_{i-1},...) and S_i(...,x_i, ..., y_i, ...)

Inversion-free implies hierarchical, but converse fails

$$\begin{array}{c|c} \textbf{Q}=[R(x_0) \lor S(x_0,y_0)] \land [S(x_1,y_1) \lor T(\textbf{x}_1)] \\ \\ \text{Inversion-free} & \text{Inversion} \\ \hline \textbf{H}_1=[R(x_0) \lor S(x_0,y_0)] \land [S(x_1,y_1) \lor T(\textbf{y}_1)] \end{array}$$

Easy Queries

Theorem [Jha&S.11] Let Q in FO(Λ, V, \forall) 1. If Q has inversion then OBDD for $F_n(Q)$ has size $2^{\Omega(n)}$ 2. Else, $F_n(Q)$ has OBDD of width $2^{\#atoms(Q)}$ (linear size)

Proof (part 2 only – next slide)

Research Question				
Given an FO sentence Q in FO(\land , \lor , \forall)				
	Non- hierarchical Q (e.g. H ₀)	Inversion -free Q		
Is P(F _n (Q)) in PTIME? Or #P-hard?	#P-hard	PTIME		
How large is Knowledge compilation for $F_n(Q)$?	decision- DNNF has size $2^{\Omega(\sqrt{n})}$	Poly-size		

What about hierarchical queries w/ inversion?

Outline

- Problem statement
- Review: FBDD, Decision-DNNF
- Hard Queries
- Easy Queries
- Hard/Easy Queries
- Conclusion

Easy/Hard Queries

Will describe a class of queries Q such that:

- Computing probability is easy (P(F_n(Q)) in PTIME)
- Compiling F_n(Q) is hard (Exponential-size Decision-DNNF)
- Implication: inherent limitation of DPLLbased algorithms for model counting

The Queries H_k

 $H_0 = R(x) \vee S(x,y) \vee T(y)$

Non-hierarchical

 $H_{3} = [R(x_{0}) \vee S_{1}(x_{0}, y_{0})] \wedge [S_{1}(x_{1}, y_{1}) \vee S_{2}(x_{1}, y_{1})] \wedge [S_{2}(x_{2}, y_{2}) \vee S_{3}(x_{2}, y_{2})] \wedge [S_{3}(x_{3}, y_{3}) \vee T(y_{3})]$

Longer inversion: at(x₀) \supset at(y₀), at(x₁) = at(y₁), at(x₂) = at(y₂), at(x₃) \subset at(y₃):

Easy/Hard Queries

The clauses of H_k (dropping \forall)

$$H_{k0} = R(x_0) \vee S_1(x_0, y_0)$$

$$H_{k1} = S_1(x_1, y_1) \vee S_2(x_1, y_1)$$

$$H_{k2} = S_2(x_2, y_2) \vee S_3(x_2, y_2)$$

...

$$H_{kk} = S_k(x_k, y_k) \vee T(y_k)$$

 $f(Z_0, Z_1, ..., Z_k) = a \text{ Boolean function in } k+1 \text{ variables}$ $Q = f(H_{k0}, H_{k1}, ..., H_{kk}),$

Example: $f = Z_0 \land Z_1 \land \dots \land Z_k$ then $f(H_{k0}, H_{k1}, \dots, H_{kk}) = H_k$

Easy/Hard Queries

 $f(Z_0, Z_1, ..., Z_k) = Boolean function in k+1 vars$ $Q = f(H_{k0}, H_{k1}, ..., H_{kk})$

Theorem [Beame'14] Any FBDD for $F_n(Q)$ has size $2^{\Omega(n)}$ Any Decision-DNNF has size $\geq 2^{\Omega(\sqrt{n})}$.

Theorem [Dalvi'12] Assume **f** is monotone, let **L** be its DNF lattice, µ its Möbius function

• If
$$\mu(0, 1) = 0$$
 then $P(F_n(Q))$ is in PTIME

• If $\mu(0, 1) \neq 0$ then $P(F_n(Q))$ is in #P-hard

Proof Highlights

Theorem [Beame'14] Any FBDD for $F_n(Q)$ has size $2^{\Omega(n)}$

Proof part 1: any FBDD for $F_n(H_k)$ has size $\ge 2^{n-1}/n$

Proof part 2:

Convert a N-node FBDD for $F_n(f(H_{k0}, H_{k1}, ..., H_{kk}))$, to a O(n³ N)-node multi-output FBDD for k+1 functions: $F_n(H_{k0})$, $F_n(H_{k1})$,..., $F_n(H_{kk})$

Convert the latter to an FBDD for $F_n(H_k)$

Proof Highlights

Theorem [Dalvi'12] If $\mu = 0$ then $P(F_n(Q))$ is in PTIME

By example on $f = Z_0 \wedge Z_2 \vee Z_0 \wedge Z_3 \vee Z_1 \wedge Z_3$

The remaining terms are inversion-free, hence PTIME

The DNF Lattice

Definition.

The DNF lattice L of a monotone DNF $f = t_1 \vee t_2 \vee \dots$ is:

- Elements of L are terms $t_{i1} \wedge t_{i2} \wedge ...$;
- Order is logical implication

Research Question

Given an FO sentence Q

	Non- hierarchical Q (e.g. H ₀)	Inversion -free <mark>Q</mark>	Q = f(H _{k0} ,,H _{kk})
Is P(<mark>F_n(Q</mark>)) in PTIME? Or #P-hard?	#P-hard	PTIME	PTIME or #P-hard
How large is Knowledge Compilation for F _n (Q)?	size 2 ^{Ω(√n)}	Poly-size	size 2 ^{Ω(√n)}

Outline

- Problem statement
- Review: FBDD, Decision-DNNF
- Hard Queries
- Easy Queries
- Hard/Easy Queries
- Conclusion

The View from the Database Side

High level idea:

Boolean function F generated by small program Q

For FO sentence **Q** in FO(Λ , V, \forall)

- Hard/hard
- Easy/easy
- Easy/hard

Separation of grounded v.s. lifted inference:

- Limitation of DPLL-based algorithms
- Inclusion/exclusion possible only on the FO sentence

Möbius Über Alles

