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Structure of the results

1 Parameterized lower bound We demonstrate that
Non-Deterministic Read-Once Branching Programs (NROBPs) are
not FPT on monotone 2-CNFs of bounded treewidth.

2 Non-parameterized separation of NROBP and DNNF

Using the lower bound, we provide a quasi-polynomial separation of
NROBPs and Decision DNNFs
This separation shows that the quasi-polynomial simulation of
Decision DNNF by FBDD (Beame et al., UAI2013) is essentially
tight

3 Tightness of the separation. Upgrading the approach of (Beame
et al., UAI2013) we establish quasi-polynomial simulation of DNNF
by NROBP. Thus the quasi-polynomial separation of NROBP and
DNNF is essentially tight as well.
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Non-Deterministic Read-Once Branching Programs
(NROBP)

Directed acyclic graph with one root and one leaf.

Some edges are labelled with literals of variables.

On each path each variable occurs at most once as an edge
label.
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Notational conventions

A truth assignment to a set of variables is denoted by the set
of their literals that become true as a result of this assignment.

For example, the assignment
{X1 ← true,X2 ← true,X3 ← false} is represented by the set
{X1,X2,¬X3}.
Let P be a path of an NROBP Z . The set of labels on the
edges of P is denoted by A(P).
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NROBP computing a Boolean function

A NROBP Z accepts a satisfying assignment S if Z has a
root-leaf path P such that A(P) ⊆ S .

Z computes a function F that is true precisely on the set of
assignments accepted by Z .
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NROBP for function
((X1 ∨ X2) ∧ (X3 ∨ X4)) ∨ ((X5 ∨ X6) ∧ (X7 ∨ X8))

X1 X2

X3

X4

X5
X6

X7
X8
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Monotone 2-CNFs and graphs

Monotone 2-CNFs are in a natural one-to-one correspondence
with graphs without isolated vertices.

For example a graph with vertices {v1, v2, v3, v4} and edges
{v1, v2}, {v1, v3}, {v2, v3}, {v2, v4}, {v3, v4} corresponds to the
CNF (v1 ∨ v2) ∧ (v1 ∨ v3) ∧ (v2 ∨ v3) ∧ (v2 ∨ v4) ∧ (v3 ∨ v4).

We denote the CNF corresponding a to a graph G by φ(G ).
(Note that G is the primal graph of φ(G )).

We interchangeably use treewidth (or other structural
parameters) of G and of φ(G ).
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NRBOP lower bound

For each k there is an infinite class of (monotone 2-) CNFs
whose the equivalent NROBPs are of size Ω(nk/c) where c is
a universal constant independent on c .

Roughly speaking: CNFs of bounded treewidth cannot be
transformed into FPT-size NROBP.

Assumption w.l.o.g.: on each root-leaf path, literals of all
variables occur as labels.
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Matching width of a prefix

Let (v1, . . . , vn) be a permutation of vertices of a graph G .

Denote {v1, . . . , vi} by Vi .

The matching width of Vi is the largest size of a matching consisting of edges
with one end in Vi and one end outside Vi . For example, in the picture below,
the matching width of V3 is 2.

v1

v2

v3

v4

v5

v6

V3
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Matching width

Matching width of a permutation (v1, . . . , vn) of V (G ) is the
largest matching width of its prefix.

Matching width of a graph is the smallest matching width of
its permutation.

Matching width and pathwidth of a graph are linearly related
but the former is more convenient for our use.

Examples: matching with of a path is 1, matching width of a
clique Kn is bn/2c.
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Small treewidth, large matching width, bounded degree

Theorem. For each k there is an infinite set Gk of graphs of
treewidth at most 2k, matching width at least (k log n)/c (where c
is a universal constant) and max-degree 5.
Construction of Gk

Tr : a complete binary tree of height r .
Pk : path of k vertices.
For each r , the vertices of Tr are replaced with copies of Pk .
The copies associated with adjacent vertices u and v of Tr

are connected by edges joining the ‘same’ vertices of both
copies (first vertex of the copy of u is adjacent to the first
vertex of the copy of v , then second to the second and so on).
Denote the resulting graph Tr ,k .
Gk is the family of Tr ,k for all values of r .
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Example of T2,3
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Lower bound parameterized by matching width

Let G be a graph of n vertices and matching width t.

