Towards a Knowledge Compilation Map for Heterogeneous Representation Languages

Alexandre Niveau ${ }^{1}$
joint work with
Hélène Fargier ${ }^{2} \quad$ Pierre Marquis ${ }^{3}$
published in IJCAI'13

1. GREYC-CNRS, Caen, France - alexandre.niveau@unicaen.fr
2. IRIT-CNRS, Toulouse, France - fargier@irit.fr
3. CRIL-CNRS, Lens, France - marquis@cril.fr

June 4th, 2015

Choosing a Compilation Language

- What is the best language for my application?
\rightarrow use the knowledge compilation map [Dar02]
- Compares languages according to two criteria:
(1) efficiency of operations
(2) succinctness

Knowledge Compilation Map: Operations

- All online manipulations boil down to elementary queries and transformations

L						
NNF	\bigcirc	$\bigcirc \circ$	-	\bigcirc	\bigcirc	\bigcirc
DNNF	$\sqrt{ }$ ○	$\sqrt{ }$ ○	\bigcirc	-	-	$\sqrt{ }$
BDD	\bigcirc	\bigcirc	-	\bigcirc	\bigcirc	\bigcirc
FBDD	$\sqrt{ } \sqrt{ }$	$\sqrt{ } \sqrt{ }$?	\bigcirc	$\sqrt{ }$	$\sqrt{ }$
OBDD	$\sqrt{ } \sqrt{ }$	$\sqrt{ } \sqrt{ }$	$\sqrt{ }$	\bigcirc	$\sqrt{ }$	$\sqrt{ }$
DNF	$\sqrt{ }$ ○	$\sqrt{ } \circ$	\bigcirc	\bigcirc	\bigcirc	$\sqrt{ }$
CNF	$\bigcirc \sqrt{ }$	$\bigcirc \sqrt{ }$	\bigcirc	\bigcirc	-	\bigcirc

L					
$\begin{gathered} \text { NNF } \\ \text { DNNF } \end{gathered}$	$\sqrt{\sqrt{*}}$	$\stackrel{\circ}{\circ} \sqrt{ }$	$\begin{array}{ll}\sqrt{ } & \sqrt{ } \\ \circ & \\ 0\end{array}$	$\sqrt{ } \sqrt{ } \sqrt{ }$	$\sqrt{ }$
BDD	$\sqrt{ }$	$\bigcirc \sqrt{ }$			\checkmark
FBDD	$\sqrt{ }$	- 0	- 0	- 0	$\sqrt{ }$
OBDD	$\sqrt{ }$	- $\sqrt{ }$			$\sqrt{ }$
DNF	$\sqrt{ }$	$\sqrt{ } \sqrt{ }$	- $\sqrt{ }$	$\sqrt{ } \sqrt{ }$	\bullet
CNF	$\sqrt{ }$	- $\sqrt{ }$	$\sqrt{ } \sqrt{ }$	- $\sqrt{ }$	-

$\sqrt{ }$ polynomial

- not polynomial unless $P=N P$
- not polynomial

Knowledge Compilation Map: Operations

- All online manipulations boil down to elementary queries and transformations

L					
NNF	\bigcirc	-	\bigcirc	\bigcirc	\bigcirc
DNNF	$\sqrt{ }$ ○	$\sqrt{ }$ ○	\bigcirc	-	- $\sqrt{ }$
BDD	\bigcirc	$\bigcirc \circ$	-	\bigcirc	\bigcirc
FBDD	$\sqrt{ } \sqrt{ }$	$\sqrt{ } \sqrt{ }$?	\bigcirc	$\sqrt{ } \sqrt{ }$
OBDD	$\sqrt{ } \sqrt{ }$	$\sqrt{ } \sqrt{ }$	$\sqrt{ }$	\bigcirc	$\sqrt{ } \sqrt{ }$
DNF	$\sqrt{ }$ ○	$\sqrt{ } \circ$	\bigcirc	\bigcirc	$\bigcirc \sqrt{ }$
CNF	$\bigcirc \sqrt{ }$	$\bigcirc \sqrt{ }$	\bigcirc	\bigcirc	\bigcirc

