On Compiling CNFs into Structured Deterministic DNNFs

Friedrich Slivovsky

joint work with Simone Bova, Florent Capelli, and Stefan Mengel

Model Counting (#SAT)

Instance: A propositional formula F in CNF

Problem: Count the satisfying assignments of F

Model Counting (#SAT)

Instance: A propositional formula F in CNF

Problem: Count the satisfying assignments of F

#P-complete for HORN, monotone 2CNF

Model Counting (#SAT)

Instance: A propositional formula F in CNF

Problem: Count the satisfying assignments of F

#P-complete for HORN, monotone 2CNF

structural restrictions often yield tractability

Previous talk:

exact model counters implicitly compile CNFs into **decision** DNNFs

Previous talk:

exact model counters implicitly compile CNFs into **decision** DNNFs

This talk:

compilation of CNFs into structured deterministic DNNFs based on new model counting algorithms

decomposable

decomposable

decomposable

 $var(C_1) \cap var(C_2) = \emptyset$

deterministic

deterministic

deterministic

 $models(C_1) \cap models(C_2) = \emptyset$

CNFs are not polysize compilable into DNNFs

CNFs are not polysize compilable into DNNFs

unless PH collapses

(Selman & Kautz 1996)

CNFs are not polysize compilable into DNNFs

unless PH collapses

(Selman & Kautz 1996)

this can proved unconditionally (Bova, Capelli, Mengel, S. 2014)

Structural Parameters

$$(x \lor \neg y \lor z) \land (\neg x \lor \neg z) \land (y \lor z)$$

Structural Parameters

$$(X \vee \neg y \vee Z) \wedge (\neg X \vee \neg Z) \wedge (y \vee Z)$$

primal graph

Structural Parameters

$$(X \vee \neg y \vee Z) \wedge (\neg X \vee \neg Z) \wedge (y \vee Z)$$

primal graph

incidence graph

incidence treewidth

primal treewidth

incidence treewidth

primal treewidth decision $2^k n$

The Compilation Algorithm

$$(x \lor \neg y \lor z) \land (\neg x \lor \neg z) \land (y \lor z)$$

$$(x \lor \neg y \lor z) \land (\neg x \lor \neg z) \land (y \lor z)$$

vtree

$$(x \lor \neg y \lor z) \land (\neg x \lor \neg z) \land (y \lor z)$$

vtree

$$(x \lor \neg y \lor z) \land (\neg x \lor \neg z) \land (y \lor z)$$

vtree

branch decomposition

$$C_1$$
 C_2 C_3 $(x \lor \neg y \lor z) \land (\neg x \lor \neg z) \land (y \lor z)$

vtree

branch decomposition

$$C_1$$
 C_2 C_3 $(x \lor \neg y \lor z) \land (\neg x \lor \neg z) \land (y \lor z)$

vtree

branch decomposition

Projections

The **projection** of F under assignment τ is the set $F(\tau)$ of clauses of F satisfied by τ .

Projections

The **projection** of F under assignment τ is the set $F(\tau)$ of clauses of F satisfied by τ .

proj(F, X) the set of projections of F under assignments to X.

proj({C₁, C₃}, {x})

 $proj({C_1, C_3}, {x})$ $proj({C_2}, {z,y})$

 $|proj({C_1, C_3}, {x})|$ $|proj({C_2}, {z,y})|$

 $max(|proj({C_1, C_3}, {x})|, |proj({C_2}, {z,y})|)$

A **shape** for t is a pair (S, S') with $S \in \text{proj}(F', X)$ and $S' \in \text{proj}(F, X')$.

A **shape** for t is a pair (S, S') with $S \in \text{proj}(F', X)$ and $S' \in \text{proj}(F, X')$.

An assignment τ : X \rightarrow {0,1} has shape (S, S') if

A **shape** for t is a pair (S, S') with $S \in \text{proj}(F', X)$ and $S' \in \text{proj}(F, X')$.

An assignment τ : X \rightarrow {0,1} has shape (S, S') if

1. $F'(\tau) = S$

A **shape** for t is a pair (S, S') with $S \in \text{proj}(F', X)$ and $S' \in \text{proj}(F, X')$.

An assignment τ : X \rightarrow {0,1} has shape (S, S') if

- 1. $F'(\tau) = S$
- 2. $F(\tau) \cup S' = F$

(S, S')

decomposable

decomposable

Can we compile into more restrictive languages? decision DNNFs, SDDs

Can we compile into more restrictive languages? decision DNNFs, SDDs

What is the relation between PS-width and CV-width?

Can we compile into more restrictive languages? decision DNNFs, SDDs

What is the relation between PS-width and CV-width?

Can decompositions of small PS-width be computed efficiently?