Prime Compilation of Non-Clausal Formulae

Joao Marques-Silva

Joint work with A. Previti, A. Ignatiev and A. Morgado
To be presented at IJCAI 2015

INESC-ID, IST, ULisbon, Portugal
CASL, CSI, UCD, Dublin, Ireland

Symposium on New Frontiers in Knowledge Compilation

VCLA, Vienna, Austria, June 2015

The success of SAT

- Well-known NP-complete decision problem

The success of SAT

- Well-known NP-complete decision problem
- In practice, SAT is a success story of Computer Science - Hundreds (even more?) of practical applications

The success of SAT

- Well-known NP-complete decision problem
- In practice, SAT is a success story of Computer Science
- Hundreds (even more?) of practical applications
 Software Testing ifiter resig Switching Network Verification

Quantified Boolean Formulas

Haplotyping
Test Pattern Generation

Problem solving with SAT oracles

Function problems

Function problems

- But also backbones, autarkies, MES, primes, etc.

An example - MUSes

$$
\begin{array}{lllll}
\left(\bar{x}_{1} \vee \bar{x}_{2}\right) & \left(x_{1}\right) & \left(x_{5} \vee x_{6}\right) & \left(\bar{x}_{3} \vee \bar{x}_{4}\right) & \left(x_{2}\right)
\end{array} \quad\left(x_{3}\right) \quad\left(x_{4}\right)
$$

- Formula is unsatisfiable but not irreducible

An example - MUSes

$$
\left(\bar{x}_{1} \vee \bar{x}_{2}\right) \quad\left(x_{1}\right) \quad\left(x_{5} \vee x_{6}\right)\left(\bar{x}_{3} \vee \bar{x}_{4}\right) \quad\left(x_{2}\right) \quad\left(x_{3}\right) \quad\left(x_{4}\right)
$$

- Formula is unsatisfiable but not irreducible
- Can remove clauses, and formula still unsatisfiable

An example - MUSes

- Formula is unsatisfiable but not irreducible
- Can remove clauses, and formula still unsatisfiable
- Minimal Unsatisfiable Subset (MUS):
- Irreducible subformula that is unsatisfiable
- MUSes are minimal sets

An example - MUSes

- Formula is unsatisfiable but not irreducible
- Can remove clauses, and formula still unsatisfiable
- Minimal Unsatisfiable Subset (MUS):
- Irreducible subformula that is unsatisfiable
- MUSes are minimal sets

An example - MUSes

- Formula is unsatisfiable but not irreducible
- Can remove clauses, and formula still unsatisfiable
- Minimal Unsatisfiable Subset (MUS):
- Irreducible subformula that is unsatisfiable
- MUSes are minimal sets
- Many applications: abstraction in software verification; debugging declarative models; pinpointing in DLs; type error debugging; etc.

An example - MCSes

$$
\begin{array}{lllll}
\left(\bar{x}_{1} \vee \bar{x}_{2}\right) & \left(x_{1}\right) & \left(x_{5} \vee x_{6}\right) & \left(\bar{x}_{3} \vee \bar{x}_{4}\right) & \left(x_{2}\right)
\end{array} \quad\left(x_{3}\right) \quad\left(x_{4}\right)
$$

- Formula is unsatisfiable with satisfiable subformulas

An example - MCSes

(x_{2}) (x_{3})

- Formula is unsatisfiable with satisfiable subformulas
- Can remove clauses such that remaining clauses are satisfiable

An example - MCSes

- Formula is unsatisfiable with satisfiable subformulas
- Can remove clauses such that remaining clauses are satisfiable
- Minimal Correction Subset (MCS):
- Irreducible subformula such that the complement is satisfiable
- MCSes are minimal sets

An example - MCSes

$$
\left(\bar{x}_{1} \vee \bar{x}_{2}\right) \quad\left(x_{1}\right) \quad\left(x_{5} \vee x_{6}\right) \quad\left(\bar{x}_{3} \vee \bar{x}_{4}\right)
$$

$$
\left(x_{4}\right)
$$

- Formula is unsatisfiable with satisfiable subformulas
- Can remove clauses such that remaining clauses are satisfiable
- Minimal Correction Subset (MCS):
- Irreducible subformula such that the complement is satisfiable
- MCSes are minimal sets

An example - MCSes

$$
\left(\bar{x}_{1} \vee \bar{x}_{2}\right) \quad\left(x_{1}\right) \quad\left(x_{5} \vee x_{6}\right) \quad\left(\bar{x}_{3} \vee \bar{x}_{4}\right)
$$

- Formula is unsatisfiable with satisfiable subformulas
- Can remove clauses such that remaining clauses are satisfiable
- Minimal Correction Subset (MCS):
- Irreducible subformula such that the complement is satisfiable
- MCSes are minimal sets

An example - MCSes

$$
\left(\bar{x}_{1} \vee \bar{x}_{2}\right) \quad\left(x_{1}\right) \quad\left(x_{5} \vee x_{6}\right) \quad\left(\bar{x}_{3} \vee \bar{x}_{4}\right)
$$

- Formula is unsatisfiable with satisfiable subformulas
- Can remove clauses such that remaining clauses are satisfiable
- Minimal Correction Subset (MCS):
- Irreducible subformula such that the complement is satisfiable
- MCSes are minimal sets
- Many applications: restore consistency; smallest MCSes are MaxSAT solutions; MUS enumeration; minimal/maximal models; etc.

Enumeration problems

An example - MCS\&MUS enumeration

- MCS enumeration is easy:
- Extract \& block MCSes, e.g. with MaxSAT or dedicated algorithm

An example - MCS\&MUS enumeration

- MCS enumeration is easy:
- Extract \& block MCSes, e.g. with MaxSAT or dedicated algorithm
- MUS enumeration is (apparently) hard:
- Unclear how to block MUSes

An example - MCS\&MUS enumeration

- MCS enumeration is easy:
- Extract \& block MCSes, e.g. with MaxSAT or dedicated algorithm
- MUS enumeration is (apparently) hard:
- Unclear how to block MUSes
- Minimal hitting set dualization

An example - MCS\&MUS enumeration

- MCS enumeration is easy:
- Extract \& block MCSes, e.g. with MaxSAT or dedicated algorithm
- MUS enumeration is (apparently) hard:
- Unclear how to block MUSes
- Minimal hitting set dualization
- Explicit: find all MCSes and dualize

An example - MCS\&MUS enumeration

- MCS enumeration is easy:
- Extract \& block MCSes, e.g. with MaxSAT or dedicated algorithm
- MUS enumeration is (apparently) hard:
- Unclear how to block MUSes
- Minimal hitting set dualization
- Explicit: find all MCSes and dualize
- Implicit: exploit hitting set dualization and iteratively find MCses and MUSes

Quantification

Application of enumeration - prime compilation

- Enumerate all prime implicates for:

$$
(c \vee a) \wedge(c \vee \neg a) \wedge(a \vee b \vee d) \wedge(a \vee b \vee \neg d)
$$

Application of enumeration - prime compilation

- Enumerate all prime implicates for:

$$
(c \vee a) \wedge(c \vee \neg a) \wedge(a \vee b \vee d) \wedge(a \vee b \vee \neg d)
$$

- Primes: $(c) ;(a \vee b)$

Application of enumeration - prime compilation

- Enumerate all prime implicates for:

$$
(c \vee a) \wedge(c \vee \neg a) \wedge(a \vee b \vee d) \wedge(a \vee b \vee \neg d)
$$

- Primes: $(c) ;(a \vee b)$
- Enumerate all prime implicants for:

$$
(c \vee a) \wedge(c \vee \neg a) \wedge(a \vee b \vee d) \wedge(a \vee b \vee \neg d)
$$

Application of enumeration - prime compilation

- Enumerate all prime implicates for:

$$
(c \vee a) \wedge(c \vee \neg a) \wedge(a \vee b \vee d) \wedge(a \vee b \vee \neg d)
$$

- Primes: $(c) ;(a \vee b)$
- Enumerate all prime implicants for:

$$
(c \vee a) \wedge(c \vee \neg a) \wedge(a \vee b \vee d) \wedge(a \vee b \vee \neg d)
$$

- Primes: $(b \wedge c) ;(a \wedge c)$

Application of enumeration - prime compilation

- Enumerate all prime implicates for:

$$
(c \vee a) \wedge(c \vee \neg a) \wedge(a \vee b \vee d) \wedge(a \vee b \vee \neg d)
$$

- Primes: $(c) ;(a \vee b)$
- Enumerate all prime implicants for:

$$
(c \vee a) \wedge(c \vee \neg a) \wedge(a \vee b \vee d) \wedge(a \vee b \vee \neg d)
$$

- Primes: $(b \wedge c) ;(a \wedge c)$
- Enumerate all prime implicants for:

$$
(((a \wedge b) \vee(a \wedge \neg b)) \wedge c) \vee(b \wedge c)
$$

Application of enumeration - prime compilation

- Enumerate all prime implicates for:

$$
(c \vee a) \wedge(c \vee \neg a) \wedge(a \vee b \vee d) \wedge(a \vee b \vee \neg d)
$$

- Primes: $(c) ;(a \vee b)$
- Enumerate all prime implicants for:

$$
(c \vee a) \wedge(c \vee \neg a) \wedge(a \vee b \vee d) \wedge(a \vee b \vee \neg d)
$$

- Primes: $(b \wedge c) ;(a \wedge c)$
- Enumerate all prime implicants for:

$$
(((a \wedge b) \vee(a \wedge \neg b)) \wedge c) \vee(b \wedge c)
$$

- Primes: $(b \wedge c) ;(a \wedge c)$

Application of enumeration - prime compilation

- Enumerate all prime implicates for:

$$
(c \vee a) \wedge(c \vee \neg a) \wedge(a \vee b \vee d) \wedge(a \vee b \vee \neg d)
$$

- Primes: $(c) ;(a \vee b)$
- Enumerate all prime implicants for:

$$
(c \vee a) \wedge(c \vee \neg a) \wedge(a \vee b \vee d) \wedge(a \vee b \vee \neg d)
$$

- Primes: $(b \wedge c) ;(a \wedge c)$
- Enumerate all prime implicants for:

$$
(((a \wedge b) \vee(a \wedge \neg b)) \wedge c) \vee(b \wedge c)
$$

- Primes: $(b \wedge c) ;(a \wedge c)$
- Enumeration of primes studied since the 1930s!
- Formula minimization; Knowledge compilation; ...