L					
$\begin{gathered} \text { NNF } \\ \text { DNNF } \end{gathered}$	$\sqrt{\sqrt{*}}$	$\stackrel{\circ}{\circ} \sqrt{ }$	$\begin{array}{ll}\sqrt{ } & \sqrt{ } \\ \circ & \\ 0\end{array}$	$\sqrt{ } \sqrt{ } \sqrt{ }$	\checkmark
BDD	$\sqrt{ }$	$\bigcirc \sqrt{ }$			\checkmark
FBDD	$\sqrt{ }$	- 0	- 0	- 0	,
OBDD	$\sqrt{ }$	- $\sqrt{ }$			$\sqrt{ }$
DNF	$\sqrt{ }$	$\sqrt{ } \sqrt{ }$	- $\sqrt{ }$	$\sqrt{ } \sqrt{ }$	\bullet
CNF	$\sqrt{ }$	- $\sqrt{ }$	$\sqrt{ } \sqrt{ }$	- $\sqrt{ }$	-

$\sqrt{ }$ polynomial

- not polynomial unless $P=N P$
- not polynomial

Knowledge Compilation Map: Operations

- All online manipulations boil down to elementary queries and transformations

L						
NNF	\bigcirc	-	-	\bigcirc	-	\bigcirc
DNNF	$\sqrt{ } \circ$	$\sqrt{ }$ ○	\bigcirc	\bigcirc	\bigcirc	$\sqrt{ }$
BDD	$\bigcirc \circ$	\bigcirc	-	\bigcirc	-	\bigcirc
FBDD	$\sqrt{ } \sqrt{ }$	$\sqrt{ } \sqrt{ }$?	\bigcirc	\checkmark	$\sqrt{ }$
OBDD	$\sqrt{ } \sqrt{ }$	$\sqrt{ } \sqrt{ }$	$\sqrt{ }$	\bigcirc	$\sqrt{ }$	$\sqrt{ }$
DNF	\checkmark	\checkmark	\bigcirc	\bigcirc	\bigcirc	$\sqrt{ }$
CNF	$\bigcirc \sqrt{ }$	$\bigcirc \sqrt{ }$	\bigcirc	\bigcirc	-	\bigcirc

L					
$\begin{gathered} \text { NNF } \\ \text { DNNF } \end{gathered}$	$\sqrt{\sqrt{*}}$	$\stackrel{\circ}{\circ} \sqrt{ }$	$\begin{array}{ll}\sqrt{ } & \sqrt{ } \\ \circ & \\ 0\end{array}$	$\sqrt{ } \sqrt{ } \sqrt{ }$	\checkmark
BDD	$\sqrt{ }$	$\bigcirc \sqrt{ }$			\checkmark
FBDD	$\sqrt{ }$	- 0	- 0	- 0	,
OBDD	$\sqrt{ }$	- $\sqrt{ }$			$\sqrt{ }$
DNF	$\sqrt{ }$	$\sqrt{ } \sqrt{ }$	- $\sqrt{ }$	$\sqrt{ } \sqrt{ }$	\bullet
CNF	$\sqrt{ }$	- $\sqrt{ }$	$\sqrt{ } \sqrt{ }$	- $\sqrt{ }$	-

$\sqrt{ }$ polynomial

- not polynomial unless $P=N P$
- not polynomial

Knowledge Compilation Map: Succinctness

- Succinctness relation: orders languages w.r.t. their ability to represent knowledge compactly
- $\mathrm{L}_{1} \leq_{s} \mathrm{~L}_{2}$ means " L_{1} is at least as succinct as L_{2} "

Knowledge Compilation Map: Succinctness

- Succinctness relation: orders languages w.r.t. their ability to represent knowledge compactly
- $\mathrm{L}_{1} \leq_{s} \mathrm{~L}_{2}$ means " L_{1} is at least as succinct as L_{2} "

Knowledge Compilation Map: Succinctness

- Succinctness relation: orders languages w.r.t. their ability to represent knowledge compactly
- $\mathrm{L}_{1} \leq_{s} \mathrm{~L}_{2}$ means " L_{1} is at least as succinct as L_{2} "

