Representation Languages

Comparison 00000 Result Inheritance

Towards a Knowledge Compilation Map for Heterogeneous Representation Languages

Alexandre Niveau¹

joint work with Hélène Fargier² Pierre Marquis³

published in IJCAI'13

 $1. \ {\tt GREYC-CNRS}, \ {\tt Caen}, \ {\tt France-alexandre.niveau@unicaen.fr}$

2. IRIT-CNRS, Toulouse, France - fargier@irit.fr

3. CRIL-CNRS, Lens, France - marquis@cril.fr

June 4th, 2015

Representation Languages

Comparison 00000 Result Inheritance

Choosing a Compilation Language

- · What is the best language for my application?
- \rightarrow use the knowledge compilation map [Dar02]
 - · Compares languages according to two criteria:
 - 1 efficiency of operations
 - 2 succinctness

Representation Languages

Comparison 00000 Result Inheritance

Knowledge Compilation Map: Operations

• All online manipulations boil down to elementary queries and transformations

L	CO (consistency) VA (validity)	CE (clause entailmt.) IM (implicant check)	EQ (equivalence) SE (entailment)	CT (model count) ME (model enum.)
NNF	0 0	0 0	0 0	0 0
DNNF	$\sqrt{\circ}$	$\sqrt{\circ}$	0 0	∘ √
BDD	0 0	0 0	0 0	0 0
FBDD	$\checkmark \checkmark$	$\sqrt{}$? 0	$\sqrt{}$
OBDD	\checkmark \checkmark	$\sqrt{}$	$\sqrt{\circ}$	$\sqrt{}$
DNF	$\sqrt{\circ}$	√ °	0 0	°√
CNF	• √	∘ √	0 0	0 0

L	CD (conditioning)	FO (forgetting) SFO (single forg.)	∧C (conjunction) ∧BC (bounded conj.)	VC (disjunction) VBC (bounded disj.)	→C (negation)
NNF		∘ √	$\sqrt{}$	$\sqrt{}$	
DNNF		$\sqrt{}$	0 0	$ \sqrt{} $	0
BDD		$\circ $	$\sqrt{}$	$\sqrt{}$	\checkmark
FBDD	\checkmark	• •	• •	• •	
OBDD		• 🗸	• •	• •	
DNF		$\sqrt{}$	• 🗸	$ \sqrt{} $	•

- $\sqrt{}$ polynomial
- \circ not polynomial unless P = NP
- not polynomial

Representation Languages

Comparison 00000 Result Inheritance

Knowledge Compilation Map: Operations

• All online manipulations boil down to elementary queries and transformations

L	CO (consistency) VA (validity)	CE (clause entailmt.) IM (implicant check)	EQ (equivalence) SE (entailment)	CT (model count) ME (model enum.)
NNF	0 0	0 0	0 0	0 0
DNNF	$\sqrt{\circ}$	$\sqrt{\circ}$	0 0	o√
BDD	0 0	0 0	0 0	0 0
FBDD	$\sqrt{}$	$\sqrt{}$? 0	$\sqrt{}$
OBDD	$\checkmark \checkmark$	$\sqrt{}$	$\sqrt{\circ}$	$\sqrt{}$
DNF	$\sqrt{\circ}$	√ °	0 0	°√
CNF	• √	o√	0 0	0 0

L	CD (conditioning)	FO (forgetting) SFO (single forg.)	∧C (conjunction) ∧BC (bounded conj.)	VC (disjunction) VBC (bounded disj.)	→C (negation)
NNF		∘ √	$\sqrt{}$	$\sqrt{}$	
DNNF		$\sqrt{}$	0 0	$\sqrt{}$	0
BDD	1				1
		∘ √	$\sqrt{}$	$ \sqrt{} $	√
FBDD	\checkmark	° √ ● °	\bigvee \checkmark • •	\bigvee \bigvee • •	$\left \begin{array}{c} \checkmark \\ \checkmark \end{array} \right $
	\checkmark	○ √ ● ○ ● √	$ \begin{array}{c} \sqrt{} \\ \bullet & \circ \\ \bullet & \circ \end{array} $	$\sqrt{}$	$\begin{pmatrix} \checkmark \\ \checkmark \\ \checkmark \end{pmatrix}$
FBDD					\checkmark \checkmark \checkmark