Application of enumeration - prime compilation

- Enumerate all prime implicates for:

$$
(c \vee a) \wedge(c \vee \neg a) \wedge(a \vee b \vee d) \wedge(a \vee b \vee \neg d)
$$

- Primes: $(c) ;(a \vee b)$
- Enumerate all prime implicants for:

$$
(c \vee a) \wedge(c \vee \neg a) \wedge(a \vee b \vee d) \wedge(a \vee b \vee \neg d)
$$

- Primes: $(b \wedge c) ;(a \wedge c)$
- Enumerate all prime implicants for:

$$
(((a \wedge b) \vee(a \wedge \neg b)) \wedge c) \vee(b \wedge c)
$$

- Primes: $(b \wedge c) ;(a \wedge c)$
- Enumeration of primes studied since the 1930s!
- Formula minimization; Knowledge compilation; ...
- How to enumerate primes of non-clausal formulae, with SAT oracles?

Outline

Background

Related Work

Primes for Non-Clausal Formulae

Results

Outline

Background

Related Work

Primes for Non-Clausal Formulae

Results

Propositional formulae

- Clausal:

Propositional formulae

- Clausal:
- CNF: conjunction of disjunctions of literals

$$
(c \vee a) \wedge(c \vee \neg a) \wedge(a \vee b \vee d) \wedge(a \vee b \vee \neg d)
$$

Propositional formulae

- Clausal:
- CNF: conjunction of disjunctions of literals

$$
(c \vee a) \wedge(c \vee \neg a) \wedge(a \vee b \vee d) \wedge(a \vee b \vee \neg d)
$$

- DNF: disjunction of conjunctions of literals

$$
(c \wedge a) \vee(c \wedge \neg a) \vee(a \wedge b \wedge d) \vee(a \wedge b \wedge \neg d)
$$

Propositional formulae

- Clausal:
- CNF: conjunction of disjunctions of literals

$$
(c \vee a) \wedge(c \vee \neg a) \wedge(a \vee b \vee d) \wedge(a \vee b \vee \neg d)
$$

- DNF: disjunction of conjunctions of literals

$$
(c \wedge a) \vee(c \wedge \neg a) \vee(a \wedge b \wedge d) \vee(a \wedge b \wedge \neg d)
$$

- Other notation: Product of Sums (POS) / Sum of Products (SOP)

Propositional formulae

- Clausal:
- CNF: conjunction of disjunctions of literals

$$
(c \vee a) \wedge(c \vee \neg a) \wedge(a \vee b \vee d) \wedge(a \vee b \vee \neg d)
$$

- DNF: disjunction of conjunctions of literals

$$
(c \wedge a) \vee(c \wedge \neg a) \vee(a \wedge b \wedge d) \vee(a \wedge b \wedge \neg d)
$$

- Other notation: Product of Sums (POS) / Sum of Products (SOP)
- Non-clausal:
- Non-CNF and non-DNF
- Propositional formulae: well-formed formulae built with standard connectives \neg, \wedge, \vee

$$
(((a \wedge b) \vee(a \wedge \neg b)) \wedge c) \vee(b \wedge c)
$$

Defining primes

- Given formula F, a prime implicate is a non-empty set of non-complementary literals q, s.t.

$$
F \vDash\left(\vee_{I \in q} I\right) \wedge \forall_{q^{\prime} \subsetneq q} F \not \models\left(\vee_{I \in q^{\prime}} I\right)
$$

- Prime implicate q given implicate $c, q \subseteq c$

Defining primes

- Given formula F, a prime implicate is a non-empty set of non-complementary literals q, s.t.

$$
F \vDash\left(\vee_{I \in q} I\right) \wedge \forall_{q^{\prime} \subseteq q} F \not \models\left(\vee_{I \in q^{\prime}} I\right)
$$

- Prime implicate q given implicate $c, q \subseteq c$
- Given formula F, a prime implicant is a non-empty set of non-complementary literals p, s.t.

$$
\left(\wedge_{I \in p} I\right) \vDash F \wedge \forall_{p^{\prime} \subsetneq p}\left(\wedge_{I \in p^{\prime}} I\right) \not \models F
$$

- Prime implicant p given implicant $t, p \subseteq t$

Defining primes

- Given formula F, a prime implicate is a non-empty set of non-complementary literals q, s.t.

$$
F \vDash\left(\vee_{I \in q} I\right) \wedge \forall_{q^{\prime} \subseteq q} F \not \models\left(\vee_{I \in q^{\prime}} I\right)
$$

- Prime implicate q given implicate $c, q \subseteq c$
- Given formula F, a prime implicant is a non-empty set of non-complementary literals p, s.t.

$$
\left(\wedge_{I \in p} I\right) \vDash F \wedge \forall_{p^{\prime} \subsetneq p}\left(\wedge_{I \in p^{\prime}} I\right) \not \models F
$$

- Prime implicant p given implicant $t, p \subseteq t$
- Each prime implicant (resp. implicate) of F is a minimal hitting set of the prime implicates (resp. implicants) of F [R94]

Computing primes

- Extract one prime implicant for F in CNF:

Computing primes

- Extract one prime implicant for F in CNF:
- Find satisfying assignment μ of F

Computing primes

- Extract one prime implicant for F in CNF:
- Find satisfying assignment μ of F
- Drop literals from μ while F satisfied

Computing primes

- Extract one prime implicant for F in CNF:
- Find satisfying assignment μ of F
- Drop literals from μ while F satisfied
- Similar for prime implicate with F in DNF and falsifying assignment

Computing primes

- Extract one prime implicant for F in CNF:
- Find satisfying assignment μ of F
- Drop literals from μ while F satisfied
- Similar for prime implicate with F in DNF and falsifying assignment
- How about the general case of prime implicates for CNF, prime implicants for DNF, or primes for non-clausal?
- And, how about enumeration of primes?
- Repeated application of procedure above does not work...

Defining MUSes/MCSes/MSSes

- Given CNF F, with $F \vDash \perp$:

Defining MUSes/MCSes/MSSes

- Given CNF F, with $F \vDash \perp$:
- $M \subseteq F$ is a Minimal Unsatisfiable Subset (MUS) iff:

$$
M \vDash \perp \wedge \forall_{M^{\prime} \subsetneq M} M^{\prime} \not \models \perp
$$

Defining MUSes/MCSes/MSSes

- Given CNF F, with $F \vDash \perp$:
- $M \subseteq F$ is a Minimal Unsatisfiable Subset (MUS) iff:

$$
M \vDash \perp \wedge \forall_{M^{\prime} \subsetneq M} M^{\prime} \not \models \perp
$$

- $S \subseteq F$ is a Maximal Satisfiable Subset (MSS) iff:

$$
S \not \models \perp \wedge \forall \forall_{S \subseteq S^{\prime} \subseteq F} S^{\prime} \vDash \perp
$$

Defining MUSes/MCSes/MSSes

- Given CNF F, with $F \vDash \perp$:
- $M \subseteq F$ is a Minimal Unsatisfiable Subset (MUS) iff:

$$
M \vDash \perp \wedge \forall_{M^{\prime} \subsetneq M} M^{\prime} \not \models \perp
$$

- $S \subseteq F$ is a Maximal Satisfiable Subset (MSS) iff:

$$
S \not \models \perp \wedge \forall \forall_{S \subsetneq S^{\prime} \subseteq F} S^{\prime} \vDash \perp
$$

- $C \subseteq F$ is a Minimal Correction Subset (MCS) iff:

$$
F \backslash C \nvdash \perp \wedge \forall C^{\prime} \subsetneq C F \backslash C^{\prime} \vDash \perp
$$

Defining MUSes/MCSes/MSSes

- Given CNF F, with $F \vDash \perp$:
- $M \subseteq F$ is a Minimal Unsatisfiable Subset (MUS) iff:

$$
M \vDash \perp \wedge \forall_{M^{\prime} \subsetneq} M M^{\prime} \not \models \perp
$$

- $S \subseteq F$ is a Maximal Satisfiable Subset (MSS) iff:

$$
S \not \models \perp \wedge \forall \forall_{\subseteq \subsetneq S^{\prime} \subseteq F} S^{\prime} \vDash \perp
$$

- $C \subseteq F$ is a Minimal Correction Subset (MCS) iff:

$$
F \backslash C \nvdash \perp \wedge \forall C^{\prime} \subsetneq c F \backslash C^{\prime} \vDash \perp
$$

- An MCS C is the complement (wrt to F) of an MSS $S, C=F \backslash S$

Defining MUSes/MCSes/MSSes

- Given CNF F, with $F \vDash \perp$:
- $M \subseteq F$ is a Minimal Unsatisfiable Subset (MUS) iff:

$$
M \vDash \perp \wedge \forall_{M^{\prime} \subsetneq M} M^{\prime} \not \models \perp
$$

