
Prime Compilation of Non-Clausal Formulae

Joao Marques-Silva

Joint work with A. Previti, A. Ignatiev and A. Morgado

To be presented at IJCAI 2015

INESC-ID, IST, ULisbon, Portugal

CASL, CSI, UCD, Dublin, Ireland

Symposium on New Frontiers in Knowledge Compilation

VCLA, Vienna, Austria, June 2015

The success of SAT

• Well-known NP-complete decision problem [C71]

• In practice, SAT is a success story of Computer Science

– Hundreds (even more?) of practical applications

The success of SAT

• Well-known NP-complete decision problem [C71]

• In practice, SAT is a success story of Computer Science

– Hundreds (even more?) of practical applications

The success of SAT

• Well-known NP-complete decision problem [C71]

• In practice, SAT is a success story of Computer Science

– Hundreds (even more?) of practical applications

Problem solving with SAT oracles

Problem
Solving with
SAT Oracles

Decision
Problems

Function
Problems

Enumeration
Problems

Quantification
Problems

Counting
Problems

Function problems

Function
Problems

Cardinality
Minimal

Sets

MaxSAT

MinSAT

PBO

...

...

Subset
Minimal

Sets

MUS

MCS

MSS

...

• But also backbones, autarkies, MES, primes, etc.

Function problems

Function
Problems

Cardinality
Minimal

Sets

MaxSAT

MinSAT

PBO

...

...

Subset
Minimal

Sets

MUS

MCS

MSS

...

• But also backbones, autarkies, MES, primes, etc.

An example – MUSes

(x̄1 ∨ x̄2) (x1) (x5 ∨ x6) (x̄3 ∨ x̄4) (x2) (x3) (x4)

• Formula is unsatisfiable but not irreducible

• Can remove clauses, and formula still unsatisfiable

• Minimal Unsatisfiable Subset (MUS):
– Irreducible subformula that is unsatisfiable

I MUSes are minimal sets

• Many applications: abstraction in software verification; debugging
declarative models; pinpointing in DLs; type error debugging; etc.

An example – MUSes

(x̄1 ∨ x̄2) (x1) (x5 ∨ x6) (x̄3 ∨ x̄4) (x2) (x3) (x4)

• Formula is unsatisfiable but not irreducible

• Can remove clauses, and formula still unsatisfiable

• Minimal Unsatisfiable Subset (MUS):
– Irreducible subformula that is unsatisfiable

I MUSes are minimal sets

• Many applications: abstraction in software verification; debugging
declarative models; pinpointing in DLs; type error debugging; etc.

An example – MUSes

(x̄1 ∨ x̄2) (x1) (x5 ∨ x6) (x̄3 ∨ x̄4) (x2) (x3) (x4)

• Formula is unsatisfiable but not irreducible

• Can remove clauses, and formula still unsatisfiable

• Minimal Unsatisfiable Subset (MUS):
– Irreducible subformula that is unsatisfiable

I MUSes are minimal sets

• Many applications: abstraction in software verification; debugging
declarative models; pinpointing in DLs; type error debugging; etc.

An example – MUSes

(x̄1 ∨ x̄2) (x1) (x5 ∨ x6) (x̄3 ∨ x̄4) (x2) (x3) (x4)

• Formula is unsatisfiable but not irreducible

• Can remove clauses, and formula still unsatisfiable

• Minimal Unsatisfiable Subset (MUS):
– Irreducible subformula that is unsatisfiable

I MUSes are minimal sets

• Many applications: abstraction in software verification; debugging
declarative models; pinpointing in DLs; type error debugging; etc.

An example – MUSes

(x̄1 ∨ x̄2) (x1) (x5 ∨ x6) (x̄3 ∨ x̄4) (x2) (x3) (x4)

• Formula is unsatisfiable but not irreducible

• Can remove clauses, and formula still unsatisfiable

• Minimal Unsatisfiable Subset (MUS):
– Irreducible subformula that is unsatisfiable

I MUSes are minimal sets

• Many applications: abstraction in software verification; debugging
declarative models; pinpointing in DLs; type error debugging; etc.

An example – MCSes

(x̄1 ∨ x̄2) (x1) (x5 ∨ x6) (x̄3 ∨ x̄4) (x2) (x3) (x4)

• Formula is unsatisfiable with satisfiable subformulas

• Can remove clauses such that remaining clauses are satisfiable

• Minimal Correction Subset (MCS):
– Irreducible subformula such that the complement is satisfiable

I MCSes are minimal sets

• Many applications: restore consistency; smallest MCSes are
MaxSAT solutions; MUS enumeration; minimal/maximal models;
etc.

An example – MCSes

(x̄1 ∨ x̄2) (x1) (x5 ∨ x6) (x̄3 ∨ x̄4) (x2) (x3) (x4)

• Formula is unsatisfiable with satisfiable subformulas

• Can remove clauses such that remaining clauses are satisfiable

• Minimal Correction Subset (MCS):
– Irreducible subformula such that the complement is satisfiable

I MCSes are minimal sets

• Many applications: restore consistency; smallest MCSes are
MaxSAT solutions; MUS enumeration; minimal/maximal models;
etc.

An example – MCSes

(x̄1 ∨ x̄2) (x1) (x5 ∨ x6) (x̄3 ∨ x̄4) (x2) (x3) (x4)

• Formula is unsatisfiable with satisfiable subformulas

• Can remove clauses such that remaining clauses are satisfiable

• Minimal Correction Subset (MCS):
– Irreducible subformula such that the complement is satisfiable

I MCSes are minimal sets

• Many applications: restore consistency; smallest MCSes are
MaxSAT solutions; MUS enumeration; minimal/maximal models;
etc.

An example – MCSes

(x̄1 ∨ x̄2) (x1) (x5 ∨ x6) (x̄3 ∨ x̄4) (x2) (x3) (x4)

• Formula is unsatisfiable with satisfiable subformulas

• Can remove clauses such that remaining clauses are satisfiable

• Minimal Correction Subset (MCS):
– Irreducible subformula such that the complement is satisfiable

I MCSes are minimal sets

• Many applications: restore consistency; smallest MCSes are
MaxSAT solutions; MUS enumeration; minimal/maximal models;
etc.

An example – MCSes

(x̄1 ∨ x̄2) (x1) (x5 ∨ x6) (x̄3 ∨ x̄4) (x2) (x3) (x4)(x̄1 ∨ x̄2) (x1) (x5 ∨ x6) (x̄3 ∨ x̄4) (x2) (x3) (x4)

• Formula is unsatisfiable with satisfiable subformulas

• Can remove clauses such that remaining clauses are satisfiable

• Minimal Correction Subset (MCS):
– Irreducible subformula such that the complement is satisfiable

I MCSes are minimal sets

• Many applications: restore consistency; smallest MCSes are
MaxSAT solutions; MUS enumeration; minimal/maximal models;
etc.

An example – MCSes

(x̄1 ∨ x̄2) (x1) (x5 ∨ x6) (x̄3 ∨ x̄4) (x2) (x3) (x4)(x̄1 ∨ x̄2) (x1) (x5 ∨ x6) (x̄3 ∨ x̄4) (x2) (x3) (x4)

• Formula is unsatisfiable with satisfiable subformulas

• Can remove clauses such that remaining clauses are satisfiable

• Minimal Correction Subset (MCS):
– Irreducible subformula such that the complement is satisfiable

I MCSes are minimal sets

• Many applications: restore consistency; smallest MCSes are
MaxSAT solutions; MUS enumeration; minimal/maximal models;
etc.

Enumeration problems

Enumeration
Problems

Model
Enumer-

ation

MCS Enu-
meration

MUS Enu-
meration

...

An example – MCS&MUS enumeration

• MCS enumeration is easy:

– Extract & block MCSes, e.g. with MaxSAT or dedicated algorithm

• MUS enumeration is (apparently) hard:

– Unclear how to block MUSes

– Minimal hitting set dualization

I Explicit: find all MCSes and dualize
I Implicit: exploit hitting set dualization and iteratively find MCses

and MUSes

An example – MCS&MUS enumeration

• MCS enumeration is easy:

– Extract & block MCSes, e.g. with MaxSAT or dedicated algorithm

• MUS enumeration is (apparently) hard:

– Unclear how to block MUSes

– Minimal hitting set dualization

I Explicit: find all MCSes and dualize
I Implicit: exploit hitting set dualization and iteratively find MCses

and MUSes

An example – MCS&MUS enumeration

• MCS enumeration is easy:

– Extract & block MCSes, e.g. with MaxSAT or dedicated algorithm

• MUS enumeration is (apparently) hard:

– Unclear how to block MUSes
– Minimal hitting set dualization

I Explicit: find all MCSes and dualize
I Implicit: exploit hitting set dualization and iteratively find MCses

and MUSes

An example – MCS&MUS enumeration

• MCS enumeration is easy:

– Extract & block MCSes, e.g. with MaxSAT or dedicated algorithm

• MUS enumeration is (apparently) hard:

– Unclear how to block MUSes
– Minimal hitting set dualization

I Explicit: find all MCSes and dualize

I Implicit: exploit hitting set dualization and iteratively find MCses
and MUSes

An example – MCS&MUS enumeration

• MCS enumeration is easy:

– Extract & block MCSes, e.g. with MaxSAT or dedicated algorithm

• MUS enumeration is (apparently) hard:

– Unclear how to block MUSes
– Minimal hitting set dualization

I Explicit: find all MCSes and dualize
I Implicit: exploit hitting set dualization and iteratively find MCses

and MUSes

Quantification

Quantification
Problems

Σp
2

FΣp
2

Σp
i ,FΣp

i
Enumeration
in the PH

...

Application of enumeration – prime compilation

• Enumerate all prime implicates for:

(c ∨ a) ∧ (c ∨ ¬a) ∧ (a ∨ b ∨ d) ∧ (a ∨ b ∨ ¬d)

– Primes: (c); (a ∨ b)

• Enumerate all prime implicants for:

(c ∨ a) ∧ (c ∨ ¬a) ∧ (a ∨ b ∨ d) ∧ (a ∨ b ∨ ¬d)

– Primes: (b ∧ c); (a ∧ c)

• Enumerate all prime implicants for:

(((a ∧ b) ∨ (a ∧ ¬b)) ∧ c) ∨ (b ∧ c)

– Primes: (b ∧ c); (a ∧ c)

• Enumeration of primes studied since the 1930s!
– Formula minimization; Knowledge compilation; ...

• How to enumerate primes of non-clausal formulae, with SAT
oracles?

Application of enumeration – prime compilation

• Enumerate all prime implicates for:

(c ∨ a) ∧ (c ∨ ¬a) ∧ (a ∨ b ∨ d) ∧ (a ∨ b ∨ ¬d)

– Primes: (c); (a ∨ b)

• Enumerate all prime implicants for:

(c ∨ a) ∧ (c ∨ ¬a) ∧ (a ∨ b ∨ d) ∧ (a ∨ b ∨ ¬d)

– Primes: (b ∧ c); (a ∧ c)

• Enumerate all prime implicants for:

(((a ∧ b) ∨ (a ∧ ¬b)) ∧ c) ∨ (b ∧ c)

– Primes: (b ∧ c); (a ∧ c)

• Enumeration of primes studied since the 1930s!
– Formula minimization; Knowledge compilation; ...

• How to enumerate primes of non-clausal formulae, with SAT
oracles?

Application of enumeration – prime compilation

• Enumerate all prime implicates for:

(c ∨ a) ∧ (c ∨ ¬a) ∧ (a ∨ b ∨ d) ∧ (a ∨ b ∨ ¬d)

– Primes: (c); (a ∨ b)

• Enumerate all prime implicants for:

(c ∨ a) ∧ (c ∨ ¬a) ∧ (a ∨ b ∨ d) ∧ (a ∨ b ∨ ¬d)

– Primes: (b ∧ c); (a ∧ c)

• Enumerate all prime implicants for:

(((a ∧ b) ∨ (a ∧ ¬b)) ∧ c) ∨ (b ∧ c)

– Primes: (b ∧ c); (a ∧ c)

• Enumeration of primes studied since the 1930s!
– Formula minimization; Knowledge compilation; ...