- Other relations: expressiveness $\left(\leq_{e}\right)$, polynomial translatability $\left(\leq_{p}\right)$

Beyond Boolean Languages

- The map is drawn for lots of languages representing Boolean functions over Boolean variables
- There exists maps for languages with multivalued variables (family of MDDs) or continuous variables, and for languages representing functions with non-Boolean values (VDDs)

- Languages close in essence: generalizations of the BDD family in several directions
\rightarrow some are "equivalent"
\rightarrow similarities in maps

Motivation

- However, these languages are heterogeneous, i.e., they represent different kinds of objects
- their maps are distinct
- their "equivalence" is not formally stated within the framework
- We would like to unify the maps, in order to
- allow the comparison of heterogeneous languages
- factorize the common parts of the maps
- inherit results between "close" heterogeneous languages
- enable the diversification of the KC map setting
\rightarrow We propose a generalized framework for comparing representation languages

Plan

(1) Introduction

(2) Representation Languages

3 Comparing Heterogeneous Languages

4 Result Inheritance

Languages of the Classical Compilation Map

- In the classical compilation map, the notion of "language" designates a formal language:
- A propositional formula is a word over the alphabet $P_{S} \cup\{\vee, \wedge, \neg,()$,
- It is in CNF if it verifies some specific properties
- The CNF language is the set of all CNFs
- The notion of "language" concerns syntax only
\rightarrow the semantics is implicitly given by the interpretation function of propositional formulæ

Limitations

- This notion of language is limited:
- implicit interpretation function
- implicit variable domains
- Easily adaptable to other families of data structures...
- ... but implicit aspects prevent a unified presentation
- We need a more general notion

Representation Language

- Definition of a representation language, as general as possible
- Universe of discourse \mathfrak{U} : contains all objects that we could intend to represent (Boolean functions, real functions, etc.)
- Generic alphabet Σ : no a priori restriction on formulæ $\varphi \in \Sigma^{*}$

Definition

A representation language is a pair $\mathrm{L}=\left\langle\Phi_{\mathrm{L}}, \mathcal{I}_{\mathrm{L}}\right\rangle$, where

- Φ_{L} is the syntax of $\mathrm{L}: \Phi_{\mathrm{L}} \subseteq \Sigma^{*}$;
- \mathcal{I}_{L} is the semantics of $\mathrm{L}: \mathcal{I}_{\mathrm{L}}: \Sigma^{*} \rightarrow \mathfrak{U}$ (partial function, defined at least on all formulæ in Φ_{L}).

Examples

- Language of propositional logic: PROP $=\left\langle\Phi_{\text {PROP }}, \mathcal{I}_{\text {PROP }}\right\rangle$
- $\Phi_{\text {PRop }}$: set of well-formed propositional formulæ
- $\mathcal{I}_{\text {PROP }}:$ usual interpretation function
- $\mathrm{CNF}=\left\langle\Phi_{\mathrm{CNF}}, \mathcal{I}_{\mathrm{PROP}}\right\rangle$, with Φ_{CNF} the set of CNFs
- HORN-C $=\left\langle\Phi_{\text {HORN-C }}, \mathcal{I}_{\text {PROP }}\right\rangle$, with $\Phi_{\text {HORN-C }}$ the set of Horn-CNFs
- $\mathrm{OMDD}=\left\langle\Phi_{\text {OMDD }}, \mathcal{I}_{\text {MDD }}\right\rangle$
- $\Phi_{\text {оMDD }}$: set of ordered MDDs
- $\mathcal{I}_{\text {MDD }}$: interpretation function of multivalued decision diagrams

Interpretation Space

- Semantics of L: way of interpreting some formulæ of Σ^{*}
- Associates with each formula $\varphi \in \Phi_{\mathrm{L}}$ its interpretation $\llbracket \varphi \rrbracket_{\mathrm{L}}$