- $S \subseteq F$ is a Maximal Satisfiable Subset (MSS) iff:

$$
S \not \models \perp \wedge \forall \forall_{\subseteq \subsetneq S^{\prime} \subseteq F} S^{\prime} \vDash \perp
$$

- $C \subseteq F$ is a Minimal Correction Subset (MCS) iff:

$$
F \backslash C \nvdash \perp \wedge \forall C^{\prime} \subsetneq C F \backslash C^{\prime} \vDash \perp
$$

- An MCS C is the complement (wrt to F) of an MSS $S, C=F \backslash S$
- Each MCS (resp. MUS) of F is a minimal hitting set of the MUSes (resp. MCSes) of F

Working with groups - MUSes

- Group of clauses $0, G_{0}$, denoting a set of background (or don't care) clauses

Working with groups - MUSes

- Group of clauses $0, G_{0}$, denoting a set of background (or don't care) clauses
- Group of clauses i, G_{i}
- Set of groups of clauses $\Gamma=\left\{G_{1}, \ldots, G_{k}\right\}$

Working with groups - MUSes

- Group of clauses $0, G_{0}$, denoting a set of background (or don't care) clauses
- Group of clauses i, G_{i}
- Set of groups of clauses $\Gamma=\left\{G_{1}, \ldots, G_{k}\right\}$
- Conjunction of clauses in all groups unsatisfiable:

$$
\bigwedge_{\substack{G_{i} \in G_{0} \cup \Gamma \\ c \in G_{i}}}(c) \vDash \perp
$$

Working with groups - MUSes

- Group of clauses $0, G_{0}$, denoting a set of background (or don't care) clauses
- Group of clauses i, G_{i}
- Set of groups of clauses $\Gamma=\left\{G_{1}, \ldots, G_{k}\right\}$
- Conjunction of clauses in all groups unsatisfiable:

$$
\bigwedge_{\substack{G_{i} \in G_{0} \cup \Gamma \\ c \in G_{i}}}(c) \vDash \perp
$$

- Group MUS, $\Psi \subseteq \Gamma$:

$$
\bigwedge_{\substack{G_{i} \in G_{0} \cup \Psi \\ c \in G_{i}}}(c) \vDash \perp \wedge \forall_{\Psi^{\prime} \subsetneq \Psi} \bigwedge_{\substack{G_{i} \in G_{0} \cup \Psi^{\prime} \\ c \in G_{i}}}(c) \not \models \perp
$$

Reducing primes to group MUSes - prime implicates

- Recall definition of prime implicate $p \subseteq c$:

$$
F \vDash\left(\vee_{I \in q} I\right) \wedge \forall_{q^{\prime} \subseteq q} F \not \models\left(\vee_{I \in q^{\prime}} I\right)
$$

Reducing primes to group MUSes - prime implicates

- Recall definition of prime implicate $p \subseteq c$:

$$
F \vDash\left(\vee_{I \in q} I\right) \wedge \forall_{q^{\prime} \subseteq q} F \not \models\left(\vee_{I \in q^{\prime}} I\right)
$$

- Can be rewritten as:

$$
F \wedge \wedge_{I \in q}(\neg I) \vDash \perp \wedge \forall_{q^{\prime} \subseteq q} F \wedge \wedge_{I \in q}(\neg I) \nvdash \perp
$$

Reducing primes to group MUSes - prime implicates

- Recall definition of prime implicate $p \subseteq c$:

$$
F \vDash\left(\vee_{I \in q} I\right) \wedge \forall_{q^{\prime} \subseteq q} F \not \models\left(\vee_{I \in q^{\prime}} I\right)
$$

- Can be rewritten as:

$$
F \wedge \wedge_{I \in q}(\neg I) \vDash \perp \wedge \forall_{q^{\prime} \subseteq q} F \wedge \wedge_{I \in q}(\neg I) \nvdash \perp
$$

- Reduction:
- Start from implicate c
- Formula F corresponds to background group G_{0}
- Each literal / of c represents a group with a unit clause ($\neg /$)
- Each group MUS represents prime implicate of F given c

Reducing primes to group MUSes - prime implicates

- Recall definition of prime implicate $p \subseteq c$:

$$
F \vDash\left(\vee_{I \in q} I\right) \wedge \forall_{q^{\prime} \subseteq q} F \not \models\left(\vee_{I \in q^{\prime}} I\right)
$$

- Can be rewritten as:

$$
F \wedge \wedge_{I \in q}(\neg I) \vDash \perp \wedge \forall_{q^{\prime} \subseteq q} F \wedge \wedge_{I \in q}(\neg l) \nvdash \perp
$$

- Reduction:
- Start from implicate c
- Formula F corresponds to background group G_{0}
- Each literal / of c represents a group with a unit clause ($\neg /$)
- Each group MUS represents prime implicate of F given c
- Note: F is a (possibly non-clausal) propositional formula

How about prime implicants?

- Recall definition of prime implicant $p \subseteq t$:

$$
\left(\wedge_{I \in p} I\right) \vDash F \wedge \forall_{p^{\prime} \subsetneq p}\left(\wedge_{I \in p^{\prime}} I\right) \not \models F
$$

How about prime implicants?

- Recall definition of prime implicant $p \subseteq t$:

$$
\left(\wedge_{I \in p} I\right) \vDash F \wedge \forall_{p^{\prime} \subsetneq p}\left(\wedge_{I \in p^{\prime}} I\right) \not \models F
$$

- Can be rewritten as:

$$
(\neg F) \wedge\left(\wedge_{I \in p} I\right) \vDash \perp \wedge \forall_{p^{\prime} \subseteq p}(\neg F) \wedge\left(\wedge_{I \in p^{\prime}} I\right) \not \models \perp
$$

How about prime implicants?

- Recall definition of prime implicant $p \subseteq t$:

$$
\left(\wedge_{I \in p} I\right) \vDash F \wedge \forall_{p^{\prime} \subsetneq p}\left(\wedge_{I \in p^{\prime}} I\right) \not \models F
$$

- Can be rewritten as:

$$
(\neg F) \wedge\left(\wedge_{I \in p} I\right) \vDash \perp \wedge \forall_{p^{\prime} \subsetneq p}(\neg F) \wedge\left(\wedge_{I \in p^{\prime}} I\right) \not \models \perp
$$

- Reduction:
- Start from implicant t
- Formula $\neg F$ corresponds to background group G_{0}
- Each literal / of t represents a group with a unit clause (I)
- Each group MUS represents prime implicant of F given t

How about prime implicants?

- Recall definition of prime implicant $p \subseteq t$:

$$
\left(\wedge_{I \in p} I\right) \vDash F \wedge \forall_{p^{\prime} \subsetneq p}\left(\wedge_{I \in p^{\prime}} I\right) \not \models F
$$

- Can be rewritten as:

$$
(\neg F) \wedge\left(\wedge_{I \in p} I\right) \vDash \perp \wedge \forall_{p^{\prime} \subsetneq p}(\neg F) \wedge\left(\wedge_{I \in p^{\prime}} I\right) \not \models \perp
$$

- Reduction:
- Start from implicant t
- Formula $\neg F$ corresponds to background group G_{0}
- Each literal / of t represents a group with a unit clause (I)
- Each group MUS represents prime implicant of F given t
- How to compute group MUSes?

Extracting MUSes

- Many algorithms, based on calls to SAT oracles:
- Deletion-based
- QuickXplain
- Progression

Extracting MUSes

- Many algorithms, based on calls to SAT oracles:
- Deletion-based
- QuickXplain
- Progression
- Several optimizations:
- Clause set refinement
- Recursive model rotation

Extracting MUSes

- Many algorithms, based on calls to SAT oracles:
- Deletion-based
- QuickXplain
- Progression
- Several optimizations:
- Clause set refinement
- Recursive model rotation
- Applicable to plain MUS or group MUS

Extracting MUSes

- Many algorithms, based on calls to SAT oracles:
- Deletion-based
- QuickXplain
- Progression
- Several optimizations:
- Clause set refinement
- Recursive model rotation
- Applicable to plain MUS or group MUS
- Applicable to computing primes

An example

$$
F=(c \vee a) \wedge(c \vee \neg a) \wedge(a \vee b \vee d) \wedge(a \vee b \vee \neg d)
$$

- Find prime implicate of F given implicate $(c \vee a)$

An example

$$
F=(c \vee a) \wedge(c \vee \neg a) \wedge(a \vee b \vee d) \wedge(a \vee b \vee \neg d)
$$

- Find prime implicate of F given implicate $(c \vee a)$
- Group MUS formulation: $G_{0}=F ; G_{1}=(\neg c) ; G_{2}=(\neg a)$

An example

$$
F=(c \vee a) \wedge(c \vee \neg a) \wedge(a \vee b \vee d) \wedge(a \vee b \vee \neg d)
$$

- Find prime implicate of F given implicate $(c \vee a)$
- Group MUS formulation: $G_{0}=F ; G_{1}=(\neg c) ; G_{2}=(\neg a)$
- Standard deletion algorithm:

An example

$$
F=(c \vee a) \wedge(c \vee \neg a) \wedge(a \vee b \vee d) \wedge(a \vee b \vee \neg d)
$$

- Find prime implicate of F given implicate $(c \vee a)$
- Group MUS formulation: $G_{0}=F ; G_{1}=(\neg c) ; G_{2}=(\neg a)$
- Standard deletion algorithm:
- Drop $G_{1}=(\neg c)$:

An example

$$
F=(c \vee a) \wedge(c \vee \neg a) \wedge(a \vee b \vee d) \wedge(a \vee b \vee \neg d)
$$