• How to enumerate primes of non-clausal formulae, with SAT
oracles?

Application of enumeration – prime compilation

• Enumerate all prime implicates for:

(c ∨ a) ∧ (c ∨ ¬a) ∧ (a ∨ b ∨ d) ∧ (a ∨ b ∨ ¬d)

– Primes: (c); (a ∨ b)

• Enumerate all prime implicants for:

(c ∨ a) ∧ (c ∨ ¬a) ∧ (a ∨ b ∨ d) ∧ (a ∨ b ∨ ¬d)

– Primes: (b ∧ c); (a ∧ c)

• Enumerate all prime implicants for:

(((a ∧ b) ∨ (a ∧ ¬b)) ∧ c) ∨ (b ∧ c)

– Primes: (b ∧ c); (a ∧ c)

• Enumeration of primes studied since the 1930s!
– Formula minimization; Knowledge compilation; ...

• How to enumerate primes of non-clausal formulae, with SAT
oracles?

Application of enumeration – prime compilation

• Enumerate all prime implicates for:

(c ∨ a) ∧ (c ∨ ¬a) ∧ (a ∨ b ∨ d) ∧ (a ∨ b ∨ ¬d)

– Primes: (c); (a ∨ b)

• Enumerate all prime implicants for:

(c ∨ a) ∧ (c ∨ ¬a) ∧ (a ∨ b ∨ d) ∧ (a ∨ b ∨ ¬d)

– Primes: (b ∧ c); (a ∧ c)

• Enumerate all prime implicants for:

(((a ∧ b) ∨ (a ∧ ¬b)) ∧ c) ∨ (b ∧ c)

– Primes: (b ∧ c); (a ∧ c)

• Enumeration of primes studied since the 1930s!
– Formula minimization; Knowledge compilation; ...

• How to enumerate primes of non-clausal formulae, with SAT
oracles?

Application of enumeration – prime compilation

• Enumerate all prime implicates for:

(c ∨ a) ∧ (c ∨ ¬a) ∧ (a ∨ b ∨ d) ∧ (a ∨ b ∨ ¬d)

– Primes: (c); (a ∨ b)

• Enumerate all prime implicants for:

(c ∨ a) ∧ (c ∨ ¬a) ∧ (a ∨ b ∨ d) ∧ (a ∨ b ∨ ¬d)

– Primes: (b ∧ c); (a ∧ c)

• Enumerate all prime implicants for:

(((a ∧ b) ∨ (a ∧ ¬b)) ∧ c) ∨ (b ∧ c)

– Primes: (b ∧ c); (a ∧ c)

• Enumeration of primes studied since the 1930s!
– Formula minimization; Knowledge compilation; ...

• How to enumerate primes of non-clausal formulae, with SAT
oracles?

Application of enumeration – prime compilation

• Enumerate all prime implicates for:

(c ∨ a) ∧ (c ∨ ¬a) ∧ (a ∨ b ∨ d) ∧ (a ∨ b ∨ ¬d)

– Primes: (c); (a ∨ b)

• Enumerate all prime implicants for:

(c ∨ a) ∧ (c ∨ ¬a) ∧ (a ∨ b ∨ d) ∧ (a ∨ b ∨ ¬d)

– Primes: (b ∧ c); (a ∧ c)

• Enumerate all prime implicants for:

(((a ∧ b) ∨ (a ∧ ¬b)) ∧ c) ∨ (b ∧ c)

– Primes: (b ∧ c); (a ∧ c)

• Enumeration of primes studied since the 1930s!
– Formula minimization; Knowledge compilation; ...

• How to enumerate primes of non-clausal formulae, with SAT
oracles?

Application of enumeration – prime compilation

• Enumerate all prime implicates for:

(c ∨ a) ∧ (c ∨ ¬a) ∧ (a ∨ b ∨ d) ∧ (a ∨ b ∨ ¬d)

– Primes: (c); (a ∨ b)

• Enumerate all prime implicants for:

(c ∨ a) ∧ (c ∨ ¬a) ∧ (a ∨ b ∨ d) ∧ (a ∨ b ∨ ¬d)

– Primes: (b ∧ c); (a ∧ c)

• Enumerate all prime implicants for:

(((a ∧ b) ∨ (a ∧ ¬b)) ∧ c) ∨ (b ∧ c)

– Primes: (b ∧ c); (a ∧ c)

• Enumeration of primes studied since the 1930s!
– Formula minimization; Knowledge compilation; ...

• How to enumerate primes of non-clausal formulae, with SAT
oracles?

Outline

Background

Related Work

Primes for Non-Clausal Formulae

Results

Outline

Background

Related Work

Primes for Non-Clausal Formulae

Results

Propositional formulae

• Clausal:

– CNF: conjunction of disjunctions of literals

(c ∨ a) ∧ (c ∨ ¬a) ∧ (a ∨ b ∨ d) ∧ (a ∨ b ∨ ¬d)

– DNF: disjunction of conjunctions of literals

(c ∧ a) ∨ (c ∧ ¬a) ∨ (a ∧ b ∧ d) ∨ (a ∧ b ∧ ¬d)

– Other notation: Product of Sums (POS) / Sum of Products (SOP)

• Non-clausal:

– Non-CNF and non-DNF
– Propositional formulae: well-formed formulae built with standard

connectives ¬, ∧, ∨

(((a ∧ b) ∨ (a ∧ ¬b)) ∧ c) ∨ (b ∧ c)

Propositional formulae

• Clausal:

– CNF: conjunction of disjunctions of literals

(c ∨ a) ∧ (c ∨ ¬a) ∧ (a ∨ b ∨ d) ∧ (a ∨ b ∨ ¬d)

– DNF: disjunction of conjunctions of literals

(c ∧ a) ∨ (c ∧ ¬a) ∨ (a ∧ b ∧ d) ∨ (a ∧ b ∧ ¬d)

– Other notation: Product of Sums (POS) / Sum of Products (SOP)

• Non-clausal:

– Non-CNF and non-DNF
– Propositional formulae: well-formed formulae built with standard

connectives ¬, ∧, ∨

(((a ∧ b) ∨ (a ∧ ¬b)) ∧ c) ∨ (b ∧ c)

Propositional formulae

• Clausal:

– CNF: conjunction of disjunctions of literals

(c ∨ a) ∧ (c ∨ ¬a) ∧ (a ∨ b ∨ d) ∧ (a ∨ b ∨ ¬d)

– DNF: disjunction of conjunctions of literals

(c ∧ a) ∨ (c ∧ ¬a) ∨ (a ∧ b ∧ d) ∨ (a ∧ b ∧ ¬d)

– Other notation: Product of Sums (POS) / Sum of Products (SOP)

• Non-clausal:

– Non-CNF and non-DNF
– Propositional formulae: well-formed formulae built with standard

connectives ¬, ∧, ∨

(((a ∧ b) ∨ (a ∧ ¬b)) ∧ c) ∨ (b ∧ c)

Propositional formulae

• Clausal:

– CNF: conjunction of disjunctions of literals

(c ∨ a) ∧ (c ∨ ¬a) ∧ (a ∨ b ∨ d) ∧ (a ∨ b ∨ ¬d)

– DNF: disjunction of conjunctions of literals

(c ∧ a) ∨ (c ∧ ¬a) ∨ (a ∧ b ∧ d) ∨ (a ∧ b ∧ ¬d)

– Other notation: Product of Sums (POS) / Sum of Products (SOP)

• Non-clausal:

– Non-CNF and non-DNF
– Propositional formulae: well-formed formulae built with standard

connectives ¬, ∧, ∨

(((a ∧ b) ∨ (a ∧ ¬b)) ∧ c) ∨ (b ∧ c)

Propositional formulae

• Clausal:

– CNF: conjunction of disjunctions of literals

(c ∨ a) ∧ (c ∨ ¬a) ∧ (a ∨ b ∨ d) ∧ (a ∨ b ∨ ¬d)

– DNF: disjunction of conjunctions of literals

(c ∧ a) ∨ (c ∧ ¬a) ∨ (a ∧ b ∧ d) ∨ (a ∧ b ∧ ¬d)

– Other notation: Product of Sums (POS) / Sum of Products (SOP)

• Non-clausal:

– Non-CNF and non-DNF
– Propositional formulae: well-formed formulae built with standard

connectives ¬, ∧, ∨

(((a ∧ b) ∨ (a ∧ ¬b)) ∧ c) ∨ (b ∧ c)

Defining primes

• Given formula F , a prime implicate is a non-empty set of
non-complementary literals q, s.t.

F � (∨l∈q l) ∧ ∀q′(q F 2 (∨l∈q′ l)

• Prime implicate q given implicate c, q ⊆ c

• Given formula F , a prime implicant is a non-empty set of
non-complementary literals p, s.t.

(∧l∈p l) � F ∧ ∀p′(p (∧l∈p′ l) 2 F

• Prime implicant p given implicant t, p ⊆ t

• Each prime implicant (resp. implicate) of F is a minimal
hitting set of the prime implicates (resp. implicants) of F [R94]

Defining primes

• Given formula F , a prime implicate is a non-empty set of
non-complementary literals q, s.t.

F � (∨l∈q l) ∧ ∀q′(q F 2 (∨l∈q′ l)

• Prime implicate q given implicate c, q ⊆ c

• Given formula F , a prime implicant is a non-empty set of
non-complementary literals p, s.t.

(∧l∈p l) � F ∧ ∀p′(p (∧l∈p′ l) 2 F

• Prime implicant p given implicant t, p ⊆ t

• Each prime implicant (resp. implicate) of F is a minimal
hitting set of the prime implicates (resp. implicants) of F [R94]

Defining primes

• Given formula F , a prime implicate is a non-empty set of
non-complementary literals q, s.t.

F � (∨l∈q l) ∧ ∀q′(q F 2 (∨l∈q′ l)

• Prime implicate q given implicate c, q ⊆ c

• Given formula F , a prime implicant is a non-empty set of
non-complementary literals p, s.t.

(∧l∈p l) � F ∧ ∀p′(p (∧l∈p′ l) 2 F

• Prime implicant p given implicant t, p ⊆ t

• Each prime implicant (resp. implicate) of F is a minimal
hitting set of the prime implicates (resp. implicants) of F [R94]

Computing primes

• Extract one prime implicant for F in CNF:

– Find satisfying assignment µ of F
– Drop literals from µ while F satisfied

• Similar for prime implicate with F in DNF and falsifying
assignment

• How about the general case of prime implicates for CNF,
prime implicants for DNF, or primes for non-clausal?

• And, how about enumeration of primes?
– Repeated application of procedure above does not work...

Computing primes

• Extract one prime implicant for F in CNF:

– Find satisfying assignment µ of F

– Drop literals from µ while F satisfied

• Similar for prime implicate with F in DNF and falsifying
assignment

• How about the general case of prime implicates for CNF,
prime implicants for DNF, or primes for non-clausal?

• And, how about enumeration of primes?
– Repeated application of procedure above does not work...

Computing primes

• Extract one prime implicant for F in CNF:

– Find satisfying assignment µ of F
– Drop literals from µ while F satisfied

• Similar for prime implicate with F in DNF and falsifying
assignment

• How about the general case of prime implicates for CNF,
prime implicants for DNF, or primes for non-clausal?

• And, how about enumeration of primes?
– Repeated application of procedure above does not work...

Computing primes

• Extract one prime implicant for F in CNF:

– Find satisfying assignment µ of F
– Drop literals from µ while F satisfied

• Similar for prime implicate with F in DNF and falsifying
assignment

• How about the general case of prime implicates for CNF,
prime implicants for DNF, or primes for non-clausal?

• And, how about enumeration of primes?
– Repeated application of procedure above does not work...