Interpretation Space

- Semantics of L: way of interpreting some formulæ of Σ^{*}
- Associates with each formula $\varphi \in \Phi_{\mathrm{L}}$ its interpretation $\llbracket \varphi \rrbracket_{\mathrm{L}}$
- ... but it also interprets other formulæ (semantics of CNF: $\mathcal{I}_{\text {PROP }}$, interprets also DNFs, for example)
\rightarrow interpretation space Ω_{L} : set of all objects represented by the semantics of L
- Example: $\Omega_{\mathrm{PROP}}=\Omega_{\mathrm{CNF}}=\Omega_{\mathrm{HORN}-\mathrm{C}}=$ set of Boolean functions over Boolean variables

Interpretation Space

- Semantics of L: way of interpreting some formulæ of Σ^{*}
- Associates with each formula $\varphi \in \Phi_{\mathrm{L}}$ its interpretation $\llbracket \varphi \rrbracket_{\mathrm{L}}$
- ... but it also interprets other formulæ (semantics of CNF: $\mathcal{I}_{\text {PROP }}$, interprets also DNFs, for example)
\rightarrow interpretation space Ω_{L} : set of all objects represented by the semantics of L
- Example : $\Omega_{\mathrm{PROP}}=\Omega_{\mathrm{CNF}}=\Omega_{\mathrm{HORN}-\mathrm{C}}=$ set of Boolean functions over Boolean variables
- Completeness of L: relative to its interpretation space (CNF is complete, HORN-C is incomplete)

Plan

(1) Introduction

2 Representation Languages

3 Comparing Heterogeneous Languages

4 Result Inheritance

Encoding MDDs into BDDs

- In practice, MDDs are often compiled into BDDs
- Use of classical encodings (also used to go from CSP to SAT [Wal00; Pre04])
- Direct encoding: one Boolean variable per multivalued variable and per value in the domain
- Multivalued encoding: like the direct encoding, but no "at-most-one" constraint
- Log encoding: Boolean variables used as bits
- Encoding an MDD into a BDD is polynomial

Translatability of MDD into BDD

- MDDs can thus be "translated" into BDDs in polynomial time
- One would like to write MDD \geq_{p} BDD...
- But it is not the case: MDD $\not ¥_{p}$ BDD, because they represent different kinds of functions
- The classical relation of polynomial translatability requires languages to have the same interpretation space
- We would like the compilation map to take translations into account

Translation

- We extend classical comparison relations
- Possibility of using a semantic correspondence between interpretation spaces: $\mathcal{T} \subseteq \Omega_{\mathrm{L}_{1}} \times \Omega_{\mathrm{L}_{2}}$
\rightarrow indicates objects considered as "equivalent"
- Example: given $f: \mathbb{N}^{n} \rightarrow \mathbb{B}$ and $g: \mathbb{B}^{m} \rightarrow \mathbb{B}$,

$$
f \mathcal{T}_{\text {dir }} g \Longleftrightarrow g \text { is a direct encoding of } f
$$

- Similarly for multivalued encoding $\mathcal{T}_{\text {mult }}$, log encoding $\mathcal{T}_{\text {log }}$
- \mathcal{T} induces a syntactic translation between formulæ of L_{1} and formulæ of L_{2}

Extended Polynomial Translatability

- If there exists a polynomial algorithm transforming any formula φ_{1} of L_{1} into a formula φ_{2} of L_{2} such that $\llbracket \varphi_{1} \rrbracket_{\mathrm{L}_{1}} \mathcal{T} \llbracket \varphi_{2} \rrbracket_{\mathrm{L}_{2}}$, then L_{1} is said to be polynomially translatable into L_{2} modulo \mathcal{T}
- We denote it as $\mathrm{L}_{1} \geq_{p}^{\mathcal{T}} \mathrm{L}_{2}$
\rightarrow Generalization of the classical polynomial translatability: $\mathrm{L}_{1} \geq_{p} \mathrm{~L}_{2}$ corresponds to $\mathrm{L}_{1} \geq_{p}^{\text {Id }} \mathrm{L}_{2}$
- We also extend the succinctness and expressiveness relations to the use of a correspondence: $\mathrm{L}_{1} \geq_{s}^{\mathcal{T}} \mathrm{L}_{2}$ and $\mathrm{L}_{1} \geq_{e}^{\mathcal{T}} \mathrm{L}_{2}$