- Find prime implicate of F given implicate $(c \vee a)$
- Group MUS formulation: $G_{0}=F ; G_{1}=(\neg c) ; G_{2}=(\neg a)$
- Standard deletion algorithm:
- Drop $G_{1}=(\neg c)$:
- $G_{0} \wedge G_{2} \nvdash \perp$, e.g. $c=b=1$

An example

$$
F=(c \vee a) \wedge(c \vee \neg a) \wedge(a \vee b \vee d) \wedge(a \vee b \vee \neg d)
$$

- Find prime implicate of F given implicate $(c \vee a)$
- Group MUS formulation: $G_{0}=F ; G_{1}=(\neg c) ; G_{2}=(\neg a)$
- Standard deletion algorithm:
- Drop $G_{1}=(\neg c)$:
- $G_{0} \wedge G_{2} \not \models \perp$, e.g. $c=b=1$
- Thus, keep G_{1}

An example

$$
F=(c \vee a) \wedge(c \vee \neg a) \wedge(a \vee b \vee d) \wedge(a \vee b \vee \neg d)
$$

- Find prime implicate of F given implicate $(c \vee a)$
- Group MUS formulation: $G_{0}=F ; G_{1}=(\neg c) ; G_{2}=(\neg a)$
- Standard deletion algorithm:
- Drop $G_{1}=(\neg c)$:
- $G_{0} \wedge G_{2} \not \nvdash \perp$, e.g. $c=b=1$
- Thus, keep G_{1}
- Drop $G_{2}=(\neg a)$:

An example

$$
F=(c \vee a) \wedge(c \vee \neg a) \wedge(a \vee b \vee d) \wedge(a \vee b \vee \neg d)
$$

- Find prime implicate of F given implicate $(c \vee a)$
- Group MUS formulation: $G_{0}=F ; G_{1}=(\neg c) ; G_{2}=(\neg a)$
- Standard deletion algorithm:
- Drop $G_{1}=(\neg c)$:
- $G_{0} \wedge G_{2} \not \nvdash \perp$, e.g. $c=b=1$
- Thus, keep G_{1}
- Drop $G_{2}=(\neg a)$:
- $G_{0} \wedge G_{1} \vDash \perp$

An example

$$
F=(c \vee a) \wedge(c \vee \neg a) \wedge(a \vee b \vee d) \wedge(a \vee b \vee \neg d)
$$

- Find prime implicate of F given implicate $(c \vee a)$
- Group MUS formulation: $G_{0}=F ; G_{1}=(\neg c) ; G_{2}=(\neg a)$
- Standard deletion algorithm:
- Drop $G_{1}=(\neg c)$:
- $G_{0} \wedge G_{2} \not \nvdash \perp$, e.g. $c=b=1$
- Thus, keep G_{1}
- Drop $G_{2}=(\neg a)$:
- $G_{0} \wedge G_{1} \vDash \perp$
- Thus, remove G_{2}

An example

$$
F=(c \vee a) \wedge(c \vee \neg a) \wedge(a \vee b \vee d) \wedge(a \vee b \vee \neg d)
$$

- Find prime implicate of F given implicate $(c \vee a)$
- Group MUS formulation: $G_{0}=F ; G_{1}=(\neg c) ; G_{2}=(\neg a)$
- Standard deletion algorithm:
- Drop $G_{1}=(\neg c)$:
- $G_{0} \wedge G_{2} \not \nvdash \perp$, e.g. $c=b=1$
- Thus, keep G_{1}
- Drop $G_{2}=(\neg a)$:
- $G_{0} \wedge G_{1} \vDash \perp$
- Thus, remove G_{2}
- Group MUS: G_{1}

An example

$$
F=(c \vee a) \wedge(c \vee \neg a) \wedge(a \vee b \vee d) \wedge(a \vee b \vee \neg d)
$$

- Find prime implicate of F given implicate $(c \vee a)$
- Group MUS formulation: $G_{0}=F ; G_{1}=(\neg c) ; G_{2}=(\neg a)$
- Standard deletion algorithm:
- Drop $G_{1}=(\neg c)$:
- $G_{0} \wedge G_{2} \not \not \not \perp \perp$, e.g. $c=b=1$
- Thus, keep G_{1}
- Drop $G_{2}=(\neg a)$:
- $G_{0} \wedge G_{1} \vDash \perp$
- Thus, remove G_{2}
- Group MUS: G_{1}
$-\{c\}$ is a prime implicate of F, i.e. $F \vDash c$

Outline

Background

Related Work

Primes for Non-Clausal Formulae

Results

Enumerating prime implicants of CNF formulae

- Search space must be larger than 2^{n}

Enumerating prime implicants of CNF formulae

- Search space must be larger than 2^{n}
- Work with modified formula H :
- Original variables: $\operatorname{var}(F)=\left\{v_{1}, \ldots, v_{n}\right\}$
- Pair of new variables for each $v \in \operatorname{var}(F): x_{v}, x_{\neg v}$

Enumerating prime implicants of CNF formulae

- Search space must be larger than 2^{n}
- Work with modified formula H :
- Original variables: $\operatorname{var}(F)=\left\{v_{1}, \ldots, v_{n}\right\}$
- Pair of new variables for each $v \in \operatorname{var}(F): x_{v}, x_{\neg v}$
- Prevent one of the assignments to each new pair of variables:

$$
L=\left\{\left(\neg x_{v} \vee \neg x_{\neg v}\right) \mid v \in \operatorname{var}(F)\right\}
$$

Enumerating prime implicants of CNF formulae

- Search space must be larger than 2^{n}
- Work with modified formula H :
- Original variables: $\operatorname{var}(F)=\left\{v_{1}, \ldots, v_{n}\right\}$
- Pair of new variables for each $v \in \operatorname{var}(F): x_{v}, x_{\neg v}$
- Prevent one of the assignments to each new pair of variables:

$$
L=\left\{\left(\neg x_{v} \vee \neg x_{\neg v}\right) \mid v \in \operatorname{var}(F)\right\}
$$

- $x_{v}=x_{\neg v}=0$: variable v unused
- $x_{v}=0 \wedge x_{-v}=1$: negative literal of v used
- $x_{v}=1 \wedge x_{\neg v}=0$: positive literal of v used

Enumerating prime implicants of CNF formulae

- Search space must be larger than 2^{n}
- Work with modified formula H :
- Original variables: $\operatorname{var}(F)=\left\{v_{1}, \ldots, v_{n}\right\}$
- Pair of new variables for each $v \in \operatorname{var}(F): x_{v}, x_{\neg v}$
- Prevent one of the assignments to each new pair of variables:

$$
L=\left\{\left(\neg x_{v} \vee \neg x_{\neg v}\right) \mid v \in \operatorname{var}(F)\right\}
$$

- $x_{v}=x_{\neg v}=0$: variable v unused
- $x_{v}=0 \wedge x_{\neg v}=1$: negative literal of v used
- $x_{v}=1 \wedge x_{\neg v}=0$: positive literal of v used
- Create C, by replacing each clause $c \in F$ with a new clause c_{e} :
- For each $I \in c$, either add literal x_{v}, if $I=v$, or literal $x_{\neg v}$, if $I=\neg v$

Enumerating prime implicants of CNF formulae

- Search space must be larger than 2^{n}
- Work with modified formula H :
- Original variables: $\operatorname{var}(F)=\left\{v_{1}, \ldots, v_{n}\right\}$
- Pair of new variables for each $v \in \operatorname{var}(F): x_{v}, x_{\neg v}$
- Prevent one of the assignments to each new pair of variables:

$$
L=\left\{\left(\neg x_{v} \vee \neg x_{\neg v}\right) \mid v \in \operatorname{var}(F)\right\}
$$

- $x_{v}=x_{\neg v}=0$: variable v unused
- $x_{v}=0 \wedge x_{\neg v}=1$: negative literal of v used
- $x_{v}=1 \wedge x_{\neg v}=0$: positive literal of v used
- Create C, by replacing each clause $c \in F$ with a new clause c_{e} :
- For each $I \in c$, either add literal x_{v}, if $I=v$, or literal $x_{\neg v}$, if $I=\neg v$
- Enumerate minimal models of $H=L \cup C$

Enumerating prime implicants of CNF formulae

- Search space must be larger than 2^{n}
- Work with modified formula H :
- Original variables: $\operatorname{var}(F)=\left\{v_{1}, \ldots, v_{n}\right\}$
- Pair of new variables for each $v \in \operatorname{var}(F): x_{v}, x_{\neg v}$
- Prevent one of the assignments to each new pair of variables:

$$
L=\left\{\left(\neg x_{v} \vee \neg x_{\neg v}\right) \mid v \in \operatorname{var}(F)\right\}
$$

- $x_{v}=x_{\neg v}=0$: variable v unused
- $x_{v}=0 \wedge x_{\neg v}=1$: negative literal of v used
- $x_{v}=1 \wedge x_{\neg v}=0$: positive literal of v used
- Create C, by replacing each clause $c \in F$ with a new clause c_{e} :
- For each $I \in c$, either add literal x_{v}, if $I=v$, or literal $x_{\neg v}$, if $I=\neg v$
- Enumerate minimal models of $H=L \cup C$
- Use B (initially $B=\emptyset$) to block computed prime implicants
- $H=L \cup C \cup B$

An example

$$
F=(c \vee a) \wedge(c \vee \neg a) \wedge(a \vee b \vee d) \wedge(a \vee b \vee \neg d)
$$

An example

$$
F=(c \vee a) \wedge(c \vee \neg a) \wedge(a \vee b \vee d) \wedge(a \vee b \vee \neg d)
$$