Computing primes

• Extract one prime implicant for F in CNF:

– Find satisfying assignment µ of F
– Drop literals from µ while F satisfied

• Similar for prime implicate with F in DNF and falsifying
assignment

• How about the general case of prime implicates for CNF,
prime implicants for DNF, or primes for non-clausal?

• And, how about enumeration of primes?
– Repeated application of procedure above does not work...

Defining MUSes/MCSes/MSSes

• Given CNF F , with F � ⊥:

– M ⊆ F is a Minimal Unsatisfiable Subset (MUS) iff:

M � ⊥ ∧ ∀M′(M M ′ 2 ⊥

– S ⊆ F is a Maximal Satisfiable Subset (MSS) iff:

S 2 ⊥ ∧ ∀S(S′⊆F S ′ � ⊥

– C ⊆ F is a Minimal Correction Subset (MCS) iff:

F \ C 2 ⊥ ∧ ∀C ′(C F \ C ′ � ⊥

– An MCS C is the complement (wrt to F) of an MSS S , C = F \ S

– Each MCS (resp. MUS) of F is a minimal hitting set of the
MUSes (resp. MCSes) of F [R’87,BL’03,BS’05,LS’08]

Defining MUSes/MCSes/MSSes

• Given CNF F , with F � ⊥:

– M ⊆ F is a Minimal Unsatisfiable Subset (MUS) iff:

M � ⊥ ∧ ∀M′(M M ′ 2 ⊥

– S ⊆ F is a Maximal Satisfiable Subset (MSS) iff:

S 2 ⊥ ∧ ∀S(S′⊆F S ′ � ⊥

– C ⊆ F is a Minimal Correction Subset (MCS) iff:

F \ C 2 ⊥ ∧ ∀C ′(C F \ C ′ � ⊥

– An MCS C is the complement (wrt to F) of an MSS S , C = F \ S

– Each MCS (resp. MUS) of F is a minimal hitting set of the
MUSes (resp. MCSes) of F [R’87,BL’03,BS’05,LS’08]

Defining MUSes/MCSes/MSSes

• Given CNF F , with F � ⊥:

– M ⊆ F is a Minimal Unsatisfiable Subset (MUS) iff:

M � ⊥ ∧ ∀M′(M M ′ 2 ⊥

– S ⊆ F is a Maximal Satisfiable Subset (MSS) iff:

S 2 ⊥ ∧ ∀S(S′⊆F S ′ � ⊥

– C ⊆ F is a Minimal Correction Subset (MCS) iff:

F \ C 2 ⊥ ∧ ∀C ′(C F \ C ′ � ⊥

– An MCS C is the complement (wrt to F) of an MSS S , C = F \ S

– Each MCS (resp. MUS) of F is a minimal hitting set of the
MUSes (resp. MCSes) of F [R’87,BL’03,BS’05,LS’08]

Defining MUSes/MCSes/MSSes

• Given CNF F , with F � ⊥:

– M ⊆ F is a Minimal Unsatisfiable Subset (MUS) iff:

M � ⊥ ∧ ∀M′(M M ′ 2 ⊥

– S ⊆ F is a Maximal Satisfiable Subset (MSS) iff:

S 2 ⊥ ∧ ∀S(S′⊆F S ′ � ⊥

– C ⊆ F is a Minimal Correction Subset (MCS) iff:

F \ C 2 ⊥ ∧ ∀C ′(C F \ C ′ � ⊥

– An MCS C is the complement (wrt to F) of an MSS S , C = F \ S

– Each MCS (resp. MUS) of F is a minimal hitting set of the
MUSes (resp. MCSes) of F [R’87,BL’03,BS’05,LS’08]

Defining MUSes/MCSes/MSSes

• Given CNF F , with F � ⊥:

– M ⊆ F is a Minimal Unsatisfiable Subset (MUS) iff:

M � ⊥ ∧ ∀M′(M M ′ 2 ⊥

– S ⊆ F is a Maximal Satisfiable Subset (MSS) iff:

S 2 ⊥ ∧ ∀S(S′⊆F S ′ � ⊥

– C ⊆ F is a Minimal Correction Subset (MCS) iff:

F \ C 2 ⊥ ∧ ∀C ′(C F \ C ′ � ⊥

– An MCS C is the complement (wrt to F) of an MSS S , C = F \ S

– Each MCS (resp. MUS) of F is a minimal hitting set of the
MUSes (resp. MCSes) of F [R’87,BL’03,BS’05,LS’08]

Defining MUSes/MCSes/MSSes

• Given CNF F , with F � ⊥:

– M ⊆ F is a Minimal Unsatisfiable Subset (MUS) iff:

M � ⊥ ∧ ∀M′(M M ′ 2 ⊥

– S ⊆ F is a Maximal Satisfiable Subset (MSS) iff:

S 2 ⊥ ∧ ∀S(S′⊆F S ′ � ⊥

– C ⊆ F is a Minimal Correction Subset (MCS) iff:

F \ C 2 ⊥ ∧ ∀C ′(C F \ C ′ � ⊥

– An MCS C is the complement (wrt to F) of an MSS S , C = F \ S

– Each MCS (resp. MUS) of F is a minimal hitting set of the
MUSes (resp. MCSes) of F [R’87,BL’03,BS’05,LS’08]

Working with groups – MUSes

• Group of clauses 0, G0, denoting a set of background (or don’t
care) clauses

• Group of clauses i , Gi

• Set of groups of clauses Γ = {G1, . . . ,Gk}
• Conjunction of clauses in all groups unsatisfiable:∧

Gi∈G0∪Γ
c∈Gi

(c) � ⊥

• Group MUS, Ψ ⊆ Γ:∧
Gi∈G0∪Ψ

c∈Gi

(c) � ⊥ ∧ ∀Ψ′(Ψ

∧
Gi∈G0∪Ψ′

c∈Gi

(c) 2 ⊥

Working with groups – MUSes

• Group of clauses 0, G0, denoting a set of background (or don’t
care) clauses

• Group of clauses i , Gi

• Set of groups of clauses Γ = {G1, . . . ,Gk}

• Conjunction of clauses in all groups unsatisfiable:∧
Gi∈G0∪Γ
c∈Gi

(c) � ⊥

• Group MUS, Ψ ⊆ Γ:∧
Gi∈G0∪Ψ

c∈Gi

(c) � ⊥ ∧ ∀Ψ′(Ψ

∧
Gi∈G0∪Ψ′

c∈Gi

(c) 2 ⊥

Working with groups – MUSes

• Group of clauses 0, G0, denoting a set of background (or don’t
care) clauses

• Group of clauses i , Gi

• Set of groups of clauses Γ = {G1, . . . ,Gk}
• Conjunction of clauses in all groups unsatisfiable:∧

Gi∈G0∪Γ
c∈Gi

(c) � ⊥

• Group MUS, Ψ ⊆ Γ:∧
Gi∈G0∪Ψ

c∈Gi

(c) � ⊥ ∧ ∀Ψ′(Ψ

∧
Gi∈G0∪Ψ′

c∈Gi

(c) 2 ⊥

Working with groups – MUSes

• Group of clauses 0, G0, denoting a set of background (or don’t
care) clauses

• Group of clauses i , Gi

• Set of groups of clauses Γ = {G1, . . . ,Gk}
• Conjunction of clauses in all groups unsatisfiable:∧

Gi∈G0∪Γ
c∈Gi

(c) � ⊥

• Group MUS, Ψ ⊆ Γ:∧
Gi∈G0∪Ψ

c∈Gi

(c) � ⊥ ∧ ∀Ψ′(Ψ

∧
Gi∈G0∪Ψ′

c∈Gi

(c) 2 ⊥

Reducing primes to group MUSes – prime implicates

• Recall definition of prime implicate p ⊆ c :

F � (∨l∈q l) ∧ ∀q′(q F 2 (∨l∈q′ l)

• Can be rewritten as:

F ∧ ∧l∈q(¬l) � ⊥ ∧ ∀q′(q F ∧ ∧l∈q(¬l) 2 ⊥

• Reduction: [BM07]

– Start from implicate c
– Formula F corresponds to background group G0

– Each literal l of c represents a group with a unit clause (¬l)
– Each group MUS represents prime implicate of F given c

• Note: F is a (possibly non-clausal) propositional formula

Reducing primes to group MUSes – prime implicates

• Recall definition of prime implicate p ⊆ c :

F � (∨l∈q l) ∧ ∀q′(q F 2 (∨l∈q′ l)

• Can be rewritten as:

F ∧ ∧l∈q(¬l) � ⊥ ∧ ∀q′(q F ∧ ∧l∈q(¬l) 2 ⊥

• Reduction: [BM07]

– Start from implicate c
– Formula F corresponds to background group G0

– Each literal l of c represents a group with a unit clause (¬l)
– Each group MUS represents prime implicate of F given c

• Note: F is a (possibly non-clausal) propositional formula

Reducing primes to group MUSes – prime implicates

• Recall definition of prime implicate p ⊆ c :

F � (∨l∈q l) ∧ ∀q′(q F 2 (∨l∈q′ l)

• Can be rewritten as:

F ∧ ∧l∈q(¬l) � ⊥ ∧ ∀q′(q F ∧ ∧l∈q(¬l) 2 ⊥

• Reduction: [BM07]

– Start from implicate c
– Formula F corresponds to background group G0

– Each literal l of c represents a group with a unit clause (¬l)
– Each group MUS represents prime implicate of F given c

• Note: F is a (possibly non-clausal) propositional formula

Reducing primes to group MUSes – prime implicates

• Recall definition of prime implicate p ⊆ c :

F � (∨l∈q l) ∧ ∀q′(q F 2 (∨l∈q′ l)

• Can be rewritten as:

F ∧ ∧l∈q(¬l) � ⊥ ∧ ∀q′(q F ∧ ∧l∈q(¬l) 2 ⊥

• Reduction: [BM07]

– Start from implicate c
– Formula F corresponds to background group G0

– Each literal l of c represents a group with a unit clause (¬l)
– Each group MUS represents prime implicate of F given c

• Note: F is a (possibly non-clausal) propositional formula

How about prime implicants?

• Recall definition of prime implicant p ⊆ t:

(∧l∈p l) � F ∧ ∀p′(p (∧l∈p′ l) 2 F

• Can be rewritten as:

(¬F) ∧ (∧l∈p l) � ⊥ ∧ ∀p′(p(¬F) ∧ (∧l∈p′ l) 2 ⊥

• Reduction: [BM07]

– Start from implicant t
– Formula ¬F corresponds to background group G0

– Each literal l of t represents a group with a unit clause (l)
– Each group MUS represents prime implicant of F given t

• How to compute group MUSes?

How about prime implicants?

• Recall definition of prime implicant p ⊆ t:

(∧l∈p l) � F ∧ ∀p′(p (∧l∈p′ l) 2 F

• Can be rewritten as:

(¬F) ∧ (∧l∈p l) � ⊥ ∧ ∀p′(p(¬F) ∧ (∧l∈p′ l) 2 ⊥

• Reduction: [BM07]

– Start from implicant t
– Formula ¬F corresponds to background group G0

– Each literal l of t represents a group with a unit clause (l)
– Each group MUS represents prime implicant of F given t

• How to compute group MUSes?

How about prime implicants?

• Recall definition of prime implicant p ⊆ t:

(∧l∈p l) � F ∧ ∀p′(p (∧l∈p′ l) 2 F

• Can be rewritten as:

(¬F) ∧ (∧l∈p l) � ⊥ ∧ ∀p′(p(¬F) ∧ (∧l∈p′ l) 2 ⊥

• Reduction: [BM07]

– Start from implicant t
– Formula ¬F corresponds to background group G0

– Each literal l of t represents a group with a unit clause (l)
– Each group MUS represents prime implicant of F given t

• How to compute group MUSes?

How about prime implicants?

