On Compiling CNFs into Structured Deterministic DNNFs

Friedrich Slivovsky
joint work with Simone Bova, Florent Capelli, and Stefan Mengel
ac ${ }^{\| \mid l}$

Model Counting (\#SAT)

Instance: A propositional formula F in CNF
Problem: Count the satisfying assignments of F

Model Counting (\#SAT)

Instance: A propositional formula F in CNF
Problem: Count the satisfying assignments of F
\#P-complete for HORN, monotone 2CNF

Model Counting (\#SAT)

Instance: A propositional formula F in CNF
Problem: Count the satisfying assignments of F
\#P-complete for HORN, monotone 2CNF
structural restrictions often yield tractability

Previous talk:

exact model counters implicitly compile CNFs into decision DNNFs

Previous talk:
 exact model counters implicitly compile CNFs into decision DNNFs

This talk:
compilation of CNFs into structured deterministic DNNFs based on new model counting algorithms

deterministic DNNF

deterministic DNNF

decomposable

deterministic DNNF

decomposable

deterministic DNNF

decomposable

$\operatorname{var}\left(\mathrm{C}_{1}\right) \cap \operatorname{var}\left(\mathrm{C}_{2}\right)=\varnothing$

deterministic DNNF

deterministic DNNF

deterministic

deterministic DNNF

deterministic

$\operatorname{models}\left(\mathrm{C}_{1}\right) \cap \operatorname{models}\left(\mathrm{C}_{2}\right)=\varnothing$

CNFs are not polysize compilable into DNNFs

CNFs are not polysize compilable into DNNFs

unless PH collapses

(Selman \& Kautz 1996)

CNFs are not polysize compilable into DNNFs

unless PH collapses
(Selman \& Kautz 1996)

this can proved unconditionally
(Bova, Capelli, Mengel, S. 2014)

Structural Parameters

$$
(x \vee \neg y \vee z) \wedge(\neg x \vee \neg z) \wedge(y \vee z)
$$

Structural Parameters

$$
(x \vee \neg y \vee z) \wedge(\neg x \vee \neg z) \wedge(y \vee z)
$$

primal graph

Structural Parameters

$$
(x \vee \neg y \vee z) \wedge(\neg x \vee \neg z) \wedge(y \vee z)
$$

primal graph
incidence graph

incidence treewidth
primal treewidth
incidence treewidth

primal treewidth decision

$$
2^{k n}
$$

incidence treewidth structured

3kn
primal treewidth decision

$$
2^{k n}
$$

The Compilation Algorithm

$$
(x \vee \neg y \vee z) \wedge(\neg x \vee \neg z) \wedge(y \vee z)
$$

$$
(x \vee \neg y \vee z) \wedge(\neg x \vee \neg z) \wedge(y \vee z)
$$

vtree

$$
(x \vee \neg y \vee z) \wedge(\neg x \vee \neg z) \wedge(y \vee z)
$$

vtree

$$
(x \vee \neg y \vee z) \wedge(\neg x \vee \neg z) \wedge(y \vee z)
$$

vtree
branch decomposition

$$
\begin{gathered}
\mathrm{C}_{1} \\
(\mathrm{x} \vee \neg \mathrm{y} \vee \mathrm{z}) \wedge(\neg \mathrm{C} \vee \neg \mathrm{C}) \wedge
\end{gathered} \mathrm{C}_{3} \mathrm{C}_{3}(\mathrm{y} \vee \mathrm{z}) .
$$

vtree

$$
\begin{gathered}
\mathrm{C}_{1} \\
(\mathrm{x} \vee \neg \mathrm{y} \vee \mathrm{z}) \wedge(\neg \mathrm{C} \vee \neg \mathrm{C}) \wedge\left(\begin{array}{c}
\mathrm{C}_{3} \\
(\mathrm{y} \vee \mathrm{z})
\end{array}\right.
\end{gathered}
$$

vtree
branch decomposition

Projections

The projection of F under assignment $\mathbf{\tau}$ is the set $\mathrm{F}(\tau)$ of clauses of F satisfied by $\boldsymbol{\tau}$.