- $\sqrt{}$ polynomial
- \circ not polynomial unless P = NP
- not polynomial

Representation Languages

Comparison 00000 Result Inheritance

Knowledge Compilation Map: Operations

• All online manipulations boil down to elementary queries and transformations

L	CO (consistency) VA (validity)	CE (clause entailmt.) IM (implicant check)	EQ (equivalence) SE (entailment)	CT (model count) ME (model enum.)
NNF	0 0	0 0	0 0	0 0
DNNF	$\sqrt{\circ}$	$\sqrt{\circ}$	0 0	∘ √
BDD	0 0	0 0	0 0	0 0
FBDD	$\checkmark \checkmark$	$\sqrt{}$? 0	$\sqrt{}$
OBDD	\checkmark \checkmark	$\sqrt{}$	√ °	$\sqrt{}$
DNF	$\sqrt{\circ}$	√ °	0 0	°√
CNF	• √	o√	0 0	0 0

L	CD (conditioning)	FO (forgetting) SFO (single forg.)	∧C (conjunction) ∧BC (bounded conj.)	VC (disjunction) VBC (bounded disj.)	→C (negation)
NNF	\checkmark	∘ √	$\sqrt{}$	$\sqrt{}$	
DNNF		$\sqrt{}$	0 0	$\sqrt{}$	0
BDD		$\circ $	$\sqrt{}$	$\sqrt{}$	$\overline{}$
BDD FBDD		° √ ● °	$\sqrt[]{\sqrt[]{0}}$	$\sqrt[]{}$	
	\checkmark	$ \begin{array}{c} \circ \checkmark \\ \bullet \circ \\ \bullet \checkmark \end{array} $	$\begin{array}{c} \sqrt{} \\ \bullet & \circ \\ \bullet & \circ \end{array}$	$\sqrt{}$ • •	
FBDD		$ \begin{array}{c} \circ \ \checkmark \\ \bullet \ \circ \\ \bullet \ \checkmark \\ \hline \checkmark \ \checkmark \\ \hline \checkmark \ \checkmark \\ \hline \checkmark \ \checkmark \\ \hline \end{array} $			$ \begin{array}{c} \checkmark \\ \checkmark \\ \checkmark \\ \checkmark \\ \bullet \end{array} $

- $\sqrt{}$ polynomial
- \circ not polynomial unless P = NP
- not polynomial

Knowledge Compilation Map: Succinctness

- Succinctness relation: orders languages w.r.t. their ability to represent knowledge compactly
- $L_1 \leq_s L_2$ means " L_1 is at least as succinct as L_2 "

Knowledge Compilation Map: Succinctness

- Succinctness relation: orders languages w.r.t. their ability to represent knowledge compactly
- $L_1 \leq_s L_2$ means " L_1 is at least as succinct as L_2 "

Knowledge Compilation Map: Succinctness

- Succinctness relation: orders languages w.r.t. their ability to represent knowledge compactly
- $L_1 \leq_s L_2$ means " L_1 is at least as succinct as L_2 "

• Other relations: expressiveness (\leq_e) , polynomial translatability (\leq_p)

Representation Languages

Comparison 00000 Result Inheritance

Beyond Boolean Languages

- The map is drawn for lots of languages representing Boolean functions over Boolean variables
- There exists maps for languages with multivalued variables (family of MDDs) or continuous variables, and for languages representing functions with non-Boolean values (VDDs)

- Languages close in essence: generalizations of the BDD family in several directions
 - → some are "equivalent"
 - \rightarrow similarities in maps

Comparison 00000 Result Inheritance

Motivation

- However, these languages are heterogeneous, i.e., they represent different kinds of objects
 - · their maps are distinct
 - their "equivalence" is not formally stated within the framework
- · We would like to unify the maps, in order to
 - · allow the comparison of heterogeneous languages
 - factorize the common parts of the maps
 - · inherit results between "close" heterogeneous languages
 - · enable the diversification of the KC map setting
- → We propose a generalized framework for comparing representation languages

Representation Languages

Comparison 00000 Result Inheritance

2 Representation Languages

3 Comparing Heterogeneous Languages

Languages of the Classical Compilation Map

- In the classical compilation map, the notion of "language" designates a formal language:
 - A propositional formula is a word over the alphabet $P_S \cup \{ \lor, \land, \neg, (,) \}$
 - · It is in CNF if it verifies some specific properties
 - The CNF language is the set of all CNFs
- The notion of "language" concerns syntax only
- \rightarrow the semantics is implicitly given by the interpretation function of propositional formulæ