• Recall definition of prime implicant p ⊆ t:

(∧l∈p l) � F ∧ ∀p′(p (∧l∈p′ l) 2 F

• Can be rewritten as:

(¬F) ∧ (∧l∈p l) � ⊥ ∧ ∀p′(p(¬F) ∧ (∧l∈p′ l) 2 ⊥

• Reduction: [BM07]

– Start from implicant t
– Formula ¬F corresponds to background group G0

– Each literal l of t represents a group with a unit clause (l)
– Each group MUS represents prime implicant of F given t

• How to compute group MUSes?

Extracting MUSes

• Many algorithms, based on calls to SAT oracles:

– Deletion-based [CD91,BDTW93]

– QuickXplain [J04]

– Progression [MSJB13]

– ...

• Several optimizations:

– Clause set refinement [BDTW93,DHN06]

– Recursive model rotation [BLMS12]

– ...

• Applicable to plain MUS or group MUS

• Applicable to computing primes

Extracting MUSes

• Many algorithms, based on calls to SAT oracles:

– Deletion-based [CD91,BDTW93]

– QuickXplain [J04]

– Progression [MSJB13]

– ...

• Several optimizations:

– Clause set refinement [BDTW93,DHN06]

– Recursive model rotation [BLMS12]

– ...

• Applicable to plain MUS or group MUS

• Applicable to computing primes

Extracting MUSes

• Many algorithms, based on calls to SAT oracles:

– Deletion-based [CD91,BDTW93]

– QuickXplain [J04]

– Progression [MSJB13]

– ...

• Several optimizations:

– Clause set refinement [BDTW93,DHN06]

– Recursive model rotation [BLMS12]

– ...

• Applicable to plain MUS or group MUS

• Applicable to computing primes

Extracting MUSes

• Many algorithms, based on calls to SAT oracles:

– Deletion-based [CD91,BDTW93]

– QuickXplain [J04]

– Progression [MSJB13]

– ...

• Several optimizations:

– Clause set refinement [BDTW93,DHN06]

– Recursive model rotation [BLMS12]

– ...

• Applicable to plain MUS or group MUS

• Applicable to computing primes

An example

F = (c ∨ a) ∧ (c ∨ ¬a) ∧ (a ∨ b ∨ d) ∧ (a ∨ b ∨ ¬d)

• Find prime implicate of F given implicate (c ∨ a)

• Group MUS formulation: G0 = F ; G1 = (¬c); G2 = (¬a)

• Standard deletion algorithm:

– Drop G1 = (¬c):

I G0 ∧ G2 2 ⊥, e.g. c = b = 1
I Thus, keep G1

– Drop G2 = (¬a):

I G0 ∧ G1 � ⊥
I Thus, remove G2

– Group MUS: G1

– { c } is a prime implicate of F , i.e. F � c

An example

F = (c ∨ a) ∧ (c ∨ ¬a) ∧ (a ∨ b ∨ d) ∧ (a ∨ b ∨ ¬d)

• Find prime implicate of F given implicate (c ∨ a)

• Group MUS formulation: G0 = F ; G1 = (¬c); G2 = (¬a)

• Standard deletion algorithm:

– Drop G1 = (¬c):

I G0 ∧ G2 2 ⊥, e.g. c = b = 1
I Thus, keep G1

– Drop G2 = (¬a):

I G0 ∧ G1 � ⊥
I Thus, remove G2

– Group MUS: G1

– { c } is a prime implicate of F , i.e. F � c

An example

F = (c ∨ a) ∧ (c ∨ ¬a) ∧ (a ∨ b ∨ d) ∧ (a ∨ b ∨ ¬d)

• Find prime implicate of F given implicate (c ∨ a)

• Group MUS formulation: G0 = F ; G1 = (¬c); G2 = (¬a)

• Standard deletion algorithm:

– Drop G1 = (¬c):

I G0 ∧ G2 2 ⊥, e.g. c = b = 1
I Thus, keep G1

– Drop G2 = (¬a):

I G0 ∧ G1 � ⊥
I Thus, remove G2

– Group MUS: G1

– { c } is a prime implicate of F , i.e. F � c

An example

F = (c ∨ a) ∧ (c ∨ ¬a) ∧ (a ∨ b ∨ d) ∧ (a ∨ b ∨ ¬d)

• Find prime implicate of F given implicate (c ∨ a)

• Group MUS formulation: G0 = F ; G1 = (¬c); G2 = (¬a)

• Standard deletion algorithm:
– Drop G1 = (¬c):

I G0 ∧ G2 2 ⊥, e.g. c = b = 1
I Thus, keep G1

– Drop G2 = (¬a):

I G0 ∧ G1 � ⊥
I Thus, remove G2

– Group MUS: G1

– { c } is a prime implicate of F , i.e. F � c

An example

F = (c ∨ a) ∧ (c ∨ ¬a) ∧ (a ∨ b ∨ d) ∧ (a ∨ b ∨ ¬d)

• Find prime implicate of F given implicate (c ∨ a)

• Group MUS formulation: G0 = F ; G1 = (¬c); G2 = (¬a)

• Standard deletion algorithm:
– Drop G1 = (¬c):

I G0 ∧ G2 2 ⊥, e.g. c = b = 1

I Thus, keep G1

– Drop G2 = (¬a):

I G0 ∧ G1 � ⊥
I Thus, remove G2

– Group MUS: G1

– { c } is a prime implicate of F , i.e. F � c

An example

F = (c ∨ a) ∧ (c ∨ ¬a) ∧ (a ∨ b ∨ d) ∧ (a ∨ b ∨ ¬d)

• Find prime implicate of F given implicate (c ∨ a)

• Group MUS formulation: G0 = F ; G1 = (¬c); G2 = (¬a)

• Standard deletion algorithm:
– Drop G1 = (¬c):

I G0 ∧ G2 2 ⊥, e.g. c = b = 1
I Thus, keep G1

– Drop G2 = (¬a):

I G0 ∧ G1 � ⊥
I Thus, remove G2

– Group MUS: G1

– { c } is a prime implicate of F , i.e. F � c

An example

F = (c ∨ a) ∧ (c ∨ ¬a) ∧ (a ∨ b ∨ d) ∧ (a ∨ b ∨ ¬d)

• Find prime implicate of F given implicate (c ∨ a)

• Group MUS formulation: G0 = F ; G1 = (¬c); G2 = (¬a)

• Standard deletion algorithm:
– Drop G1 = (¬c):

I G0 ∧ G2 2 ⊥, e.g. c = b = 1
I Thus, keep G1

– Drop G2 = (¬a):

I G0 ∧ G1 � ⊥
I Thus, remove G2

– Group MUS: G1

– { c } is a prime implicate of F , i.e. F � c

An example

F = (c ∨ a) ∧ (c ∨ ¬a) ∧ (a ∨ b ∨ d) ∧ (a ∨ b ∨ ¬d)

• Find prime implicate of F given implicate (c ∨ a)

• Group MUS formulation: G0 = F ; G1 = (¬c); G2 = (¬a)

• Standard deletion algorithm:
– Drop G1 = (¬c):

I G0 ∧ G2 2 ⊥, e.g. c = b = 1
I Thus, keep G1

– Drop G2 = (¬a):

I G0 ∧ G1 � ⊥

I Thus, remove G2

– Group MUS: G1

– { c } is a prime implicate of F , i.e. F � c

An example

F = (c ∨ a) ∧ (c ∨ ¬a) ∧ (a ∨ b ∨ d) ∧ (a ∨ b ∨ ¬d)

• Find prime implicate of F given implicate (c ∨ a)

• Group MUS formulation: G0 = F ; G1 = (¬c); G2 = (¬a)

• Standard deletion algorithm:
– Drop G1 = (¬c):

I G0 ∧ G2 2 ⊥, e.g. c = b = 1
I Thus, keep G1

– Drop G2 = (¬a):

I G0 ∧ G1 � ⊥
I Thus, remove G2

– Group MUS: G1

– { c } is a prime implicate of F , i.e. F � c

An example

F = (c ∨ a) ∧ (c ∨ ¬a) ∧ (a ∨ b ∨ d) ∧ (a ∨ b ∨ ¬d)

• Find prime implicate of F given implicate (c ∨ a)

• Group MUS formulation: G0 = F ; G1 = (¬c); G2 = (¬a)

• Standard deletion algorithm:
– Drop G1 = (¬c):

I G0 ∧ G2 2 ⊥, e.g. c = b = 1
I Thus, keep G1

– Drop G2 = (¬a):

I G0 ∧ G1 � ⊥
I Thus, remove G2

– Group MUS: G1

– { c } is a prime implicate of F , i.e. F � c

An example

F = (c ∨ a) ∧ (c ∨ ¬a) ∧ (a ∨ b ∨ d) ∧ (a ∨ b ∨ ¬d)

• Find prime implicate of F given implicate (c ∨ a)

• Group MUS formulation: G0 = F ; G1 = (¬c); G2 = (¬a)

• Standard deletion algorithm:
– Drop G1 = (¬c):

I G0 ∧ G2 2 ⊥, e.g. c = b = 1
I Thus, keep G1

– Drop G2 = (¬a):

I G0 ∧ G1 � ⊥
I Thus, remove G2

– Group MUS: G1

– { c } is a prime implicate of F , i.e. F � c

Outline

Background

Related Work

Primes for Non-Clausal Formulae

Results

Enumerating prime implicants of CNF formulae

• Search space must be larger than 2n

• Work with modified formula H: [PPP99,JMSSS14]

– Original variables: var(F) = {v1, . . . , vn}
– Pair of new variables for each v ∈ var(F): xv , x¬v

– Prevent one of the assignments to each new pair of variables:

L = {(¬xv ∨ ¬x¬v) | v ∈ var(F)}

I xv = x¬v = 0: variable v unused
I xv = 0 ∧ x¬v = 1: negative literal of v used
I xv = 1 ∧ x¬v = 0: positive literal of v used

– Create C , by replacing each clause c ∈ F with a new clause ce :

I For each l ∈ c, either add literal xv , if l = v , or literal x¬v , if l = ¬v
– Enumerate minimal models of H = L ∪ C

• Use B (initially B = ∅) to block computed prime implicants

– H = L ∪ C ∪ B

Enumerating prime implicants of CNF formulae

• Search space must be larger than 2n

• Work with modified formula H: [PPP99,JMSSS14]

– Original variables: var(F) = {v1, . . . , vn}
– Pair of new variables for each v ∈ var(F): xv , x¬v

– Prevent one of the assignments to each new pair of variables:

L = {(¬xv ∨ ¬x¬v) | v ∈ var(F)}

I xv = x¬v = 0: variable v unused
I xv = 0 ∧ x¬v = 1: negative literal of v used
I xv = 1 ∧ x¬v = 0: positive literal of v used

– Create C , by replacing each clause c ∈ F with a new clause ce :

I For each l ∈ c, either add literal xv , if l = v , or literal x¬v , if l = ¬v
– Enumerate minimal models of H = L ∪ C

• Use B (initially B = ∅) to block computed prime implicants

– H = L ∪ C ∪ B

Enumerating prime implicants of CNF formulae

• Search space must be larger than 2n

• Work with modified formula H: [PPP99,JMSSS14]

– Original variables: var(F) = {v1, . . . , vn}
– Pair of new variables for each v ∈ var(F): xv , x¬v
– Prevent one of the assignments to each new pair of variables:

L = {(¬xv ∨ ¬x¬v) | v ∈ var(F)}

I xv = x¬v = 0: variable v unused
I xv = 0 ∧ x¬v = 1: negative literal of v used
I xv = 1 ∧ x¬v = 0: positive literal of v used

– Create C , by replacing each clause c ∈ F with a new clause ce :

I For each l ∈ c, either add literal xv , if l = v , or literal x¬v , if l = ¬v
– Enumerate minimal models of H = L ∪ C

• Use B (initially B = ∅) to block computed prime implicants

– H = L ∪ C ∪ B

Enumerating prime implicants of CNF formulae

• Search space must be larger than 2n

• Work with modified formula H: [PPP99,JMSSS14]