- Define L :

$$
L=\left(\neg x_{a} \vee \neg x_{\neg a}\right) \wedge\left(\neg x_{b} \vee \neg x_{\neg b}\right) \wedge\left(\neg x_{c} \vee \neg x_{\neg c}\right) \wedge\left(\neg x_{d} \vee \neg x_{\neg d}\right)
$$

An example

$$
F=(c \vee a) \wedge(c \vee \neg a) \wedge(a \vee b \vee d) \wedge(a \vee b \vee \neg d)
$$

- Define L :

$$
L=\left(\neg x_{a} \vee \neg x_{\neg a}\right) \wedge\left(\neg x_{b} \vee \neg x_{\neg b}\right) \wedge\left(\neg x_{c} \vee \neg x_{\neg c}\right) \wedge\left(\neg x_{d} \vee \neg x_{\neg d}\right)
$$

- Define C:

$$
C=\left(x_{c} \vee x_{a}\right) \wedge\left(x_{c} \vee x_{\neg a}\right) \wedge\left(x_{a} \vee x_{b} \vee x_{d}\right) \wedge\left(x_{a} \vee x_{b} \vee x_{\neg d}\right)
$$

An example

$$
F=(c \vee a) \wedge(c \vee \neg a) \wedge(a \vee b \vee d) \wedge(a \vee b \vee \neg d)
$$

- Define L :

$$
L=\left(\neg x_{a} \vee \neg x_{\neg a}\right) \wedge\left(\neg x_{b} \vee \neg x_{\neg b}\right) \wedge\left(\neg x_{c} \vee \neg x_{\neg c}\right) \wedge\left(\neg x_{d} \vee \neg x_{\neg d}\right)
$$

- Define C:

$$
C=\left(x_{c} \vee x_{a}\right) \wedge\left(x_{c} \vee x_{\neg a}\right) \wedge\left(x_{a} \vee x_{b} \vee x_{d}\right) \wedge\left(x_{a} \vee x_{b} \vee x_{\neg d}\right)
$$

- Let $H=L \cup C \cup B$

An example

$$
F=(c \vee a) \wedge(c \vee \neg a) \wedge(a \vee b \vee d) \wedge(a \vee b \vee \neg d)
$$

- Define L :

$$
L=\left(\neg x_{a} \vee \neg x_{\neg a}\right) \wedge\left(\neg x_{b} \vee \neg x_{\neg b}\right) \wedge\left(\neg x_{c} \vee \neg x_{\neg c}\right) \wedge\left(\neg x_{d} \vee \neg x_{\neg d}\right)
$$

- Define C :

$$
C=\left(x_{c} \vee x_{a}\right) \wedge\left(x_{c} \vee x_{\neg a}\right) \wedge\left(x_{a} \vee x_{b} \vee x_{d}\right) \wedge\left(x_{a} \vee x_{b} \vee x_{\neg d}\right)
$$

- Let $H=L \cup C \cup B$
- Find minimal models:

An example

$$
F=(c \vee a) \wedge(c \vee \neg a) \wedge(a \vee b \vee d) \wedge(a \vee b \vee \neg d)
$$

- Define L :

$$
L=\left(\neg x_{a} \vee \neg x_{\neg a}\right) \wedge\left(\neg x_{b} \vee \neg x_{\neg b}\right) \wedge\left(\neg x_{c} \vee \neg x_{\neg c}\right) \wedge\left(\neg x_{d} \vee \neg x_{\neg d}\right)
$$

- Define C :

$$
C=\left(x_{c} \vee x_{a}\right) \wedge\left(x_{c} \vee x_{\neg a}\right) \wedge\left(x_{a} \vee x_{b} \vee x_{d}\right) \wedge\left(x_{a} \vee x_{b} \vee x_{\neg d}\right)
$$

- Let $H=L \cup C \cup B$
- Find minimal models:
$-x_{b}=x_{c}=1$, i.e. prime implicant is $(b \wedge c)$; block with $\left(\neg x_{b} \vee \neg x_{c}\right)$

An example

$$
F=(c \vee a) \wedge(c \vee \neg a) \wedge(a \vee b \vee d) \wedge(a \vee b \vee \neg d)
$$

- Define L :

$$
L=\left(\neg x_{a} \vee \neg x_{\neg a}\right) \wedge\left(\neg x_{b} \vee \neg x_{\neg b}\right) \wedge\left(\neg x_{c} \vee \neg x_{\neg c}\right) \wedge\left(\neg x_{d} \vee \neg x_{\neg d}\right)
$$

- Define C :

$$
C=\left(x_{c} \vee x_{a}\right) \wedge\left(x_{c} \vee x_{\neg a}\right) \wedge\left(x_{a} \vee x_{b} \vee x_{d}\right) \wedge\left(x_{a} \vee x_{b} \vee x_{\neg d}\right)
$$

- Let $H=L \cup C \cup B$
- Find minimal models:
$-x_{b}=x_{c}=1$, i.e. prime implicant is $(b \wedge c)$; block with $\left(\neg x_{b} \vee \neg x_{c}\right)$
$-x_{a}=x_{c}=1$, i.e. prime implicant is $(a \wedge c)$; block with $\left(\neg x_{a} \vee \neg x_{c}\right)$

An example

$$
F=(c \vee a) \wedge(c \vee \neg a) \wedge(a \vee b \vee d) \wedge(a \vee b \vee \neg d)
$$

- Define L :

$$
L=\left(\neg x_{a} \vee \neg x_{\neg a}\right) \wedge\left(\neg x_{b} \vee \neg x_{\neg b}\right) \wedge\left(\neg x_{c} \vee \neg x_{\neg c}\right) \wedge\left(\neg x_{d} \vee \neg x_{\neg d}\right)
$$

- Define C :

$$
C=\left(x_{c} \vee x_{a}\right) \wedge\left(x_{c} \vee x_{\neg a}\right) \wedge\left(x_{a} \vee x_{b} \vee x_{d}\right) \wedge\left(x_{a} \vee x_{b} \vee x_{\neg d}\right)
$$

- Let $H=L \cup C \cup B$
- Find minimal models:
$-x_{b}=x_{c}=1$, i.e. prime implicant is $(b \wedge c)$; block with $\left(\neg x_{b} \vee \neg x_{c}\right)$
$-x_{a}=x_{c}=1$, i.e. prime implicant is $(a \wedge c)$; block with $\left(\neg x_{a} \vee \neg x_{c}\right)$
- No more (minimal) models

Other approaches

- Clausal formulae:
- Problem reformulation
- See above, but restricted
- Iterated consensus/resolution, since the 1950s
- Use of BDDs
- ZRes

Other approaches

- Clausal formulae:
- Problem reformulation
- See above, but restricted
- Iterated consensus/resolution, since the 1950s
- Use of BDDs
- ZRes
- Non-clausal formulae:
- Use of BDDs
- ZRes, with information about Tseitin variables
- NNF, tries, etc.

Other approaches

- Clausal formulae:
- Problem reformulation
- See above, but restricted
- Iterated consensus/resolution, since the 1950s
- Use of BDDs
- ZRes
- Non-clausal formulae:
- Use of BDDs
- ZRes, with information about Tseitin variables
- NNF, tries, etc.
- Restricted to formulae with small number of variables

Outline

Background

Related Work

Primes for Non-Clausal Formulae

Results

An example

$$
F=(((a \wedge b) \vee(a \wedge \neg b)) \wedge c) \vee(b \wedge c)
$$

An example

$$
F=(((a \wedge b) \vee(a \wedge \neg b)) \wedge c) \vee(b \wedge c)
$$

- Prime implicants of F ?

An example

$$
F=(((a \wedge b) \vee(a \wedge \neg b)) \wedge c) \vee(b \wedge c)
$$

- Prime implicants of F ?

$$
-(b \wedge c)
$$

An example

$$
F=(((a \wedge b) \vee(a \wedge \neg b)) \wedge c) \vee(b \wedge c)
$$

- Prime implicants of F ?
$-(b \wedge c)$
$-(a \wedge c)$
- More?

An example

$$
F=(((a \wedge b) \vee(a \wedge \neg b)) \wedge c) \vee(b \wedge c)
$$

- Prime implicants of F ?

$$
\begin{aligned}
& -(b \wedge c) \\
& -(a \wedge c) \\
& - \text { More? }
\end{aligned}
$$

- Prime implicates of F ?

An example

$$
F=(((a \wedge b) \vee(a \wedge \neg b)) \wedge c) \vee(b \wedge c)
$$

- Prime implicants of F ?

$$
\begin{aligned}
& -(b \wedge c) \\
& -(a \wedge c) \\
& - \text { More? }
\end{aligned}
$$

- Prime implicates of F ?
- (c)

An example

$$
F=(((a \wedge b) \vee(a \wedge \neg b)) \wedge c) \vee(b \wedge c)
$$

- Prime implicants of F ?

$$
\begin{aligned}
& -(b \wedge c) \\
& -(a \wedge c) \\
& - \text { More? }
\end{aligned}
$$

- Prime implicates of F ?
- (c)
$-(a \vee b)$
- More?

An example

$$
F=(((a \wedge b) \vee(a \wedge \neg b)) \wedge c) \vee(b \wedge c)
$$

- Prime implicants of F ?

$$
\begin{aligned}
& -(b \wedge c) \\
& -(a \wedge c) \\
& - \text { More? }
\end{aligned}
$$

- Prime implicates of F ?
$-(c)$
$-(a \vee b)$
- More?
- How to enumerate primes of non-clausal formulae, with SAT oracles?