Examples

- Thanks to the extended relations, one can compare heterogeneous languages:
- MDD $\geq{ }_{p}^{\tau_{\text {dir }}}$ BDD and MDD $\geq{ }_{p}^{\tau_{\text {log }}} \mathrm{BDD}$
- MDD $\not \not ¥_{s}^{\text {dir }}$ CNF
- One can also compare homogeneous languages of incomparable expressiveness (e.g., HORN-C and AFF), via a well-chosen semantic correspondence
- One can extend succinctness results from one family of languages to another via some translation:

$$
\begin{aligned}
\mathrm{BDD} & <_{s} \mathrm{OBDD} \\
& \Downarrow \\
\mathrm{MDD} & <_{s} \mathrm{OMDD}
\end{aligned}
$$

Plan

(1) Introduction

2) Representation Languages

3 Comparing Heterogeneous Languages

4 Result Inheritance

Polynomial Translatability and Operations

- The classical polynomial translatability allows one to easily infer results about queries and transformations
- MODS \geq_{p} OBDD
\Rightarrow MODS satisfies all queries that OBDD satisfies
- NNF \sim_{p} PROP
\Rightarrow NNF and PROP satisfy the exact same set of queries and transformations
- What properties of this kind hold on languages "equivalent modulo some translation", like OBDD and OMDD?

Query Inheritance

- Classical case: if $\mathrm{L}_{1} \geq_{p} \mathrm{~L}_{2}$, then all queries satisfied by L_{2} are satisfied by L_{1}.
- Extended case: suppose $\mathrm{L}_{1} \geq_{p}^{\mathcal{T}} \mathrm{L}_{2}$. What can we say about queries satisfied by L_{1} ?

Query Inheritance

- Classical case: if $\mathrm{L}_{1} \geq_{p} \mathrm{~L}_{2}$, then all queries satisfied by L_{2} are satisfied by L_{1}.
- Extended case: suppose $\mathrm{L}_{1} \geq_{p}^{\mathcal{T}} \mathrm{L}_{2}$. What can we say about queries satisfied by L_{1} ?
\rightarrow Nothing in the general case: it depends on the \mathcal{T} used
- Let L_{2} be a language satisfying CT
- $\mathcal{T}_{\text {dir }}$ maintains the number of models, so if $\mathrm{L}_{1} \geq \mathcal{T}_{p}$ dir L_{2} holds, then L_{1} also satisfies CT
- $\mathcal{T}_{\text {multi }}$ does not maintain the number of models: $\mathrm{L}_{1} \geq{ }_{p}^{\mathcal{T}_{\text {mult }}} \mathrm{L}_{2}$ can hold without L_{1} satisfying CT
- Same problem for transformations

Inheritance Theorem

- We define (in the paper) a notion of suitability to a semantic correspondence for queries and transformations
- CT is suitable to $\mathcal{T}_{\text {dir }}$, but not to $\mathcal{T}_{\text {multi }}$
- CO and CD are suitable to both
- SFO is not suitable to any of the two

Inheritance Theorem

- We define (in the paper) a notion of suitability to a semantic correspondence for queries and transformations
- CT is suitable to $\mathcal{T}_{\text {dir }}$, but not to $\mathcal{T}_{\text {multi }}$
- CO and CD are suitable to both
- SFO is not suitable to any of the two

Theorem

If $\mathrm{L}_{1} \geq{ }_{p}^{\mathcal{T}} \mathrm{L}_{2}$, then all queries suitable to \mathcal{T} and satisfied by L_{2} are satisfied by L_{1}.
If $\mathrm{L}_{1} \sim_{p}^{\mathcal{T}} \mathrm{L}_{2}$, then all transformations suitable to \mathcal{T} and satisfied by L_{2} are satisfied by L_{1}.