– Original variables: var(F) = {v1, . . . , vn}
– Pair of new variables for each v ∈ var(F): xv , x¬v
– Prevent one of the assignments to each new pair of variables:

L = {(¬xv ∨ ¬x¬v) | v ∈ var(F)}

I xv = x¬v = 0: variable v unused
I xv = 0 ∧ x¬v = 1: negative literal of v used
I xv = 1 ∧ x¬v = 0: positive literal of v used

– Create C , by replacing each clause c ∈ F with a new clause ce :

I For each l ∈ c, either add literal xv , if l = v , or literal x¬v , if l = ¬v
– Enumerate minimal models of H = L ∪ C

• Use B (initially B = ∅) to block computed prime implicants

– H = L ∪ C ∪ B

Enumerating prime implicants of CNF formulae

• Search space must be larger than 2n

• Work with modified formula H: [PPP99,JMSSS14]

– Original variables: var(F) = {v1, . . . , vn}
– Pair of new variables for each v ∈ var(F): xv , x¬v
– Prevent one of the assignments to each new pair of variables:

L = {(¬xv ∨ ¬x¬v) | v ∈ var(F)}

I xv = x¬v = 0: variable v unused
I xv = 0 ∧ x¬v = 1: negative literal of v used
I xv = 1 ∧ x¬v = 0: positive literal of v used

– Create C , by replacing each clause c ∈ F with a new clause ce :

I For each l ∈ c, either add literal xv , if l = v , or literal x¬v , if l = ¬v

– Enumerate minimal models of H = L ∪ C

• Use B (initially B = ∅) to block computed prime implicants

– H = L ∪ C ∪ B

Enumerating prime implicants of CNF formulae

• Search space must be larger than 2n

• Work with modified formula H: [PPP99,JMSSS14]

– Original variables: var(F) = {v1, . . . , vn}
– Pair of new variables for each v ∈ var(F): xv , x¬v
– Prevent one of the assignments to each new pair of variables:

L = {(¬xv ∨ ¬x¬v) | v ∈ var(F)}

I xv = x¬v = 0: variable v unused
I xv = 0 ∧ x¬v = 1: negative literal of v used
I xv = 1 ∧ x¬v = 0: positive literal of v used

– Create C , by replacing each clause c ∈ F with a new clause ce :

I For each l ∈ c, either add literal xv , if l = v , or literal x¬v , if l = ¬v
– Enumerate minimal models of H = L ∪ C

• Use B (initially B = ∅) to block computed prime implicants

– H = L ∪ C ∪ B

Enumerating prime implicants of CNF formulae

• Search space must be larger than 2n

• Work with modified formula H: [PPP99,JMSSS14]

– Original variables: var(F) = {v1, . . . , vn}
– Pair of new variables for each v ∈ var(F): xv , x¬v
– Prevent one of the assignments to each new pair of variables:

L = {(¬xv ∨ ¬x¬v) | v ∈ var(F)}

I xv = x¬v = 0: variable v unused
I xv = 0 ∧ x¬v = 1: negative literal of v used
I xv = 1 ∧ x¬v = 0: positive literal of v used

– Create C , by replacing each clause c ∈ F with a new clause ce :

I For each l ∈ c, either add literal xv , if l = v , or literal x¬v , if l = ¬v
– Enumerate minimal models of H = L ∪ C

• Use B (initially B = ∅) to block computed prime implicants

– H = L ∪ C ∪ B

An example

F = (c ∨ a) ∧ (c ∨ ¬a) ∧ (a ∨ b ∨ d) ∧ (a ∨ b ∨ ¬d)

• Define L:

L = (¬xa ∨ ¬x¬a) ∧ (¬xb ∨ ¬x¬b) ∧ (¬xc ∨ ¬x¬c) ∧ (¬xd ∨ ¬x¬d)

• Define C :

C = (xc ∨ xa) ∧ (xc ∨ x¬a) ∧ (xa ∨ xb ∨ xd) ∧ (xa ∨ xb ∨ x¬d)

• Let H = L ∪ C ∪ B

• Find minimal models:

– xb = xc = 1, i.e. prime implicant is (b ∧ c); block with (¬xb ∨ ¬xc)
– xa = xc = 1, i.e. prime implicant is (a ∧ c); block with (¬xa ∨ ¬xc)
– No more (minimal) models

An example

F = (c ∨ a) ∧ (c ∨ ¬a) ∧ (a ∨ b ∨ d) ∧ (a ∨ b ∨ ¬d)

• Define L:

L = (¬xa ∨ ¬x¬a) ∧ (¬xb ∨ ¬x¬b) ∧ (¬xc ∨ ¬x¬c) ∧ (¬xd ∨ ¬x¬d)

• Define C :

C = (xc ∨ xa) ∧ (xc ∨ x¬a) ∧ (xa ∨ xb ∨ xd) ∧ (xa ∨ xb ∨ x¬d)

• Let H = L ∪ C ∪ B

• Find minimal models:

– xb = xc = 1, i.e. prime implicant is (b ∧ c); block with (¬xb ∨ ¬xc)
– xa = xc = 1, i.e. prime implicant is (a ∧ c); block with (¬xa ∨ ¬xc)
– No more (minimal) models

An example

F = (c ∨ a) ∧ (c ∨ ¬a) ∧ (a ∨ b ∨ d) ∧ (a ∨ b ∨ ¬d)

• Define L:

L = (¬xa ∨ ¬x¬a) ∧ (¬xb ∨ ¬x¬b) ∧ (¬xc ∨ ¬x¬c) ∧ (¬xd ∨ ¬x¬d)

• Define C :

C = (xc ∨ xa) ∧ (xc ∨ x¬a) ∧ (xa ∨ xb ∨ xd) ∧ (xa ∨ xb ∨ x¬d)

• Let H = L ∪ C ∪ B

• Find minimal models:

– xb = xc = 1, i.e. prime implicant is (b ∧ c); block with (¬xb ∨ ¬xc)
– xa = xc = 1, i.e. prime implicant is (a ∧ c); block with (¬xa ∨ ¬xc)
– No more (minimal) models

An example

F = (c ∨ a) ∧ (c ∨ ¬a) ∧ (a ∨ b ∨ d) ∧ (a ∨ b ∨ ¬d)

• Define L:

L = (¬xa ∨ ¬x¬a) ∧ (¬xb ∨ ¬x¬b) ∧ (¬xc ∨ ¬x¬c) ∧ (¬xd ∨ ¬x¬d)

• Define C :

C = (xc ∨ xa) ∧ (xc ∨ x¬a) ∧ (xa ∨ xb ∨ xd) ∧ (xa ∨ xb ∨ x¬d)

• Let H = L ∪ C ∪ B

• Find minimal models:

– xb = xc = 1, i.e. prime implicant is (b ∧ c); block with (¬xb ∨ ¬xc)
– xa = xc = 1, i.e. prime implicant is (a ∧ c); block with (¬xa ∨ ¬xc)
– No more (minimal) models

An example

F = (c ∨ a) ∧ (c ∨ ¬a) ∧ (a ∨ b ∨ d) ∧ (a ∨ b ∨ ¬d)

• Define L:

L = (¬xa ∨ ¬x¬a) ∧ (¬xb ∨ ¬x¬b) ∧ (¬xc ∨ ¬x¬c) ∧ (¬xd ∨ ¬x¬d)

• Define C :

C = (xc ∨ xa) ∧ (xc ∨ x¬a) ∧ (xa ∨ xb ∨ xd) ∧ (xa ∨ xb ∨ x¬d)

• Let H = L ∪ C ∪ B

• Find minimal models:

– xb = xc = 1, i.e. prime implicant is (b ∧ c); block with (¬xb ∨ ¬xc)
– xa = xc = 1, i.e. prime implicant is (a ∧ c); block with (¬xa ∨ ¬xc)
– No more (minimal) models

An example

F = (c ∨ a) ∧ (c ∨ ¬a) ∧ (a ∨ b ∨ d) ∧ (a ∨ b ∨ ¬d)

• Define L:

L = (¬xa ∨ ¬x¬a) ∧ (¬xb ∨ ¬x¬b) ∧ (¬xc ∨ ¬x¬c) ∧ (¬xd ∨ ¬x¬d)

• Define C :

C = (xc ∨ xa) ∧ (xc ∨ x¬a) ∧ (xa ∨ xb ∨ xd) ∧ (xa ∨ xb ∨ x¬d)

• Let H = L ∪ C ∪ B

• Find minimal models:

– xb = xc = 1, i.e. prime implicant is (b ∧ c); block with (¬xb ∨ ¬xc)

– xa = xc = 1, i.e. prime implicant is (a ∧ c); block with (¬xa ∨ ¬xc)
– No more (minimal) models

An example

F = (c ∨ a) ∧ (c ∨ ¬a) ∧ (a ∨ b ∨ d) ∧ (a ∨ b ∨ ¬d)

• Define L:

L = (¬xa ∨ ¬x¬a) ∧ (¬xb ∨ ¬x¬b) ∧ (¬xc ∨ ¬x¬c) ∧ (¬xd ∨ ¬x¬d)

• Define C :

C = (xc ∨ xa) ∧ (xc ∨ x¬a) ∧ (xa ∨ xb ∨ xd) ∧ (xa ∨ xb ∨ x¬d)

• Let H = L ∪ C ∪ B

• Find minimal models:

– xb = xc = 1, i.e. prime implicant is (b ∧ c); block with (¬xb ∨ ¬xc)
– xa = xc = 1, i.e. prime implicant is (a ∧ c); block with (¬xa ∨ ¬xc)

– No more (minimal) models

An example

F = (c ∨ a) ∧ (c ∨ ¬a) ∧ (a ∨ b ∨ d) ∧ (a ∨ b ∨ ¬d)

• Define L:

L = (¬xa ∨ ¬x¬a) ∧ (¬xb ∨ ¬x¬b) ∧ (¬xc ∨ ¬x¬c) ∧ (¬xd ∨ ¬x¬d)

• Define C :

C = (xc ∨ xa) ∧ (xc ∨ x¬a) ∧ (xa ∨ xb ∨ xd) ∧ (xa ∨ xb ∨ x¬d)

• Let H = L ∪ C ∪ B

• Find minimal models:

– xb = xc = 1, i.e. prime implicant is (b ∧ c); block with (¬xb ∨ ¬xc)
– xa = xc = 1, i.e. prime implicant is (a ∧ c); block with (¬xa ∨ ¬xc)
– No more (minimal) models

Other approaches

• Clausal formulae:
– Problem reformulation

I See above, but restricted

– Iterated consensus/resolution, since the 1950s
– Use of BDDs

I ZRes [SdV’01]

I ...

– ...

• Non-clausal formulae:
– Use of BDDs

I ZRes, with information about Tseitin variables [SdV’01]

I ...

– NNF, tries, etc.

– Restricted to formulae with small number of variables

Other approaches

• Clausal formulae:
– Problem reformulation

I See above, but restricted

– Iterated consensus/resolution, since the 1950s
– Use of BDDs

I ZRes [SdV’01]

I ...

– ...

• Non-clausal formulae:
– Use of BDDs

I ZRes, with information about Tseitin variables [SdV’01]

I ...

– NNF, tries, etc.

– Restricted to formulae with small number of variables

Other approaches

• Clausal formulae:
– Problem reformulation

I See above, but restricted

– Iterated consensus/resolution, since the 1950s
– Use of BDDs

I ZRes [SdV’01]

I ...

– ...

• Non-clausal formulae:
– Use of BDDs

I ZRes, with information about Tseitin variables [SdV’01]

I ...

– NNF, tries, etc.

– Restricted to formulae with small number of variables

Outline

Background

Related Work

Primes for Non-Clausal Formulae

Results

An example

F = (((a ∧ b) ∨ (a ∧ ¬b)) ∧ c) ∨ (b ∧ c)

• Prime implicants of F?

– (b ∧ c)
– (a ∧ c)
– More?

• Prime implicates of F?

– (c)
– (a ∨ b)
– More?