Representation Languages

Comparison 00000 Result Inheritance

Limitations

- · This notion of language is limited:
 - implicit interpretation function
 - · implicit variable domains
- · Easily adaptable to other families of data structures...
- ... but implicit aspects prevent a unified presentation
- We need a more general notion

Representation Languages

Comparison 00000 Result Inheritance

Representation Language

- Definition of a representation language, as general as possible
- Universe of discourse £1: contains all objects that we could intend to represent (Boolean functions, real functions, etc.)
- Generic alphabet $\Sigma:$ no $a \ priori$ restriction on formulæ $\varphi \in \Sigma^*$

Definition

A representation language is a pair L = $\langle \Phi_L, \mathcal{I}_L \rangle$, where

- Φ_{L} is the syntax of L: $\Phi_{L} \subseteq \Sigma^{*}$;
- \mathcal{I}_L is the semantics of L: $\mathcal{I}_L : \Sigma^* \to \mathfrak{U}$ (partial function, defined at least on all formulæ in Φ_L).

Comparison 00000 Result Inheritance

Examples

- Language of propositional logic: $\texttt{PROP} = \langle \Phi_{\texttt{PROP}}, \mathcal{I}_{\texttt{PROP}} \rangle$
 - Φ_{PROP} : set of well-formed propositional formulæ
 - + \mathcal{I}_{PROP} : usual interpretation function
- $\mathtt{CNF} = \langle \Phi_{\mathtt{CNF}}, \mathcal{I}_{\mathtt{PROP}} \rangle$, with $\Phi_{\mathtt{CNF}}$ the set of CNFs
- HORN-C = $\langle \Phi_{\text{HORN-C}}, \mathcal{I}_{\text{PROP}} \rangle$, with $\Phi_{\text{HORN-C}}$ the set of Horn-CNFs
- $\texttt{OMDD} = \langle \Phi_{\texttt{OMDD}}, \mathcal{I}_{\texttt{MDD}} \rangle$
 - Φ_{OMDD} : set of ordered MDDs
 - $\mathcal{I}_{\texttt{MDD}}$: interpretation function of multivalued decision diagrams

Representation Languages

Comparison 00000 Result Inheritance

Interpretation Space

- Semantics of L: way of interpreting some formulæ of Σ^*
- Associates with each formula $\varphi \in \Phi_L$ its interpretation $[\![\varphi]\!]_L$

Representation Languages

Comparison 00000 Result Inheritance

Interpretation Space

- Semantics of L: way of interpreting some formulæ of Σ^*
- Associates with each formula $\varphi \in \Phi_L$ its interpretation $\llbracket \varphi \rrbracket_L$
- ... but it also interprets other formulæ (semantics of CNF: *I*_{PROP}, interprets also DNFs, for example)
- → interpretation space Ω_L : set of all objects represented by the semantics of L
 - Example : $\Omega_{PROP} = \Omega_{CNF} = \Omega_{HORN-C}$ = set of Boolean functions over Boolean variables

Representation Languages

Comparison 00000 Result Inheritance

Interpretation Space

- Semantics of L: way of interpreting some formulæ of Σ^*
- Associates with each formula $\varphi \in \Phi_L$ its interpretation $\llbracket \varphi \rrbracket_L$
- ... but it also interprets other formulæ (semantics of CNF: *I*_{PROP}, interprets also DNFs, for example)
- → interpretation space Ω_L : set of all objects represented by the semantics of L
 - Example : $\Omega_{PROP} = \Omega_{CNF} = \Omega_{HORN-C}$ = set of Boolean functions over Boolean variables
 - Completeness of L: relative to its interpretation space (CNF is complete, HORN-C is incomplete)

Representation Languages

Comparison

Result Inheritance

2 Representation Languages

Comparing Heterogeneous Languages

Representation Languages

Comparison •0000 Result Inheritance

Encoding MDDs into BDDs

- · In practice, MDDs are often compiled into BDDs
- Use of classical encodings (also used to go from CSP to SAT [Wal00; Pre04])
 - Direct encoding: one Boolean variable per multivalued variable and per value in the domain
 - Multivalued encoding: like the direct encoding, but no "at-most-one" constraint
 - · Log encoding: Boolean variables used as bits
- Encoding an MDD into a BDD is polynomial