Non-clausal prime compilation

- Recap SAT-based approach for CNF formulae:

$$
H=L \cup C \cup B
$$

Non-clausal prime compilation

- Recap SAT-based approach for CNF formulae:

$$
H=L \cup C \cup B
$$

- L: Disallow $x_{v}=x_{\neg v}=1$, for each pair $\left\{x_{v}, x_{\neg v}\right\}$
- C: Encode clauses of F with new variables
- B: Block computed prime implicants

Non-clausal prime compilation

- Recap SAT-based approach for CNF formulae:

$$
H=L \cup C \cup B
$$

- L: Disallow $x_{v}=x_{\neg v}=1$, for each pair $\left\{x_{v}, x_{\neg v}\right\}$
- C: Encode clauses of F with new variables
- B: Block computed prime implicants
- For non-clausal formulae, the problem is how to represent C, since F is not in CNF
- Unrealistic to convert non-clausal formulae to CNF

Non-clausal prime compilation

- Recap SAT-based approach for CNF formulae:

$$
H=L \cup C \cup B
$$

- L: Disallow $x_{v}=x_{\neg v}=1$, for each pair $\left\{x_{v}, x_{\neg v}\right\}$
- C: Encode clauses of F with new variables
- B: Block computed prime implicants
- For non-clausal formulae, the problem is how to represent C, since F is not in CNF
- Unrealistic to convert non-clausal formulae to CNF
- And cannot introduce Tseitin variables
- Primes not preserved

Non-clausal prime compilation

- Recap SAT-based approach for CNF formulae:

$$
H=L \cup C \cup B
$$

- L: Disallow $x_{v}=x_{\neg v}=1$, for each pair $\left\{x_{v}, x_{\neg v}\right\}$
- C: Encode clauses of F with new variables
- B: Block computed prime implicants
- For non-clausal formulae, the problem is how to represent C, since F is not in CNF
- Unrealistic to convert non-clausal formulae to CNF
- And cannot introduce Tseitin variables
- Primes not preserved
- Idea: Construct C on demand as the algorithm executes; terminate when B blocks all primes and C equivalent to F

Non-clausal prime compilation - approach 1

- Iteratively compute maximal models A^{H} of working formula H
- Initially $H=L ; C=\emptyset ; B=\emptyset$

Non-clausal prime compilation - approach 1

- Iteratively compute maximal models A^{H} of working formula H
- Initially $H=L ; C=\emptyset ; B=\emptyset$
- Why maximal models?

Non-clausal prime compilation - approach 1

- Iteratively compute maximal models A^{H} of working formula H
- Initially $H=L ; C=\emptyset ; B=\emptyset$
- Why maximal models?
- Guarantees that one of the following two cases applies

Non-clausal prime compilation - approach 1

- Iteratively compute maximal models A^{H} of working formula H
- Initially $H=L ; C=\emptyset ; B=\emptyset$
- Why maximal models?
- Guarantees that one of the following two cases applies
- Each maximal model A^{H} encodes assignment A^{F} to variables of F

Non-clausal prime compilation - approach 1

- Iteratively compute maximal models A^{H} of working formula H
- Initially $H=L ; C=\emptyset ; B=\emptyset$
- Why maximal models?
- Guarantees that one of the following two cases applies
- Each maximal model A^{H} encodes assignment A^{F} to variables of F
- Case 1: If $A^{F} \vDash F$, then A^{F} is an implicant of F

Non-clausal prime compilation - approach 1

- Iteratively compute maximal models A^{H} of working formula H
- Initially $H=L ; C=\emptyset ; B=\emptyset$
- Why maximal models?
- Guarantees that one of the following two cases applies
- Each maximal model A^{H} encodes assignment A^{F} to variables of F
- Case 1: If $A^{F} \vDash F$, then A^{F} is an implicant of F
- Extract prime implicant
- Report prime implicant
- Block prime implicant (in B)

Non-clausal prime compilation - approach 1

- Iteratively compute maximal models A^{H} of working formula H
- Initially $H=L ; C=\emptyset ; B=\emptyset$
- Why maximal models?
- Guarantees that one of the following two cases applies
- Each maximal model A^{H} encodes assignment A^{F} to variables of F
- Case 1: If $A^{F} \vDash F$, then A^{F} is an implicant of F
- Extract prime implicant
- Report prime implicant
- Block prime implicant (in B)
- Case 2: If $F \vDash \neg A^{F}$, then A^{F} is an implicate of F

Non-clausal prime compilation - approach 1

- Iteratively compute maximal models A^{H} of working formula H
- Initially $H=L ; C=\emptyset ; B=\emptyset$
- Why maximal models?
- Guarantees that one of the following two cases applies
- Each maximal model A^{H} encodes assignment A^{F} to variables of F
- Case 1: If $A^{F} \vDash F$, then A^{F} is an implicant of F
- Extract prime implicant
- Report prime implicant
- Block prime implicant (in B)
- Case 2: If $F \vDash \neg A^{F}$, then A^{F} is an implicate of F
- Extract prime implicate
- Block prime implicate (in C)

Non-clausal prime compilation - approach 1

- Iteratively compute maximal models A^{H} of working formula H
- Initially $H=L ; C=\emptyset ; B=\emptyset$
- Why maximal models?
- Guarantees that one of the following two cases applies
- Each maximal model A^{H} encodes assignment A^{F} to variables of F
- Case 1: If $A^{F} \vDash F$, then A^{F} is an implicant of F
- Extract prime implicant
- Report prime implicant
- Block prime implicant (in B)
- Case 2: If $F \vDash \neg A^{F}$, then A^{F} is an implicate of F
- Extract prime implicate
- Block prime implicate (in C)
- Update H and repeat

Algorithm 1

input : Formula F
output: $P I_{n}(F)$ and prime implicate cover of F
$H \leftarrow\left\{\left(\neg x_{v} \vee \neg x_{\neg v}\right) \mid v \in \operatorname{var}(F)\right\}$
\# Initially, $C=\emptyset$ and $B=\emptyset$

Algorithm 1

input : Formula F
output: $P I_{n}(F)$ and prime implicate cover of F
$H \leftarrow\left\{\left(\neg x_{v} \vee \neg x_{\neg v}\right) \mid v \in \operatorname{var}(F)\right\}$
\# Initially, $C=\emptyset$ and $B=\emptyset$
while true do
$\left(\operatorname{st}, A^{H}\right) \leftarrow \operatorname{MaxModel}(H)$
if not st then return

Algorithm 1

input : Formula F
output: $P I_{n}(F)$ and prime implicate cover of F
$H \leftarrow\left\{\left(\neg x_{v} \vee \neg x_{\neg v}\right) \mid v \in \operatorname{var}(F)\right\}$ while true do
$\left(\mathrm{st}, A^{H}\right) \leftarrow \operatorname{MaxModel}(H)$
if not st then return
$A^{F} \leftarrow \operatorname{Map}\left(A^{H}\right)$
st $\leftarrow \operatorname{SAT}\left(A^{F} \cup \neg F\right)$
\# Initially, $C=\emptyset$ and $B=\emptyset$
\# Generate assignment for F

Algorithm 1

input : Formula F
output: $P I_{n}(F)$ and prime implicate cover of F
$H \leftarrow\left\{\left(\neg x_{v} \vee \neg x_{\neg v}\right) \mid v \in \operatorname{var}(F)\right\} \quad \#$ Initially,$C=\emptyset$ and $B=\emptyset$ while true do
$\left(s t, A^{H}\right) \leftarrow \operatorname{MaxModel}(H)$
if not st then return
$A^{F} \leftarrow \operatorname{Map}\left(A^{H}\right) \quad$ \# Generate assignment for F
st $\leftarrow \operatorname{SAT}\left(A^{F} \cup \neg F\right)$
if not st then $\quad \# A^{F} \vDash F$; i.e. A^{F} is an implicant
$I_{n} \leftarrow$ Reducelmplicant $\left(A^{F}, F\right)$
ReportPrimeImplicant $\left(I_{n}\right)$ $b \leftarrow\left\{\neg x_{l} \mid I \in I_{n}\right\} \quad$ \# Update B by blocking prime implicant

Algorithm 1

input : Formula F
output: $P I_{n}(F)$ and prime implicate cover of F
$H \leftarrow\left\{\left(\neg x_{v} \vee \neg x_{\neg v}\right) \mid v \in \operatorname{var}(F)\right\} \quad \#$ Initially,$C=\emptyset$ and $B=\emptyset$ while true do
$\left(s t, A^{H}\right) \leftarrow \operatorname{MaxModel}(H)$
if not st then return
$A^{F} \leftarrow \operatorname{Map}\left(A^{H}\right) \quad$ \# Generate assignment for F
st $\leftarrow \operatorname{SAT}\left(A^{F} \cup \neg F\right)$
if not st then \# $A^{F} \vDash F$; i.e. A^{F} is an implicant
$I_{n} \leftarrow$ Reducelmplicant $\left(A^{F}, F\right)$
ReportPrimeImplicant $\left(I_{n}\right)$
$b \leftarrow\left\{\neg x_{I} \mid I \in I_{n}\right\} \quad \#$ Update B by blocking prime implicant
else \# $F \vDash \neg A^{F}$; i.e. $\neg A^{F}$ is an implicate
$I_{e} \leftarrow$ Reducelmplicate $\left(A^{F}, F\right)$
$b \leftarrow\left\{x_{I} \mid I \in I_{e}\right\} \quad$ \# Update C by blocking prime implicate
$H \leftarrow H \cup\{b\}$

Example for algorithm 1

$$
H=L \cup B \cup C
$$

$$
F=(((a \wedge b) \vee(a \wedge \neg b)) \wedge c) \vee(b \wedge c)
$$

- SAT oracle query: $F \wedge A^{F}$

A^{H}	A^{F}	Entailment	Update B / C
$x_{a} x_{\urcorner a} x_{b} x_{\neg b} x_{c} x_{\urcorner c}$			