Then the NROBP of φ(G ) is of size at least 2t/bx

bx is a constant dependent on the max-degree x of G .

Remark: the idea of proof is provided in two subsequent sections.
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The lower bound proof

Take the class of monotone 2-CNFs {φ(G )|G ∈ Gk}
In the lower bound parameterized by matching width, replace
t by the lower bound (k ∗ log n)/c of the matching width of
Gk .

The resulting lower bound is nlog k/a for some universal
constant a and the treewidth of φ(G ) is at most 2k as
claimed above.
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A NROBP node crossing a clause

Let Z be a NROBP computing a monotone 2-CNF φ.

Let u be a node of Z and let (x ∨ y) be a clause of φ.

Let P be a root-leaf path of Z containing u ad suppose a
literal of x labels an edge of P occurring before u and y labels
an edge of P occurring after u.

We say that u crosses (x ∨ y).
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Fixed literal of a crossed clause

Lemma fix-cross. Suppose u crosses (x ∨ y) Then one of the following
two is true.

Every assignment accepted by a path going through u contains x .

Every assignment accepted by a path going through u contains y .

Sketch of proof by contradiction.

Suppose there are assignments S1 and S2 containing ¬x and ¬y ,
respectively and accepted by respective paths P1 and P2 both going
through u

Then the prefix of one of P1 or P2 ending at u plus the suffix of the
other path beginning with u constitute a root-leaf path which either
has double occurrence of one of x or y or falsifies (x ∨ y) (see the
next slide).
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A node crossing r clauses

With Z , φ,u as above, suppose that u crosses clauses
(x1 ∨ y1), . . . , (xr ∨ yr ) with pairwise disjoint literals.

Then there are z1 ∈ {x1, y1}, . . . , zr ∈ {xr , yr} such that for
each satisfying assignment S accepted by a root-leaf path P
passing through u, {z1, . . . , zr} ⊆ S .

Proof idea: apply the fix-cross lemma to each (xi ∨ yi )
individually.

Denote such a {z1, . . . , zr} by Ar (u). (If there multiple
choices of z1, . . . , zr , pick an arbitrary one.)
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t-crossing cut

Let G be a graph of matching width at least t and let Z be a
NROBP computing φ(G ).

Then nodes crossing t clauses with pairwise disjoint literals
form a root-leaf cut of Z .

1 Let P be a root-leaf path and let SV (P) be the permutation
of V (G ) ordered according to their occurrence on P.

2 Let SV ′ be a prefix of SV such that there is a matching M of
t edges with one end in SV ′ the other end in SV (P) \ SV ′.

3 Let P ′ be a prefix of P labelled by SV ′.
4 The last node of P ′ crosses the clauses corresponding to the

edges of M.
5 Since M is a matching, the literals of these clauses are pairwise

disjoint.
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Covering of satisfying assignments

Let u1, . . . ,uq be a root-leaf cut of Z such that each ui

crosses t clauses with pairwise disjoint literals.

Define A = {At(u1), . . . ,At(uq)}.
Fact 1. q ≥ |A|.
Fact 2. φ(G ) is covered by A. That is, each satisfying
assignment S of φ(G ) is a superset of some At(ui )

1 S is accepted by some root-leaf path P.
2 P goes through some ui .
3 At(ui ) ⊆ S as demonstrated two slides ago.
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Auxiliary combinatorial statement

Let G be a graph of matching width at least t.

Let A be a family of positive literals of φ(G ) of size at least t
each.

Suppose that φ(G ) is covered by A.

Then |A| ≥ 2t/bx , where bx is a constant depending on the
max-degree x of G .
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Proof of the matching width lower bound

Let u1, . . . ,uq be a root-leaf cut of Z such that each ui

crosses t clauses with pairwise disjoint literals.