• How to enumerate primes of non-clausal formulae, with SAT
oracles?

An example

F = (((a ∧ b) ∨ (a ∧ ¬b)) ∧ c) ∨ (b ∧ c)

• Prime implicants of F?

– (b ∧ c)
– (a ∧ c)
– More?

• Prime implicates of F?

– (c)
– (a ∨ b)
– More?

• How to enumerate primes of non-clausal formulae, with SAT
oracles?

An example

F = (((a ∧ b) ∨ (a ∧ ¬b)) ∧ c) ∨ (b ∧ c)

• Prime implicants of F?

– (b ∧ c)

– (a ∧ c)
– More?

• Prime implicates of F?

– (c)
– (a ∨ b)
– More?

• How to enumerate primes of non-clausal formulae, with SAT
oracles?

An example

F = (((a ∧ b) ∨ (a ∧ ¬b)) ∧ c) ∨ (b ∧ c)

• Prime implicants of F?

– (b ∧ c)
– (a ∧ c)
– More?

• Prime implicates of F?

– (c)
– (a ∨ b)
– More?

• How to enumerate primes of non-clausal formulae, with SAT
oracles?

An example

F = (((a ∧ b) ∨ (a ∧ ¬b)) ∧ c) ∨ (b ∧ c)

• Prime implicants of F?

– (b ∧ c)
– (a ∧ c)
– More?

• Prime implicates of F?

– (c)
– (a ∨ b)
– More?

• How to enumerate primes of non-clausal formulae, with SAT
oracles?

An example

F = (((a ∧ b) ∨ (a ∧ ¬b)) ∧ c) ∨ (b ∧ c)

• Prime implicants of F?

– (b ∧ c)
– (a ∧ c)
– More?

• Prime implicates of F?

– (c)

– (a ∨ b)
– More?

• How to enumerate primes of non-clausal formulae, with SAT
oracles?

An example

F = (((a ∧ b) ∨ (a ∧ ¬b)) ∧ c) ∨ (b ∧ c)

• Prime implicants of F?

– (b ∧ c)
– (a ∧ c)
– More?

• Prime implicates of F?

– (c)
– (a ∨ b)
– More?

• How to enumerate primes of non-clausal formulae, with SAT
oracles?

An example

F = (((a ∧ b) ∨ (a ∧ ¬b)) ∧ c) ∨ (b ∧ c)

• Prime implicants of F?

– (b ∧ c)
– (a ∧ c)
– More?

• Prime implicates of F?

– (c)
– (a ∨ b)
– More?

• How to enumerate primes of non-clausal formulae, with SAT
oracles?

Non-clausal prime compilation

• Recap SAT-based approach for CNF formulae:

H = L ∪ C ∪ B

– L: Disallow xv = x¬v = 1, for each pair {xv , x¬v}
– C : Encode clauses of F with new variables
– B: Block computed prime implicants

• For non-clausal formulae, the problem is how to represent C , since
F is not in CNF

– Unrealistic to convert non-clausal formulae to CNF

– And cannot introduce Tseitin variables

I Primes not preserved

• Idea: Construct C on demand as the algorithm executes;
terminate when B blocks all primes and C equivalent to F

Non-clausal prime compilation

• Recap SAT-based approach for CNF formulae:

H = L ∪ C ∪ B

– L: Disallow xv = x¬v = 1, for each pair {xv , x¬v}
– C : Encode clauses of F with new variables
– B: Block computed prime implicants

• For non-clausal formulae, the problem is how to represent C , since
F is not in CNF

– Unrealistic to convert non-clausal formulae to CNF

– And cannot introduce Tseitin variables

I Primes not preserved

• Idea: Construct C on demand as the algorithm executes;
terminate when B blocks all primes and C equivalent to F

Non-clausal prime compilation

• Recap SAT-based approach for CNF formulae:

H = L ∪ C ∪ B

– L: Disallow xv = x¬v = 1, for each pair {xv , x¬v}
– C : Encode clauses of F with new variables
– B: Block computed prime implicants

• For non-clausal formulae, the problem is how to represent C , since
F is not in CNF

– Unrealistic to convert non-clausal formulae to CNF

– And cannot introduce Tseitin variables

I Primes not preserved

• Idea: Construct C on demand as the algorithm executes;
terminate when B blocks all primes and C equivalent to F

Non-clausal prime compilation

• Recap SAT-based approach for CNF formulae:

H = L ∪ C ∪ B

– L: Disallow xv = x¬v = 1, for each pair {xv , x¬v}
– C : Encode clauses of F with new variables
– B: Block computed prime implicants

• For non-clausal formulae, the problem is how to represent C , since
F is not in CNF

– Unrealistic to convert non-clausal formulae to CNF
– And cannot introduce Tseitin variables

I Primes not preserved

• Idea: Construct C on demand as the algorithm executes;
terminate when B blocks all primes and C equivalent to F

Non-clausal prime compilation

• Recap SAT-based approach for CNF formulae:

H = L ∪ C ∪ B

– L: Disallow xv = x¬v = 1, for each pair {xv , x¬v}
– C : Encode clauses of F with new variables
– B: Block computed prime implicants

• For non-clausal formulae, the problem is how to represent C , since
F is not in CNF

– Unrealistic to convert non-clausal formulae to CNF
– And cannot introduce Tseitin variables

I Primes not preserved

• Idea: Construct C on demand as the algorithm executes;
terminate when B blocks all primes and C equivalent to F

Non-clausal prime compilation – approach 1

• Iteratively compute maximal models AH of working formula H

– Initially H = L;C = ∅;B = ∅

– Why maximal models?

I Guarantees that one of the following two cases applies

• Each maximal model AH encodes assignment AF to variables of F

• Case 1: If AF � F , then AF is an implicant of F

– Extract prime implicant
– Report prime implicant
– Block prime implicant (in B)

• Case 2: If F � ¬AF , then AF is an implicate of F

– Extract prime implicate
– Block prime implicate (in C)

• Update H and repeat

Non-clausal prime compilation – approach 1

• Iteratively compute maximal models AH of working formula H

– Initially H = L;C = ∅;B = ∅
– Why maximal models?

I Guarantees that one of the following two cases applies

• Each maximal model AH encodes assignment AF to variables of F

• Case 1: If AF � F , then AF is an implicant of F

– Extract prime implicant
– Report prime implicant
– Block prime implicant (in B)

• Case 2: If F � ¬AF , then AF is an implicate of F

– Extract prime implicate
– Block prime implicate (in C)

• Update H and repeat

Non-clausal prime compilation – approach 1

• Iteratively compute maximal models AH of working formula H

– Initially H = L;C = ∅;B = ∅
– Why maximal models?

I Guarantees that one of the following two cases applies

• Each maximal model AH encodes assignment AF to variables of F

• Case 1: If AF � F , then AF is an implicant of F

– Extract prime implicant
– Report prime implicant
– Block prime implicant (in B)

• Case 2: If F � ¬AF , then AF is an implicate of F

– Extract prime implicate
– Block prime implicate (in C)

• Update H and repeat

Non-clausal prime compilation – approach 1

• Iteratively compute maximal models AH of working formula H

– Initially H = L;C = ∅;B = ∅
– Why maximal models?

I Guarantees that one of the following two cases applies

• Each maximal model AH encodes assignment AF to variables of F

• Case 1: If AF � F , then AF is an implicant of F

– Extract prime implicant
– Report prime implicant
– Block prime implicant (in B)

• Case 2: If F � ¬AF , then AF is an implicate of F

– Extract prime implicate
– Block prime implicate (in C)

• Update H and repeat

Non-clausal prime compilation – approach 1

• Iteratively compute maximal models AH of working formula H

– Initially H = L;C = ∅;B = ∅
– Why maximal models?

I Guarantees that one of the following two cases applies

• Each maximal model AH encodes assignment AF to variables of F

• Case 1: If AF � F , then AF is an implicant of F

– Extract prime implicant
– Report prime implicant
– Block prime implicant (in B)

• Case 2: If F � ¬AF , then AF is an implicate of F

– Extract prime implicate
– Block prime implicate (in C)

• Update H and repeat

Non-clausal prime compilation – approach 1

• Iteratively compute maximal models AH of working formula H

– Initially H = L;C = ∅;B = ∅
– Why maximal models?

I Guarantees that one of the following two cases applies

• Each maximal model AH encodes assignment AF to variables of F

• Case 1: If AF � F , then AF is an implicant of F

– Extract prime implicant
– Report prime implicant
– Block prime implicant (in B)

• Case 2: If F � ¬AF , then AF is an implicate of F

– Extract prime implicate
– Block prime implicate (in C)

• Update H and repeat

Non-clausal prime compilation – approach 1

• Iteratively compute maximal models AH of working formula H

– Initially H = L;C = ∅;B = ∅
– Why maximal models?

I Guarantees that one of the following two cases applies

• Each maximal model AH encodes assignment AF to variables of F

• Case 1: If AF � F , then AF is an implicant of F

– Extract prime implicant
– Report prime implicant
– Block prime implicant (in B)

• Case 2: If F � ¬AF , then AF is an implicate of F

– Extract prime implicate
– Block prime implicate (in C)

• Update H and repeat

Non-clausal prime compilation – approach 1

• Iteratively compute maximal models AH of working formula H

– Initially H = L;C = ∅;B = ∅
– Why maximal models?

I Guarantees that one of the following two cases applies

• Each maximal model AH encodes assignment AF to variables of F

• Case 1: If AF � F , then AF is an implicant of F

– Extract prime implicant
– Report prime implicant
– Block prime implicant (in B)

• Case 2: If F � ¬AF , then AF is an implicate of F

– Extract prime implicate
– Block prime implicate (in C)

• Update H and repeat

Non-clausal prime compilation – approach 1

• Iteratively compute maximal models AH of working formula H

– Initially H = L;C = ∅;B = ∅
– Why maximal models?

I Guarantees that one of the following two cases applies

• Each maximal model AH encodes assignment AF to variables of F

• Case 1: If AF � F , then AF is an implicant of F

– Extract prime implicant
– Report prime implicant
– Block prime implicant (in B)

• Case 2: If F � ¬AF , then AF is an implicate of F

– Extract prime implicate
– Block prime implicate (in C)

• Update H and repeat

Algorithm 1

input : Formula F
output: PIn(F) and prime implicate cover of F

H ← {(¬xv ∨ ¬x¬v) | v ∈ var(F)} # Initially, C = ∅ and B = ∅

while true do
(st,AH)← MaxModel(H)
if not st then return

AF ← Map(AH) # Generate assignment for F

st← SAT(AF ∪ ¬F)
if not st then # AF � F; i.e. AF is an implicant

In ← ReduceImplicant(AF ,F)
ReportPrimeImplicant(In)
b ← {¬xl | l ∈ In} # Update B by blocking prime implicant

else # F � ¬AF; i.e. ¬AF is an implicate

Ie ← ReduceImplicate(AF ,F)
b ← {xl | l ∈ Ie} # Update C by blocking prime implicate

H ← H ∪ {b}

Algorithm 1

input : Formula F
output: PIn(F) and prime implicate cover of F

H ← {(¬xv ∨ ¬x¬v) | v ∈ var(F)} # Initially, C = ∅ and B = ∅
while true do

(st,AH)← MaxModel(H)
if not st then return

AF ← Map(AH) # Generate assignment for F

st← SAT(AF ∪ ¬F)
if not st then # AF � F; i.e. AF is an implicant

In ← ReduceImplicant(AF ,F)
ReportPrimeImplicant(In)
b ← {¬xl | l ∈ In} # Update B by blocking prime implicant

else # F � ¬AF; i.e. ¬AF is an implicate

Ie ← ReduceImplicate(AF ,F)
b ← {xl | l ∈ Ie} # Update C by blocking prime implicate