Example for algorithm 1

$$
H=L \cup B \cup C
$$

$$
F=(((a \wedge b) \vee(a \wedge \neg b)) \wedge c) \vee(b \wedge c)
$$

- SAT oracle query: $F \wedge A^{F}$

A^{H}	A^{F}	Entailment	Update B/C
$x_{a} x_{\neg \rightarrow} x_{b} x_{\neg b} x_{c} x_{\neg c}$			
$A_{1}^{H}=100101$	$A_{1}^{F}=a, \neg b, \neg c$	$F \vDash \neg A_{1}^{F}$	$\left(x_{c}\right)$

Example for algorithm 1

$$
H=L \cup B \cup C
$$

$$
F=(((a \wedge b) \vee(a \wedge \neg b)) \wedge c) \vee(b \wedge c)
$$

- SAT oracle query: $F \wedge A^{F}$

A^{H}	A^{F}	Entailment	Update B/C
$x_{a} x_{\neg a} x_{b} x_{\neg b} x_{c} x_{\neg c}$			
$A_{1}^{H}=100101$	$A_{1}^{F}=a, \neg b, \neg c$	$F \vDash \neg A_{1}^{F}$	$\left(x_{c}\right)$
$A_{2}^{H}=100110$	$A_{2}^{F}=a, \neg b, c$	$A_{2}^{F} \vDash F$	$\left(\neg x_{a} \vee \neg x_{c}\right)$

Example for algorithm 1

$$
\begin{gathered}
H=L \cup B \cup C \\
F=(((a \wedge b) \vee(a \wedge \neg b)) \wedge c) \vee(b \wedge c)
\end{gathered}
$$

- SAT oracle query: $F \wedge A^{F}$

A^{H}	A^{F}	Entailment	Update B / C
$x_{a} x_{\neg a} x_{b} x_{\neg b} x_{c} x_{\neg c}$			
$A_{1}^{H}=100101$	$A_{1}^{F}=a, \neg b, \neg c$	$F \vDash \neg A_{1}^{F}$	$\left(x_{c}\right)$
$A_{2}^{H}=100110$	$A_{2}^{F}=a, \neg b, c$	$A_{2}^{F} \vDash F$	$\left(\neg x_{a} \vee \neg x_{c}\right)$
$A_{3}^{H}=010110$	$A_{3}^{F}=\neg a, \neg b, c$	$F \vDash \neg A_{3}^{F}$	$\left(x_{a} \vee x_{b}\right)$

Example for algorithm 1

$$
\begin{gathered}
H=L \cup B \cup C \\
F=(((a \wedge b) \vee(a \wedge \neg b)) \wedge c) \vee(b \wedge c)
\end{gathered}
$$

- SAT oracle query: $F \wedge A^{F}$

A^{H}	A^{F}	Entailment	Update B/C
$x_{a} x_{\neg a} x_{b} x_{\neg b} x_{c} x_{\neg c}$			
$A_{1}^{H}=100101$	$A_{1}^{F}=a, \neg b, \neg c$	$F \vDash \neg A_{1}^{F}$	$\left(x_{c}\right)$
$A_{2}^{H}=100110$	$A_{2}^{F}=a, \neg b, c$	$A_{2}^{F} \vDash F$	$\left(\neg x_{a} \vee \neg x_{c}\right)$
$A_{3}^{H}=010110$	$A_{3}^{F}=\neg a, \neg b, c$	$F \vDash \neg A_{3}^{F}$	$\left(x_{a} \vee x_{b}\right)$
$A_{4}^{H}=011010$	$A_{4}^{F}=\neg a, b, c$	$A_{4}^{F} \vDash F$	$\left(\neg x_{b} \vee \neg x_{c}\right)$

Non-clausal prime compilation - approach 2

- Iteratively compute minimal models A^{H} of working formula H
- Initially $H=L ; C=\emptyset ; B=\emptyset$

Non-clausal prime compilation - approach 2

- Iteratively compute minimal models A^{H} of working formula H
- Initially $H=L ; C=\emptyset ; B=\emptyset$
- Why minimal models?

Non-clausal prime compilation - approach 2

- Iteratively compute minimal models A^{H} of working formula H
- Initially $H=L ; C=\emptyset ; B=\emptyset$
- Why minimal models?
- For prime implicants no need to reduce implicant

Non-clausal prime compilation - approach 2

- Iteratively compute minimal models A^{H} of working formula H
- Initially $H=L ; C=\emptyset ; B=\emptyset$
- Why minimal models?
- For prime implicants no need to reduce implicant
- Each minimal model A^{H} encodes assignment A^{F} to variables of F

Non-clausal prime compilation - approach 2

- Iteratively compute minimal models A^{H} of working formula H
- Initially $H=L ; C=\emptyset ; B=\emptyset$
- Why minimal models?
- For prime implicants no need to reduce implicant
- Each minimal model A^{H} encodes assignment A^{F} to variables of F
- If $A^{F} \vDash F$, then A^{F} is a prime implicant of F

Non-clausal prime compilation - approach 2

- Iteratively compute minimal models A^{H} of working formula H
- Initially $H=L ; C=\emptyset ; B=\emptyset$
- Why minimal models?
- For prime implicants no need to reduce implicant
- Each minimal model A^{H} encodes assignment A^{F} to variables of F
- If $A^{F} \vDash F$, then A^{F} is a prime implicant of F
- No need to extract prime implicant
- Report prime implicant
- Block prime implicant (in B)

Non-clausal prime compilation - approach 2

- Iteratively compute minimal models A^{H} of working formula H
- Initially $H=L ; C=\emptyset ; B=\emptyset$
- Why minimal models?
- For prime implicants no need to reduce implicant
- Each minimal model A^{H} encodes assignment A^{F} to variables of F
- If $A^{F} \vDash F$, then A^{F} is a prime implicant of F
- No need to extract prime implicant
- Report prime implicant
- Block prime implicant (in B)
- Else, find model $M^{\neg F}$ of $\neg F$, i.e. $M^{\neg F} \vDash \neg F$, and $\neg M^{\neg F}$ is an implicate of F

Non-clausal prime compilation - approach 2

- Iteratively compute minimal models A^{H} of working formula H
- Initially $H=L ; C=\emptyset ; B=\emptyset$
- Why minimal models?
- For prime implicants no need to reduce implicant
- Each minimal model A^{H} encodes assignment A^{F} to variables of F
- If $A^{F} \vDash F$, then A^{F} is a prime implicant of F
- No need to extract prime implicant
- Report prime implicant
- Block prime implicant (in B)
- Else, find model $M^{\neg F}$ of $\neg F$, i.e. $M^{\neg F} \vDash \neg F$, and $\neg M^{\neg F}$ is an implicate of F
- Extract prime implicate
- Block prime implicate (in C)

Non-clausal prime compilation - approach 2

- Iteratively compute minimal models A^{H} of working formula H
- Initially $H=L ; C=\emptyset ; B=\emptyset$
- Why minimal models?
- For prime implicants no need to reduce implicant
- Each minimal model A^{H} encodes assignment A^{F} to variables of F
- If $A^{F} \vDash F$, then A^{F} is a prime implicant of F
- No need to extract prime implicant
- Report prime implicant
- Block prime implicant (in B)
- Else, find model $M^{\neg F}$ of $\neg F$, i.e. $M^{\neg F} \vDash \neg F$, and $\neg M^{\neg F}$ is an implicate of F
- Extract prime implicate
- Block prime implicate (in C)
- Update H and repeat

Algorithm 2

input : Formula F
output: $P I_{n}(F)$ and prime implicate cover of F
$H \leftarrow\left\{\left(\neg x_{v} \vee \neg x_{\neg v}\right) \mid v \in \operatorname{var}(F)\right\}$

Algorithm 2

input : Formula F
output: $P I_{n}(F)$ and prime implicate cover of F
$H \leftarrow\left\{\left(\neg x_{v} \vee \neg x_{\neg v}\right) \mid v \in \operatorname{var}(F)\right\}$
while true do
$\left(\mathrm{st}, A^{H}\right) \leftarrow \operatorname{MinModel}(H)$
if not st then return

Algorithm 2

input : Formula F
output: $P I_{n}(F)$ and prime implicate cover of F
$H \leftarrow\left\{\left(\neg x_{v} \vee \neg x_{\neg v}\right) \mid v \in \operatorname{var}(F)\right\}$
while true do
$\left(\mathrm{st}, A^{H}\right) \leftarrow \operatorname{MinModel}(H)$
if not st then return
$A^{F} \leftarrow \operatorname{Map}\left(A^{H}\right)$
$\left(s t, M \neg^{F}\right) \leftarrow \operatorname{SAT}\left(A^{F} \cup \neg F\right)$

Algorithm 2

input : Formula F
output: $P I_{n}(F)$ and prime implicate cover of F
$H \leftarrow\left\{\left(\neg x_{v} \vee \neg x_{\neg v}\right) \mid v \in \operatorname{var}(F)\right\}$
while true do
$\left(\mathrm{st}, A^{H}\right) \leftarrow \operatorname{MinModel}(H)$
if not st then return
$A^{F} \leftarrow \operatorname{Map}\left(A^{H}\right)$
$\left(\mathrm{st}, M^{\neg F}\right) \leftarrow \operatorname{SAT}\left(A^{F} \cup \neg F\right)$
if st then $\quad \# F \vDash \neg M^{\neg F}$; i.e. $\neg M^{\neg^{F}}$ is an implicate
$I_{e} \leftarrow$ ReduceImplicate $\left(M^{\neg F}, F\right)$
$b \leftarrow\left\{x_{l} \mid I \in I_{e}\right\}$