Representation Languages

Comparison 00000

Translatability of MDD into BDD

- MDDs can thus be "translated" into BDDs in polynomial time
- One would like to write MDD \geq_p BDD...
- But it is not the case: MDD $\not\geq_p$ BDD, because they represent different kinds of functions
- The classical relation of polynomial translatability requires languages to have the same interpretation space
- We would like the compilation map to take translations into account

Representation Languages

Comparison

Result Inheritance

Translation

- We extend classical comparison relations
- Possibility of using a semantic correspondence between interpretation spaces: $\mathcal{T} \subseteq \Omega_{L_1} \times \Omega_{L_2}$
- \rightarrow indicates objects considered as "equivalent"
 - Example: given $f: \mathbb{N}^n \to \mathbb{B}$ and $g: \mathbb{B}^m \to \mathbb{B}$,

 $f \mathcal{T}_{dir} g \iff g$ is a direct encoding of f

- Similarly for multivalued encoding \mathcal{T}_{multi} , log encoding \mathcal{T}_{log}
- ${\mathcal T}$ induces a syntactic translation between formulæ of ${\tt L}_1$ and formulæ of ${\tt L}_2$

Extended Polynomial Translatability

- If there exists a polynomial algorithm transforming any formula φ_1 of L_1 into a formula φ_2 of L_2 such that $\llbracket \varphi_1 \rrbracket_{L_1} \mathcal{T} \llbracket \varphi_2 \rrbracket_{L_2}$, then L_1 is said to be polynomially translatable into L_2 modulo \mathcal{T}
- We denote it as $L_1 \geq_p^T L_2$
- → Generalization of the classical polynomial translatability: $L_1 \ge_p L_2$ corresponds to $L_1 \ge_p^{ld} L_2$
 - We also extend the succinctness and expressiveness relations to the use of a correspondence: $L_1 \geq_s^T L_2$ and $L_1 \geq_e^T L_2$

Comparison 00000 Result Inheritance

Examples

- Thanks to the extended relations, one can compare heterogeneous languages:
 - MDD $\geq_p^{\mathcal{T}_{dir}}$ BDD and MDD $\geq_p^{\mathcal{T}_{log}}$ BDD
 - MDD $\not\geq_{s}^{'\mathcal{T}_{dir}}$ CNF
- One can also compare homogeneous languages of incomparable expressiveness (e.g., HORN-C and AFF), via a well-chosen semantic correspondence
- One can extend succinctness results from one family of languages to another via some translation:

```
\begin{array}{c} \text{BDD} <_s \text{OBDD} \\ \\ \Downarrow \\ \\ \text{MDD} <_s \text{OMDD} \end{array}
```

Representation Languages

Comparison 00000 Result Inheritance

Introduction

2 Representation Languages

Comparing Heterogeneous Languages

4 Result Inheritance

Polynomial Translatability and Operations

- The classical polynomial translatability allows one to easily infer results about queries and transformations
 - MODS \geq_p OBDD
 - \Rightarrow MODS satisfies all queries that OBDD satisfies
 - NNF \sim_p PROP

 \Rightarrow NNF and PROP satisfy the exact same set of queries and transformations

• What properties of this kind hold on languages "equivalent modulo some translation", like OBDD and OMDD?

Comparison 00000

Query Inheritance

- Classical case: if $L_1 \ge_p L_2$, then all queries satisfied by L_2 are satisfied by L_1 .
- Extended case: suppose $L_1 \ge_p^T L_2$. What can we say about queries satisfied by L_1 ?