Projections

The projection of F under assignment $\mathbf{\tau}$ is the set $F(\tau)$ of clauses of F satisfied by $\boldsymbol{\tau}$.
$\operatorname{proj}(F, X)$ the set of projections of F under assignments to X.

PS-width

PS-width

PS-width

$\operatorname{proj}\left(\left\{\mathrm{C}_{1}, \mathrm{C}_{3}\right\},\{\mathrm{x}\}\right)$

PS-width

$\operatorname{proj}\left(\left\{\mathrm{C}_{1}, \mathrm{C}_{3}\right\},\{\mathrm{x}\}\right) \quad \operatorname{proj}\left(\left\{\mathrm{C}_{2}\right\},\{\mathbf{z}, \mathbf{y}\}\right)$

PS-width

$\left|\operatorname{proj}\left(\left\{C_{1}, C_{3}\right\},\{x\}\right)\right| \quad\left|\operatorname{proj}\left(\left\{C_{2}\right\},\{z, y\}\right)\right|$

PS-width

$\max \left(\left|\operatorname{proj}\left(\left\{\mathrm{C}_{1}, \mathrm{C}_{3}\right\},\{x\}\right)\right|,\left|\operatorname{proj}\left(\left\{\mathrm{C}_{2}\right\},\{\mathrm{z}, \mathrm{y}\}\right)\right|\right)$

Shapes

Shapes

A shape for t is a pair $\left(S, S^{\prime}\right)$ with $S \in \operatorname{proj}\left(F^{\prime}, X\right)$ and $S^{\prime} \in \operatorname{proj}\left(F, X^{\prime}\right)$.

Shapes

A shape for t is a pair $\left(S, S^{\prime}\right)$ with $S \in \operatorname{proj}\left(F^{\prime}, X\right)$ and $S^{\prime} \in \operatorname{proj}\left(F, X^{\prime}\right)$.

An assignment $\mathbf{\tau}: X \rightarrow\{0,1\}$ has shape $\left(S, S^{\prime}\right)$ if

Shapes

A shape for t is a pair $\left(S, S^{\prime}\right)$ with $S \in \operatorname{proj}\left(F^{\prime}, X\right)$ and $S^{\prime} \in \operatorname{proj}\left(F, X^{\prime}\right)$.

An assignment $\mathbf{\tau}: X \rightarrow\{0,1\}$ has shape $\left(S, S^{\prime}\right)$ if

1. $F^{\prime}(\tau)=S$

Shapes

A shape for t is a pair $\left(S, S^{\prime}\right)$ with $S \in \operatorname{proj}\left(F^{\prime}, X\right)$ and $S^{\prime} \in \operatorname{proj}\left(F, X^{\prime}\right)$.

An assignment $\mathbf{\tau}: X \rightarrow\{0,1\}$ has shape $\left(S, S^{\prime}\right)$ if

1. $F^{\prime}(\tau)=S$
2. $F(\tau) \cup S^{\prime}=F$

Decomposing Shapes

Decomposing Shapes

(S, S')

Decomposing Shapes

Decomposing Shapes

$\left(\mathrm{S}_{1}, \mathrm{~S}_{1}{ }^{3}\right) \quad\left(\mathrm{S}_{2}, \mathrm{~S}_{2}{ }^{3}\right)$
decomposable

Decomposing Shapes

$\left(\mathrm{S}_{1}, \mathrm{~S}_{1}{ }^{3}\right) \quad\left(\mathrm{S}_{2}, \mathrm{~S}_{2}{ }^{3}\right)$
decomposable

Open Questions

Open Questions

Can we compile into more restrictive languages? decision DNNFs, SDDs

Open Questions

Can we compile into more restrictive languages? decision DNNFs, SDDs

What is the relation between PS-width and CV-width?

Open Questions

Can we compile into more restrictive languages? decision DNNFs, SDDs

What is the relation between PS-width and CV-width?

Can decompositions of small PS-width be computed efficiently?