H ← H ∪ {b}

Algorithm 1

input : Formula F
output: PIn(F) and prime implicate cover of F

H ← {(¬xv ∨ ¬x¬v) | v ∈ var(F)} # Initially, C = ∅ and B = ∅
while true do

(st,AH)← MaxModel(H)
if not st then return

AF ← Map(AH) # Generate assignment for F

st← SAT(AF ∪ ¬F)

if not st then # AF � F; i.e. AF is an implicant

In ← ReduceImplicant(AF ,F)
ReportPrimeImplicant(In)
b ← {¬xl | l ∈ In} # Update B by blocking prime implicant

else # F � ¬AF; i.e. ¬AF is an implicate

Ie ← ReduceImplicate(AF ,F)
b ← {xl | l ∈ Ie} # Update C by blocking prime implicate

H ← H ∪ {b}

Algorithm 1

input : Formula F
output: PIn(F) and prime implicate cover of F

H ← {(¬xv ∨ ¬x¬v) | v ∈ var(F)} # Initially, C = ∅ and B = ∅
while true do

(st,AH)← MaxModel(H)
if not st then return

AF ← Map(AH) # Generate assignment for F

st← SAT(AF ∪ ¬F)
if not st then # AF � F; i.e. AF is an implicant

In ← ReduceImplicant(AF ,F)
ReportPrimeImplicant(In)
b ← {¬xl | l ∈ In} # Update B by blocking prime implicant

else # F � ¬AF; i.e. ¬AF is an implicate

Ie ← ReduceImplicate(AF ,F)
b ← {xl | l ∈ Ie} # Update C by blocking prime implicate

H ← H ∪ {b}

Algorithm 1

input : Formula F
output: PIn(F) and prime implicate cover of F

H ← {(¬xv ∨ ¬x¬v) | v ∈ var(F)} # Initially, C = ∅ and B = ∅
while true do

(st,AH)← MaxModel(H)
if not st then return

AF ← Map(AH) # Generate assignment for F

st← SAT(AF ∪ ¬F)
if not st then # AF � F; i.e. AF is an implicant

In ← ReduceImplicant(AF ,F)
ReportPrimeImplicant(In)
b ← {¬xl | l ∈ In} # Update B by blocking prime implicant

else # F � ¬AF; i.e. ¬AF is an implicate

Ie ← ReduceImplicate(AF ,F)
b ← {xl | l ∈ Ie} # Update C by blocking prime implicate

H ← H ∪ {b}

Example for algorithm 1

H = L ∪ B ∪ C

F = (((a ∧ b) ∨ (a ∧ ¬b)) ∧ c) ∨ (b ∧ c)

• SAT oracle query: F ∧ AF

AH AF Entailment Update B/C

xax¬axbx¬bxcx¬c

AH
1 = 100101 AF

1 = a,¬b,¬c F � ¬AF
1 (xc)

AH
2 = 100110 AF

2 = a,¬b, c AF
2 � F (¬xa ∨ ¬xc)

AH
3 = 010110 AF

3 = ¬a,¬b, c F � ¬AF
3 (xa ∨ xb)

AH
4 = 011010 AF

4 = ¬a, b, c AF
4 � F (¬xb ∨ ¬xc)

Example for algorithm 1

H = L ∪ B ∪ C

F = (((a ∧ b) ∨ (a ∧ ¬b)) ∧ c) ∨ (b ∧ c)

• SAT oracle query: F ∧ AF

AH AF Entailment Update B/C

xax¬axbx¬bxcx¬c

AH
1 = 100101 AF

1 = a,¬b,¬c F � ¬AF
1 (xc)

AH
2 = 100110 AF

2 = a,¬b, c AF
2 � F (¬xa ∨ ¬xc)

AH
3 = 010110 AF

3 = ¬a,¬b, c F � ¬AF
3 (xa ∨ xb)

AH
4 = 011010 AF

4 = ¬a, b, c AF
4 � F (¬xb ∨ ¬xc)

Example for algorithm 1

H = L ∪ B ∪ C

F = (((a ∧ b) ∨ (a ∧ ¬b)) ∧ c) ∨ (b ∧ c)

• SAT oracle query: F ∧ AF

AH AF Entailment Update B/C

xax¬axbx¬bxcx¬c

AH
1 = 100101 AF

1 = a,¬b,¬c F � ¬AF
1 (xc)

AH
2 = 100110 AF

2 = a,¬b, c AF
2 � F (¬xa ∨ ¬xc)

AH
3 = 010110 AF

3 = ¬a,¬b, c F � ¬AF
3 (xa ∨ xb)

AH
4 = 011010 AF

4 = ¬a, b, c AF
4 � F (¬xb ∨ ¬xc)

Example for algorithm 1

H = L ∪ B ∪ C

F = (((a ∧ b) ∨ (a ∧ ¬b)) ∧ c) ∨ (b ∧ c)

• SAT oracle query: F ∧ AF

AH AF Entailment Update B/C

xax¬axbx¬bxcx¬c

AH
1 = 100101 AF

1 = a,¬b,¬c F � ¬AF
1 (xc)

AH
2 = 100110 AF

2 = a,¬b, c AF
2 � F (¬xa ∨ ¬xc)

AH
3 = 010110 AF

3 = ¬a,¬b, c F � ¬AF
3 (xa ∨ xb)

AH
4 = 011010 AF

4 = ¬a, b, c AF
4 � F (¬xb ∨ ¬xc)

Example for algorithm 1

H = L ∪ B ∪ C

F = (((a ∧ b) ∨ (a ∧ ¬b)) ∧ c) ∨ (b ∧ c)

• SAT oracle query: F ∧ AF

AH AF Entailment Update B/C

xax¬axbx¬bxcx¬c

AH
1 = 100101 AF

1 = a,¬b,¬c F � ¬AF
1 (xc)

AH
2 = 100110 AF

2 = a,¬b, c AF
2 � F (¬xa ∨ ¬xc)

AH
3 = 010110 AF

3 = ¬a,¬b, c F � ¬AF
3 (xa ∨ xb)

AH
4 = 011010 AF

4 = ¬a, b, c AF
4 � F (¬xb ∨ ¬xc)

Non-clausal prime compilation – approach 2

• Iteratively compute minimal models AH of working formula H

– Initially H = L;C = ∅;B = ∅

– Why minimal models?

I For prime implicants no need to reduce implicant

• Each minimal model AH encodes assignment AF to variables of F

• If AF � F , then AF is a prime implicant of F

– No need to extract prime implicant
– Report prime implicant
– Block prime implicant (in B)

• Else, find model M¬F of ¬F , i.e. M¬F � ¬F , and ¬M¬F is an
implicate of F

– Extract prime implicate
– Block prime implicate (in C)

• Update H and repeat

Non-clausal prime compilation – approach 2

• Iteratively compute minimal models AH of working formula H

– Initially H = L;C = ∅;B = ∅
– Why minimal models?

I For prime implicants no need to reduce implicant

• Each minimal model AH encodes assignment AF to variables of F

• If AF � F , then AF is a prime implicant of F

– No need to extract prime implicant
– Report prime implicant
– Block prime implicant (in B)

• Else, find model M¬F of ¬F , i.e. M¬F � ¬F , and ¬M¬F is an
implicate of F

– Extract prime implicate
– Block prime implicate (in C)

• Update H and repeat

Non-clausal prime compilation – approach 2

• Iteratively compute minimal models AH of working formula H

– Initially H = L;C = ∅;B = ∅
– Why minimal models?

I For prime implicants no need to reduce implicant

• Each minimal model AH encodes assignment AF to variables of F

• If AF � F , then AF is a prime implicant of F

– No need to extract prime implicant
– Report prime implicant
– Block prime implicant (in B)

• Else, find model M¬F of ¬F , i.e. M¬F � ¬F , and ¬M¬F is an
implicate of F

– Extract prime implicate
– Block prime implicate (in C)

• Update H and repeat

Non-clausal prime compilation – approach 2

• Iteratively compute minimal models AH of working formula H

– Initially H = L;C = ∅;B = ∅
– Why minimal models?

I For prime implicants no need to reduce implicant

• Each minimal model AH encodes assignment AF to variables of F

• If AF � F , then AF is a prime implicant of F

– No need to extract prime implicant
– Report prime implicant
– Block prime implicant (in B)

• Else, find model M¬F of ¬F , i.e. M¬F � ¬F , and ¬M¬F is an
implicate of F

– Extract prime implicate
– Block prime implicate (in C)

• Update H and repeat

Non-clausal prime compilation – approach 2

• Iteratively compute minimal models AH of working formula H

– Initially H = L;C = ∅;B = ∅
– Why minimal models?

I For prime implicants no need to reduce implicant

• Each minimal model AH encodes assignment AF to variables of F

• If AF � F , then AF is a prime implicant of F

– No need to extract prime implicant
– Report prime implicant
– Block prime implicant (in B)

• Else, find model M¬F of ¬F , i.e. M¬F � ¬F , and ¬M¬F is an
implicate of F

– Extract prime implicate
– Block prime implicate (in C)

• Update H and repeat

Non-clausal prime compilation – approach 2

• Iteratively compute minimal models AH of working formula H

– Initially H = L;C = ∅;B = ∅
– Why minimal models?

I For prime implicants no need to reduce implicant

• Each minimal model AH encodes assignment AF to variables of F

• If AF � F , then AF is a prime implicant of F

– No need to extract prime implicant
– Report prime implicant
– Block prime implicant (in B)

• Else, find model M¬F of ¬F , i.e. M¬F � ¬F , and ¬M¬F is an
implicate of F

– Extract prime implicate
– Block prime implicate (in C)

• Update H and repeat

Non-clausal prime compilation – approach 2

• Iteratively compute minimal models AH of working formula H

– Initially H = L;C = ∅;B = ∅
– Why minimal models?

I For prime implicants no need to reduce implicant

• Each minimal model AH encodes assignment AF to variables of F

• If AF � F , then AF is a prime implicant of F

– No need to extract prime implicant
– Report prime implicant
– Block prime implicant (in B)

• Else, find model M¬F of ¬F , i.e. M¬F � ¬F , and ¬M¬F is an
implicate of F

– Extract prime implicate
– Block prime implicate (in C)

• Update H and repeat

Non-clausal prime compilation – approach 2

• Iteratively compute minimal models AH of working formula H

– Initially H = L;C = ∅;B = ∅
– Why minimal models?

I For prime implicants no need to reduce implicant

• Each minimal model AH encodes assignment AF to variables of F

• If AF � F , then AF is a prime implicant of F

– No need to extract prime implicant
– Report prime implicant
– Block prime implicant (in B)

• Else, find model M¬F of ¬F , i.e. M¬F � ¬F , and ¬M¬F is an
implicate of F

– Extract prime implicate
– Block prime implicate (in C)

• Update H and repeat

Non-clausal prime compilation – approach 2

• Iteratively compute minimal models AH of working formula H

– Initially H = L;C = ∅;B = ∅
– Why minimal models?