Let A = {At(u1), . . . ,At(uq)}.
Fact 2 and the auxiliary statement imply that |A| ≥ 2t/bx .

Fact 1 implies that q ≥ 2t/bx .

u1, . . . ,uq are distinct nodes of Z , hence Z has at least 2t/bx

nodes.
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Rephrasing in terms of covering of vertex covers

A Vertex Cover (VC) of a graph G is a set of vertices incident
to all the edges of G .

Example: let {u1, u2}, {u1, u3}, {u2, u3}, {u2, u4}, {u3, u4} be
the edges of G . Then {u2, u3} is a VC of G .

Note that S is a VC of G if and only if S is the set of positive
literals of a satisfying assignment of φ(G ).

Hence the set A is a family of subsets of V (G ) of size at least
t each such that each VC of G is a superset of an element of
A. We are going to show that this set is large.
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Proof of the statement

We will show that a VC S of G can be selected at random so
that the probability that A ⊂ S , where A is an arbitrary set
|A| ≥ t, is at most 2−t/bx .

By the union bound, the probability pr that S is a superset of
an element of A is at most |A| ∗ 2−t/bx .

If |A| < 2t/bx then pr < 1.

That is, there is a VC S of G that is not a superset of any
element of A in contradiction to the definition of A.

In the rest of the section, we outline a proof of the first
statement.
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Random selection of VCs

Let e1, . . . , em be arbitrary enumerated edges of G .

For each ei , toss a fair coin choosing an end ui of ei .

Let U = (u1, . . . , um) be a random vector of the outcomes.

Let S(U) be the set of all vertices occurring in the
components of U.

S(U) is a VC of G as it contains an end of each edge.
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Probability of vertex occurrence

Lemma prob-vert. Let u ∈ V (G ). Then Pr(u ∈ S(U)) ≤ 1− 2−x

where x is the max-degree of G .

Let Eu be the set of edges incident to u.

The event u ∈ S(U) is equivalent to the even that u is the
guessed end of some e ∈ Eu.

That is Pr(u ∈ S(u)) = 1− 2−|Eu |.

Since |Eu| ≤ x , 1− 2−|Eu | ≤ 1− 2−x
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Probability of vertex occurrence

Lemma prob-indep. Let I be an independent set of G . Then
Pr(I ⊆ S(U)) ≤ (1− 2−x)|I |.

Let I = {v1, . . . , vr}.
Pr(I ⊆ S(U) = Pr(

∧
i (vi ∈ S(U)))

Ev1 , . . .Evr are pairwise disjoint.

Hence the occurrence of each vi in S(U) is independent on
the occurrences of the rest of the vertices of I .

As probability of conjunction of independent events equals the
product of their probabilities,
Pr(I ⊆ S(U)) ≤

∏
i Pr(vi ∈ S(U)).

The lemma now immediately follows from lemma prob-vert.
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Let W ⊆ V (G ), |W | ≥ t.

Then W is a superset of an independent set I of size at least
t/(x + 1).

By Lemma prob-indep,
Pr(W ⊆ S(U)) ≤ Pr(I ⊆ S(U)) ≤ (1− 2−x)t/(x+1).

By choosing a proper bx , (1− 2−x)t/(x+1) can be represented
as 2−t/bx .
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Decomposable negation normal forms (DNNFs)

Let Z be a Boolean circuit over the {∧,∨,¬} basis. We
assume for simplicity that all the ∧ and ∨ gates are binary.

Let u be a gate of Z . Denote by Zu the subcircuit of Z with
u being the output gate.

A de-Morgan circuit essentially has positive and negative
literals as inputs and the rest of the gates are AND or OR
ones.

An AND gate u with inputs u1 and u2 is decomposable if the
sets of variables of Zu1 and Zu2 are disjoint.