Comparison 00000

Query Inheritance

- Classical case: if $L_1 \ge_p L_2$, then all queries satisfied by L_2 are satisfied by L_1 .
- Extended case: suppose $L_1 \ge_p^T L_2$. What can we say about queries satisfied by L_1 ?
- ightarrow Nothing in the general case: it depends on the ${\cal T}$ used
 - Let L₂ be a language satisfying **CT**
 - \mathcal{T}_{dir} maintains the number of models, so if $L_1 \ge_p^{\mathcal{T}_{dir}} L_2$ holds, then L_1 also satisfies **CT**
 - \mathcal{T}_{multi} does not maintain the number of models: $L_1 \geq_p^{\mathcal{T}_{multi}} L_2$ can hold without L_1 satisfying **CT**
 - Same problem for transformations

Comparison 00000

Inheritance Theorem

- We define (in the paper) a notion of suitability to a semantic correspondence for queries and transformations
 - **CT** is suitable to \mathcal{T}_{dir} , but not to \mathcal{T}_{multi}
 - CO and CD are suitable to both
 - SFO is not suitable to any of the two

Comparison 00000

Inheritance Theorem

- We define (in the paper) a notion of suitability to a semantic correspondence for queries and transformations
 - **CT** is suitable to \mathcal{T}_{dir} , but not to \mathcal{T}_{multi}
 - CO and CD are suitable to both
 - SFO is not suitable to any of the two

Theorem

If $L_1 \geq_p^T L_2$, then all queries suitable to T and satisfied by L_2 are satisfied by L_1 . If $L_1 \sim_p^T L_2$, then all transformations suitable to T and satisfied by L_2 are satisfied by L_1 .

- Most queries and transformations in the map are suitable to \mathcal{T}_{dir} and/or \mathcal{T}_{multi}
- → One can extend the results of some language over Boolean variables to some language over multivalued variables

Representation Languages

Comparison 00000 Result Inheritance

Example of Application

- · Family of "bounded MDDs"
 - *k*-MDD: restriction of MDD to domains of cardinality *k*;
 - *k*-FMDD: read-once fragment of *k*-MDD;
 - k-OMDD and k-OMDD<: ordered fragments of k-MDD
- T_k : direct encoding on domains of cardinality k
 - \mathcal{T}_k is a bijection
 - all queries and transformations are suitable to \mathcal{T}_k

Representation Languages

Comparison 00000 Result Inheritance

Example of Application

- Families of BDD and *k*-MDD are equivalent modulo \mathcal{T}_k (*k*-MDD $\sim_p^{\mathcal{T}_k}$ BDD, *k*-FMDD $\sim_p^{\mathcal{T}_k}$ FBDD, *k*-OMDD $\sim_p^{\mathcal{T}_k}$ OBDD, *k*-OMDD_< $\sim_p^{\mathcal{T}_k}$ OBDD_<)
- Compilation map of BDD :

 $BDD <_s FBDD <_s OBDD <_s OBDD <$

L	СО	VA	CE	MI	EQ	SE	ст	ME	CD	FO	SFO	>C	∧BC	<c <<="" th=""><th>∨BC</th><th>Ç</th></c>	∨BC	Ç
BDD FBDD OBDD OBDD<		° √ √			° ? √	∘ √ ∘		° ∕ ∕ ∕		0 • •	√ ° √	√ • •	√ ∘ √	√ • •	✓ 0 0 ✓	

Representation Languages

Comparison 00000 Result Inheritance

Example of Application

- Families of BDD and *k*-MDD are equivalent modulo \mathcal{T}_k (*k*-MDD $\sim_p^{\mathcal{T}_k}$ BDD, *k*-FMDD $\sim_p^{\mathcal{T}_k}$ FBDD, *k*-OMDD $\sim_p^{\mathcal{T}_k}$ OBDD, *k*-OMDD_< $\sim_p^{\mathcal{T}_k}$ OBDD_<)
- Compilation map of k-MDD :

k-MDD $<_s k$ -FMDD $<_s k$ -OMDD $<_s k$ -OMDD $_<$

L	co	VA	CE	IM	EQ	SE	cT	ME	C	FO	SFO	> C	∧BC	<c></c>	∨BC	Ç
k-MDD k-FMDD k-OMDD k-OMDD <		$\stackrel{\circ}{\checkmark}$		$\stackrel{\circ}{\checkmark}$	° ? √	∘ √ ∘		° √ √ √		0 • •	√	√ • •	√ ∘ √		> 0 0	

Comparison 00000 Result Inheritance

Conclusion

- General framework for the comparison of representation languages
- · Adaptation of concepts of the knowledge compilation map
- \rightarrow makes it possible to formally compare heterogeneous languages
 - Mechanism to extend results from one language hierarchy to another
 - First step towards a general compilation map, presenting the various hierarchies of heterogeneous languages in a unified manner (quad-trees and *R**-trees, qualitative formalisms, languages representing preferences...)