I For prime implicants no need to reduce implicant

• Each minimal model AH encodes assignment AF to variables of F

• If AF � F , then AF is a prime implicant of F

– No need to extract prime implicant
– Report prime implicant
– Block prime implicant (in B)

• Else, find model M¬F of ¬F , i.e. M¬F � ¬F , and ¬M¬F is an
implicate of F

– Extract prime implicate
– Block prime implicate (in C)

• Update H and repeat

Algorithm 2

input : Formula F
output: PIn(F) and prime implicate cover of F

H ← {(¬xv ∨ ¬x¬v) | v ∈ var(F)}

while true do
(st,AH)← MinModel(H)
if not st then return

AF ← Map(AH)
(st,M¬F)← SAT(AF ∪ ¬F)
if st then # F � ¬M¬F; i.e. ¬M¬F is an implicate

Ie ← ReduceImplicate(M¬F ,F)
b ← {xl | l ∈ Ie}

else # AF � F; i.e. AF is a prime implicant

In ← AF

ReportPrimeImplicant(In)
b ← {¬xl | l ∈ In}

H ← H ∪ {b}

Algorithm 2

input : Formula F
output: PIn(F) and prime implicate cover of F

H ← {(¬xv ∨ ¬x¬v) | v ∈ var(F)}
while true do

(st,AH)← MinModel(H)
if not st then return

AF ← Map(AH)
(st,M¬F)← SAT(AF ∪ ¬F)
if st then # F � ¬M¬F; i.e. ¬M¬F is an implicate

Ie ← ReduceImplicate(M¬F ,F)
b ← {xl | l ∈ Ie}

else # AF � F; i.e. AF is a prime implicant

In ← AF

ReportPrimeImplicant(In)
b ← {¬xl | l ∈ In}

H ← H ∪ {b}

Algorithm 2

input : Formula F
output: PIn(F) and prime implicate cover of F

H ← {(¬xv ∨ ¬x¬v) | v ∈ var(F)}
while true do

(st,AH)← MinModel(H)
if not st then return

AF ← Map(AH)
(st,M¬F)← SAT(AF ∪ ¬F)

if st then # F � ¬M¬F; i.e. ¬M¬F is an implicate

Ie ← ReduceImplicate(M¬F ,F)
b ← {xl | l ∈ Ie}

else # AF � F; i.e. AF is a prime implicant

In ← AF

ReportPrimeImplicant(In)
b ← {¬xl | l ∈ In}

H ← H ∪ {b}

Algorithm 2

input : Formula F
output: PIn(F) and prime implicate cover of F

H ← {(¬xv ∨ ¬x¬v) | v ∈ var(F)}
while true do

(st,AH)← MinModel(H)
if not st then return

AF ← Map(AH)
(st,M¬F)← SAT(AF ∪ ¬F)
if st then # F � ¬M¬F; i.e. ¬M¬F is an implicate

Ie ← ReduceImplicate(M¬F ,F)
b ← {xl | l ∈ Ie}

else # AF � F; i.e. AF is a prime implicant

In ← AF

ReportPrimeImplicant(In)
b ← {¬xl | l ∈ In}

H ← H ∪ {b}

Algorithm 2

input : Formula F
output: PIn(F) and prime implicate cover of F

H ← {(¬xv ∨ ¬x¬v) | v ∈ var(F)}
while true do

(st,AH)← MinModel(H)
if not st then return

AF ← Map(AH)
(st,M¬F)← SAT(AF ∪ ¬F)
if st then # F � ¬M¬F; i.e. ¬M¬F is an implicate

Ie ← ReduceImplicate(M¬F ,F)
b ← {xl | l ∈ Ie}

else # AF � F; i.e. AF is a prime implicant

In ← AF

ReportPrimeImplicant(In)
b ← {¬xl | l ∈ In}

H ← H ∪ {b}

Example for algorithm 2

H = L ∪ B ∪ C

F = (((a ∧ b) ∨ (a ∧ ¬b)) ∧ c) ∨ (b ∧ c)

• SAT oracle query: F ∧ AF

AH AF ¬M¬F/¬st B/C

xax¬axbx¬bxcx¬c

000000 AF
1 = ∅ ¬a,¬b,¬c (xa ∨ xb)

001000 AF
2 = b ¬a, b,¬c (xc)

001010 AF
3 = b, c ¬st (¬xb ∨ ¬xc)

100010 AF
4 = a, c ¬st (¬xa ∨ ¬xc)

Example for algorithm 2

H = L ∪ B ∪ C

F = (((a ∧ b) ∨ (a ∧ ¬b)) ∧ c) ∨ (b ∧ c)

• SAT oracle query: F ∧ AF

AH AF ¬M¬F/¬st B/C

xax¬axbx¬bxcx¬c

000000 AF
1 = ∅ ¬a,¬b,¬c (xa ∨ xb)

001000 AF
2 = b ¬a, b,¬c (xc)

001010 AF
3 = b, c ¬st (¬xb ∨ ¬xc)

100010 AF
4 = a, c ¬st (¬xa ∨ ¬xc)

Example for algorithm 2

H = L ∪ B ∪ C

F = (((a ∧ b) ∨ (a ∧ ¬b)) ∧ c) ∨ (b ∧ c)

• SAT oracle query: F ∧ AF

AH AF ¬M¬F/¬st B/C

xax¬axbx¬bxcx¬c

000000 AF
1 = ∅ ¬a,¬b,¬c (xa ∨ xb)

001000 AF
2 = b ¬a, b,¬c (xc)

001010 AF
3 = b, c ¬st (¬xb ∨ ¬xc)

100010 AF
4 = a, c ¬st (¬xa ∨ ¬xc)

Example for algorithm 2

H = L ∪ B ∪ C

F = (((a ∧ b) ∨ (a ∧ ¬b)) ∧ c) ∨ (b ∧ c)

• SAT oracle query: F ∧ AF

AH AF ¬M¬F/¬st B/C

xax¬axbx¬bxcx¬c

000000 AF
1 = ∅ ¬a,¬b,¬c (xa ∨ xb)

001000 AF
2 = b ¬a, b,¬c (xc)

001010 AF
3 = b, c ¬st (¬xb ∨ ¬xc)

100010 AF
4 = a, c ¬st (¬xa ∨ ¬xc)

Example for algorithm 2

H = L ∪ B ∪ C

F = (((a ∧ b) ∨ (a ∧ ¬b)) ∧ c) ∨ (b ∧ c)

• SAT oracle query: F ∧ AF

AH AF ¬M¬F/¬st B/C

xax¬axbx¬bxcx¬c

000000 AF
1 = ∅ ¬a,¬b,¬c (xa ∨ xb)

001000 AF
2 = b ¬a, b,¬c (xc)

001010 AF
3 = b, c ¬st (¬xb ∨ ¬xc)

100010 AF
4 = a, c ¬st (¬xa ∨ ¬xc)

Outline

Background

Related Work

Primes for Non-Clausal Formulae

Results

Experimental setup

• Server: Intel Xeon E5-2630 2.60GHz, 64GByte

• TO: 3600s

• MO: 10 GByte

• Tools:

– primer: PRIMe compilER
– zres-tison [SdV01]

• Benchmarks:

– Quasigroup classification problems: 83
– Cryptanalysis of the Geffe stream generator: 600
– Crafted Fm ∨ PHPn: 30

I Fm = (x1 ∨ y1) ∧ · · · ∧ (xm ∨ ym)
I m ∈ {10, . . . , 20}
I n ∈ {6, . . . , 10}

– Crafted Fm ∨ GTn: 30

I n ∈ {12, . . . , 20}

Summary of results

QG6 Geffe gen. F+PHP F+GT Total

instances 83 600 30 30 743

ZRes-tison 0 0 11 0 11

primer-a (PIn) 53 596 30 26 705

primer-a (PIe) 28 588 30 27 673

primer-b (PIn) 64 595 30 30 719

primer-b (PIe) 30 577 30 27 664

F+PHP scatter plot

10−2 10−1 100 101 102 103 104

primer-b (PIe computation)

10−2

10−1

100

101

102

103

104

Z
R

es
-t

is
on

3600 sec. timeout

36
00

se
c.

tim
eo

ut

Comparing algorithms

560 580 600 620 640 660 680 700 720
instances

0

500

1000

1500

2000

2500

3000

3500

C
PU

tim
e

(s
)

primer-b (PIn)
primer-a (PIn)
primer-a (PIe)
primer-b (PIe)

Conclusions & future work

• Enumeration of prime implicants for non-clausal formulae with
SAT oracles

– Readily applicable to enumeration of prime implicates
– Can be effective if number of primes is not too large
– Another instantiation of problem solving with SAT oracles
– Exploiting recent work on computing MCSes (minimal/maximal

models) and MUSes (prime implicants/implicates)

I But also, MSMP in general

– Another example of exploiting duality relationships in enumeration
problems

• Improvements to proposed algorithms

• Applications of prime enumeration

• Other compilation languages?

Conclusions & future work

• Enumeration of prime implicants for non-clausal formulae with
SAT oracles

– Readily applicable to enumeration of prime implicates

– Can be effective if number of primes is not too large
– Another instantiation of problem solving with SAT oracles
– Exploiting recent work on computing MCSes (minimal/maximal

models) and MUSes (prime implicants/implicates)

I But also, MSMP in general

– Another example of exploiting duality relationships in enumeration
problems

• Improvements to proposed algorithms

• Applications of prime enumeration

• Other compilation languages?

Conclusions & future work

• Enumeration of prime implicants for non-clausal formulae with
SAT oracles

– Readily applicable to enumeration of prime implicates
– Can be effective if number of primes is not too large

– Another instantiation of problem solving with SAT oracles
– Exploiting recent work on computing MCSes (minimal/maximal

models) and MUSes (prime implicants/implicates)

I But also, MSMP in general

– Another example of exploiting duality relationships in enumeration
problems

• Improvements to proposed algorithms

• Applications of prime enumeration

• Other compilation languages?

Conclusions & future work

• Enumeration of prime implicants for non-clausal formulae with
SAT oracles

– Readily applicable to enumeration of prime implicates
– Can be effective if number of primes is not too large
– Another instantiation of problem solving with SAT oracles

– Exploiting recent work on computing MCSes (minimal/maximal
models) and MUSes (prime implicants/implicates)

I But also, MSMP in general

– Another example of exploiting duality relationships in enumeration
problems

• Improvements to proposed algorithms

• Applications of prime enumeration

• Other compilation languages?

Conclusions & future work

• Enumeration of prime implicants for non-clausal formulae with
SAT oracles

– Readily applicable to enumeration of prime implicates
– Can be effective if number of primes is not too large
– Another instantiation of problem solving with SAT oracles
– Exploiting recent work on computing MCSes (minimal/maximal

models) and MUSes (prime implicants/implicates)

I But also, MSMP in general

– Another example of exploiting duality relationships in enumeration
problems

• Improvements to proposed algorithms

• Applications of prime enumeration

• Other compilation languages?

Conclusions & future work

• Enumeration of prime implicants for non-clausal formulae with
SAT oracles

– Readily applicable to enumeration of prime implicates
– Can be effective if number of primes is not too large
– Another instantiation of problem solving with SAT oracles
– Exploiting recent work on computing MCSes (minimal/maximal

models) and MUSes (prime implicants/implicates)

I But also, MSMP in general

– Another example of exploiting duality relationships in enumeration
problems

• Improvements to proposed algorithms

• Applications of prime enumeration

• Other compilation languages?

Conclusions & future work

• Enumeration of prime implicants for non-clausal formulae with
SAT oracles

– Readily applicable to enumeration of prime implicates
– Can be effective if number of primes is not too large
– Another instantiation of problem solving with SAT oracles
– Exploiting recent work on computing MCSes (minimal/maximal

models) and MUSes (prime implicants/implicates)

I But also, MSMP in general

– Another example of exploiting duality relationships in enumeration
problems

• Improvements to proposed algorithms

• Applications of prime enumeration

• Other compilation languages?

Conclusions & future work

• Enumeration of prime implicants for non-clausal formulae with
SAT oracles

– Readily applicable to enumeration of prime implicates
– Can be effective if number of primes is not too large
– Another instantiation of problem solving with SAT oracles
– Exploiting recent work on computing MCSes (minimal/maximal

models) and MUSes (prime implicants/implicates)

I But also, MSMP in general

– Another example of exploiting duality relationships in enumeration
problems

• Improvements to proposed algorithms

• Applications of prime enumeration

• Other compilation languages?

Conclusions & future work

• Enumeration of prime implicants for non-clausal formulae with
SAT oracles

– Readily applicable to enumeration of prime implicates
– Can be effective if number of primes is not too large
– Another instantiation of problem solving with SAT oracles
– Exploiting recent work on computing MCSes (minimal/maximal

models) and MUSes (prime implicants/implicates)

I But also, MSMP in general

– Another example of exploiting duality relationships in enumeration
problems

• Improvements to proposed algorithms

• Applications of prime enumeration

• Other compilation languages?

Thank You

	Background
	Related Work
	Primes for Non-Clausal Formulae
	Results