DNNF is a de-Morgan circuit with all the AND nodes being
decomposable.
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Decision DNNFs

A DNNF is a decision DNNF if all its OR gates are decision ones

(see the picture).

V

& &

X
~X
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Facts about Decision DNNFs

A CNF of primal graph treewidth k can be transformed into a
decision DNNF of size O(2k ∗ n) (Oztok,Darwiche, CP2014).

A Decision DNNF of size N can be simulated by a FBDD
(deterministic read-once branching program) of size NO(log n).
(Beame et al., UAI 2013)

Using the NROBP lower bound together with the first fact,
we provide a quasi-polynomial separation between NROBP
and Decision DNNF, essentially matching the upper bound of
Beame et al.
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Separation of NROBPs and Decision DNNFs

Consider the set of graphs Tr ,r for all the values of r .

Note that r = Θ(log n)

Thus the matching width of the graphs is Ω(log2 n)

By the matching width lower bound, the NROBP size of
φ(Tr ,r ) is at least 2Ω(log2 n) = nΩ(log n).

On the other hand, the treewidth of Tr ,r is O(log n) and hence
there is a decision DNNF for φ(Tr ,r ) of a polynomial size.
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Simulation of DNNF by NROBP

The quasi-polynomial simulation of decision DNNF by FBDD
can be adapted to quasi-polynomial simulation of DNNF by
NROBP.

Consequences:

The proposed quasi-polynomial separation is tight not only for
decision DNNFs but also for unrestricted DNNFs.
Lower bounds for DNNF can be derived from lower bounds for
NROBPs.
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Strategy of simulation

Gates of a DNNF Z are considered in a topological order and
for each gate u, Zu is transformed into a NROBP.

An input gate labelled by a literal x is transformed into a
one-edge NROBP labelled by x .

If u is an OR or AND gate with inputs u1 and u2 then the
transformation assumes that Zu1 and Zu2 have been already
transformed into DNNF.

If u is an OR node then the transformation of Zu is natural: u
becomes the root with out-neighbours being the root nodes of
the NROBPs of Zu1 and Zu1 .

The transformation of AND nodes is what causes trouble!
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The trouble with AND nodes

The AND of Zu1 and Zu2 is implemented by ‘sequential’ connection
u −− > Z ′

u1
−− > Z ′

u2
where Z ′

ui is the NROBP obtained by
transformation of Zui (Since variables of Zu1 and Zu2 are disjoint,
the read-once property is preserved).

The problem is that u1 can be input of another node w 6= u.

As a result of putting Z ′
u1

‘on top’ of Zu2 , the transformation of Zw

will become incorrect.

This difficulty is resolved by putting on top of Z ′
u2

not Z ′
u1

itself but
rather its copy created specifically for standing on top of Z ′

u2
.

This process of multiplying the number of copies might seem to
cause exponential explosion of size. However, careful choice of the
copy to be put on top allows to make this explosion only
quasi-polynomial.
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Restricting the number of nodes

Among Z ′u1
and Z ′u2

, we put ‘on top’ the one containing
smaller number of variables (or arbitrary one if the number of
variables is the same).

That is, the number of variables of Zu1 is at most half the
number of variables of Zu.

Each individual Zu can be copied at most |Z | times. However
the NROBPs ’inside’ Zu can also be copied, which causes
explosion.

Since every time, the process goes ‘inside’ the number of
variables halves, the depth of ‘going inside’ is logarithmic,
hence the upper bound.
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Concluding remarks

We demonstrated a lower bound for NROBP parameterized by the
treewidth of CNF.

Using this parameterized lower bound, we established a
non-parameterized quasi-polynomial separation between NROBP
and DNNF.

This separation is essentially tight because we can show that
DNNFs can be simulated by NRBPs of quasi-polynomial size.

Open questions
1 Can CNF of bounded treewidth be efficiently presented by

branching programs with bounded repetition?
2 Can CNF of bounded treewidth be efficiently presented by

semantic NROBP? Note: no super polynomial lower bound for
semantic NROBP is currently known.
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