Algorithm 2

input : Formula F
output: $P I_{n}(F)$ and prime implicate cover of F
$H \leftarrow\left\{\left(\neg x_{v} \vee \neg x_{\neg v}\right) \mid v \in \operatorname{var}(F)\right\}$
while true do
$\left(\mathrm{st}, A^{H}\right) \leftarrow \operatorname{MinModel}(H)$
if not st then return
$A^{F} \leftarrow \operatorname{Map}\left(A^{H}\right)$
$\left(\mathrm{st}, M^{\neg F}\right) \leftarrow \operatorname{SAT}\left(A^{F} \cup \neg F\right)$
if st then $\quad \# F \vDash \neg M^{\neg^{F}}$; i.e. $\neg M^{\neg F}$ is an implicate
$I_{e} \leftarrow$ ReduceImplicate $\left(M^{\neg F}, F\right)$
$b \leftarrow\left\{x_{l} \mid I \in I_{e}\right\}$
else

$$
\# A^{F} \vDash F \text {; i.e. } A^{F} \text { is a prime implicant }
$$

$$
\begin{aligned}
& I_{n} \leftarrow A^{F} \\
& \text { ReportPrimelmplicant }\left(I_{n}\right) \\
& b \leftarrow\left\{\neg x_{1} \mid I \in I_{n}\right\} \\
H & \leftarrow H \cup\{b\}
\end{aligned}
$$

Example for algorithm 2

$$
H=L \cup B \cup C
$$

$$
F=(((a \wedge b) \vee(a \wedge \neg b)) \wedge c) \vee(b \wedge c)
$$

- SAT oracle query: $F \wedge A^{F}$

A^{H}	A^{F}	$\neg M^{\urcorner F} / \neg \mathrm{st}$	B / C
$x_{a} x_{\neg a} x_{b} x_{\neg b} x_{c} x_{\neg c}$			

Example for algorithm 2

$$
H=L \cup B \cup C
$$

$$
F=(((a \wedge b) \vee(a \wedge \neg b)) \wedge c) \vee(b \wedge c)
$$

- SAT oracle query: $F \wedge A^{F}$

A^{H}	A^{F}	$\neg M^{\neg F} / \neg s t$	B / C
$x_{a} x_{\neg a} x_{b} x_{\neg b} x_{c} x_{\neg c}$			
000000	$A_{1}^{F}=\emptyset$	$\neg a, \neg b, \neg c$	$\left(x_{a} \vee x_{b}\right)$

Example for algorithm 2

$$
H=L \cup B \cup C
$$

$$
F=(((a \wedge b) \vee(a \wedge \neg b)) \wedge c) \vee(b \wedge c)
$$

- SAT oracle query: $F \wedge A^{F}$

A^{H}	A^{F}	$\neg M^{F} / \neg s t$	B / C
$x_{a} x_{\neg a} x_{b} x_{\neg b} x_{c} x_{\neg c}$			
000000	$A_{1}^{F}=\emptyset$	$\neg a, \neg b, \neg c$	$\left(x_{a} \vee x_{b}\right)$
001000	$A_{2}^{F}=b$	$\neg a, b, \neg c$	$\left(x_{c}\right)$

Example for algorithm 2

$$
H=L \cup B \cup C
$$

$$
F=(((a \wedge b) \vee(a \wedge \neg b)) \wedge c) \vee(b \wedge c)
$$

- SAT oracle query: $F \wedge A^{F}$

A^{H}	A^{F}	$\neg M^{\circ F} / \neg s t$	B / C
$x_{a} x_{\neg a} x_{b} x_{\neg b} x_{c} x_{\neg c}$			
000000	$A_{1}^{F}=\emptyset$	$\neg a, \neg b, \neg c$	$\left(x_{a} \vee x_{b}\right)$
001000	$A_{2}^{F}=b$	$\neg a, b, \neg c$	$\left(x_{c}\right)$
001010	$A_{3}^{F}=b, c$	$\neg s t$	$\left(\neg x_{b} \vee \neg x_{c}\right)$

Example for algorithm 2

$$
H=L \cup B \cup C
$$

$$
F=(((a \wedge b) \vee(a \wedge \neg b)) \wedge c) \vee(b \wedge c)
$$

- SAT oracle query: $F \wedge A^{F}$

A^{H}	A^{F}	$\neg M^{F} / \neg s t$	B / C
$x_{a} x_{\neg a} x_{b} x_{\neg b} x_{c} x_{\neg c}$			
000000	$A_{1}^{F}=\emptyset$	$\neg a, \neg b, \neg c$	$\left(x_{a} \vee x_{b}\right)$
001000	$A_{2}^{F}=b$	$\neg a, b, \neg c$	$\left(x_{c}\right)$
001010	$A_{3}^{F}=b, c$	$\neg s t$	$\left(\neg x_{b} \vee \neg x_{c}\right)$
100010	$A_{4}^{F}=a, c$	$\neg s t$	$\left(\neg x_{a} \vee \neg x_{c}\right)$

Outline

Background

Related Work

Primes for Non-Clausal Formulae

Results

Experimental setup

- Server: Intel Xeon E5-2630 2.60GHz, 64GByte
- TO: 3600s
- MO: 10 GByte
- Tools:
- primer: PRIMe compilER
- zres-tison
- Benchmarks:
- Quasigroup classification problems: 83
- Cryptanalysis of the Geffe stream generator: 600
- Crafted $F_{m} \vee P H P_{n}: 30$
- $F_{m}=\left(x_{1} \vee y_{1}\right) \wedge \cdots \wedge\left(x_{m} \vee y_{m}\right)$
- $m \in\{10, \ldots, 20\}$
- $n \in\{6, \ldots, 10\}$
- Crafted $F_{m} \vee G T_{n}: 30$
- $n \in\{12, \ldots, 20\}$

Summary of results

	QG6	Geffe gen.	F+PHP	F+GT	Total
\# instances	83	600	30	30	743
ZRes-tison	0	0	11	0	11
primer-a $\left(P I_{n}\right)$	53	$\mathbf{5 9 6}$	$\mathbf{3 0}$	26	705
primer-a $\left(P I_{e}\right)$	28	588	$\mathbf{3 0}$	27	673
primer-b $\left(P I_{n}\right)$	$\mathbf{6 4}$	595	$\mathbf{3 0}$	$\mathbf{3 0}$	$\mathbf{7 1 9}$
primer-b $\left(P I_{e}\right)$	30	577	$\mathbf{3 0}$	27	664

$\mathrm{F}+\mathrm{PHP}$ scatter plot

Comparing algorithms

Conclusions \& future work

- Enumeration of prime implicants for non-clausal formulae with SAT oracles

Conclusions \& future work

- Enumeration of prime implicants for non-clausal formulae with SAT oracles
- Readily applicable to enumeration of prime implicates

Conclusions \& future work

- Enumeration of prime implicants for non-clausal formulae with SAT oracles
- Readily applicable to enumeration of prime implicates
- Can be effective if number of primes is not too large

Conclusions \& future work

- Enumeration of prime implicants for non-clausal formulae with SAT oracles
- Readily applicable to enumeration of prime implicates
- Can be effective if number of primes is not too large
- Another instantiation of problem solving with SAT oracles

Conclusions \& future work

- Enumeration of prime implicants for non-clausal formulae with SAT oracles
- Readily applicable to enumeration of prime implicates
- Can be effective if number of primes is not too large
- Another instantiation of problem solving with SAT oracles
- Exploiting recent work on computing MCSes (minimal/maximal models) and MUSes (prime implicants/implicates)
- But also, MSMP in general

Conclusions \& future work

- Enumeration of prime implicants for non-clausal formulae with SAT oracles
- Readily applicable to enumeration of prime implicates
- Can be effective if number of primes is not too large
- Another instantiation of problem solving with SAT oracles
- Exploiting recent work on computing MCSes (minimal/maximal models) and MUSes (prime implicants/implicates)
- But also, MSMP in general
- Another example of exploiting duality relationships in enumeration problems

Conclusions \& future work

- Enumeration of prime implicants for non-clausal formulae with SAT oracles
- Readily applicable to enumeration of prime implicates
- Can be effective if number of primes is not too large
- Another instantiation of problem solving with SAT oracles
- Exploiting recent work on computing MCSes (minimal/maximal models) and MUSes (prime implicants/implicates)
- But also, MSMP in general
- Another example of exploiting duality relationships in enumeration problems
- Improvements to proposed algorithms

Conclusions \& future work

- Enumeration of prime implicants for non-clausal formulae with SAT oracles
- Readily applicable to enumeration of prime implicates
- Can be effective if number of primes is not too large
- Another instantiation of problem solving with SAT oracles
- Exploiting recent work on computing MCSes (minimal/maximal models) and MUSes (prime implicants/implicates)
- But also, MSMP in general
- Another example of exploiting duality relationships in enumeration problems
- Improvements to proposed algorithms
- Applications of prime enumeration

Conclusions \& future work

- Enumeration of prime implicants for non-clausal formulae with SAT oracles
- Readily applicable to enumeration of prime implicates
- Can be effective if number of primes is not too large
- Another instantiation of problem solving with SAT oracles
- Exploiting recent work on computing MCSes (minimal/maximal models) and MUSes (prime implicants/implicates)
- But also, MSMP in general
- Another example of exploiting duality relationships in enumeration problems
- Improvements to proposed algorithms
- Applications of prime enumeration
- Other compilation languages?

Thank You