- Most queries and transformations in the map are suitable to $\mathcal{T}_{\text {dir }}$ and/or $\mathcal{T}_{\text {multi }}$
\rightarrow One can extend the results of some language over Boolean variables to some language over multivalued variables

Example of Application

- Family of "bounded MDDs"
- k-MDD: restriction of MDD to domains of cardinality k;
- k-FMDD: read-once fragment of k-MDD;
- k-OMDD and k-OMDD $<$: ordered fragments of k-MDD
- \mathcal{T}_{k} : direct encoding on domains of cardinality k
- \mathcal{T}_{k} is a bijection
- all queries and transformations are suitable to \mathcal{T}_{k}

Example of Application

- Families of BDD and k-MDD are equivalent modulo \mathcal{T}_{k} (k-MDD $\sim_{p}^{\mathcal{T}_{k}} \mathrm{BDD}, \quad k$-FMDD $\sim_{p}^{\mathcal{T}_{k}}$ FBDD, k-OMDD $\sim_{p}^{\mathcal{T}_{k}}$ OBDD, $\left.\quad k-\mathrm{OMDD}_{<} \sim_{p}^{\mathcal{T}_{k}} \mathrm{OBDD}_{<}\right)$
- Compilation map of BDD :

$$
\mathrm{BDD}<_{s} \mathrm{FBDD}^{<_{s}} \mathrm{OBDD}^{<_{s}} \mathrm{OBDD}_{<}
$$

L	8	>	U	ミ	안			$\frac{1}{2}$	0	\bigcirc	8		${ }^{\circ}$		$\stackrel{\text { P }}{ }$	Y	
$\begin{array}{\|l\|l\|l\|l\|l\|} \hline \text { BRDD } \\ \text { BRDD } \end{array}$	$\stackrel{\circ}{\checkmark}$	v_{v}	$\begin{aligned} & \stackrel{\rightharpoonup}{v_{2}} \\ & v_{1} \end{aligned}$	\sqrt{v}		$\stackrel{\rightharpoonup}{v}$			$\stackrel{v}{v}$	$\stackrel{\square}{\text { : }}$	\checkmark		$\begin{aligned} & \hline \text { V } \\ & \circ \\ & \hline \end{aligned}$			\checkmark	,
-	\checkmark		\checkmark														

Example of Application

- Families of BDD and k-MDD are equivalent modulo \mathcal{T}_{k} (k-MDD $\sim_{p}^{\mathcal{T}_{k}} \mathrm{BDD}, \quad k$-FMDD $\sim_{p}^{\mathcal{T}_{k}}$ FBDD, k-OMDD $\sim_{p}^{\mathcal{T}_{k}}$ OBDD, $\left.\quad k-\mathrm{OMDD}_{<} \sim_{p}^{\mathcal{T}_{k}} \mathrm{OBDD}_{<}\right)$
- Compilation map of k-MDD :

$$
k-\mathrm{MDD}<_{s} k \text {-FMDD }<_{s} k-\mathrm{OMDD}<_{s} k-\mathrm{OMDD}_{<}
$$

L	\bigcirc	$\stackrel{3}{>}$	¢	\sum	O1	¢	5	\sum	O	O	O	\bigcirc	$\stackrel{\text { O}}{\sim}$	\bigcirc	$\stackrel{O}{9}$	\bigcirc
k-MDD	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	-	\bigcirc	$\sqrt{ }$				$\sqrt{ }$			$\sqrt{ }$
k-FMDD	$\sqrt{ }$	$\sqrt{ }$	$\sqrt{ }$?	\bigcirc			$\sqrt{ }$							$\sqrt{ }$
k-OMDD	$\sqrt{ }$				$\sqrt{ }$		$\sqrt{ }$					$\sqrt{ }$				
k-OMDD $<$	$\sqrt{ }$	\bigcirc	$\sqrt{ }$	$\sqrt{ }$	$\sqrt{ }$	-	$\sqrt{ }$					$\sqrt{ }$				

Conclusion

- General framework for the comparison of representation languages
- Adaptation of concepts of the knowledge compilation map
\rightarrow makes it possible to formally compare heterogeneous languages
- Mechanism to extend results from one language hierarchy to another
- First step towards a general compilation map, presenting the various hierarchies of heterogeneous languages in a unified manner (quad-trees and R^{\star}-trees, qualitative formalisms, languages representing preferences...)

