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Introduction

Clause-sets

Let VA be the set of variables.
Let LIT be the set of literals, which are either variables or
complemented variables, i.e., LIT = VA ·∪VA.
A clause is a finite and complement-free subset of LIT , the set of
all clauses is CL.
Let CLS be the set of clause-sets, finite subsets of CL.

⊥ := ∅ ∈ CL
> := ∅ ∈ CLS.
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Introduction

SAT Knowledge Compilation

We have only a very scant understanding of “SAT encoding”.
These are fragments of a theory.

hd : CLS → N0

phd : CLS → N0

awid : CLS → N0.

“Hardness” for historical reasons; hd = thd.

A Framework
hd,phd,awid are Target-Parameters for “SAT KC”:

1 “Hardness” concerns very simple, oblivious SAT algorithms.
2 SAT-measurement by worst-case from UNSAT.
3 UNSAT-measurements as stable versions of resolution complexity.
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Introduction

What’s the SAT solver to do?

The idea of
hd(F ) = k ,phd(F ) = k

resp.
awid(F ) = k

is:

With a generic, oblivious algorithm using time nO(k)

and space nO(1) resp. nO(k)

all “implicit information” of F can be uncovered.

k is a structural parameter of F , measuring at which maximal “level”
we can extract prime implicates from F .

That “extraction” is implicitly and partially done
by the SAT solver, who makes the “queries”.
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Introduction

Resolution efforts

We have hd(F ) ≤ k resp. awid(F ) ≤ k iff for all prime implicates C of F
there is a resolution derivation of C from F such that

from all nodes there exists a path to some leaf of length at most k

resp.

after removal of the literals of C from the derivation,
for every resolution step at least one of the parent clauses

has length at most k .

Examples for the audience: k = 0,1.
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Introduction

Hierarchies

For k ∈ N0:
UCk := {F ∈ CLS : hd(F ) ≤ k}
PCk := {F ∈ CLS : phd(F ) ≤ k}
WCk := {F ∈ CLS : awid(F ) ≤ k}.

WC0 = UC0: clause-sets which contain all their prime implicates.
UC := UC1 =WC1 showed up in two different contexts:

1 UC was introduced in del Val [6] for the purpose of Knowledge
Compilation (KC).

2 In [7, 9] we showed UC = SLUR, continuing Čepek, Kučera, and
Vlček [5], for the umbrella class SLUR for polytime SAT decision
as introduced in Schlipf, Annexstein, Franco, and Swaminathan
[15].

More generally we have UCk = SLURk for k ≥ 0.
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Introduction

Propagation hardness

PC := PC1 was introduced by Bordeaux and Marques-Silva [4].
We have

PC0 ⊂ UC0 ⊂ PC1 ⊂ UC1 ⊂ PC2 ⊂ UC2 . . .

We introduced the PCk classes in [10, 11]. Roughly:

phd(F ) = k refines hd(F ) = k
by a strengthened derivation condition —

prime implicates must be derivable by weaker means
(which can not be given by the geometry of the resolution refutation).
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Hardness measures

From USAT to SAT

Let USAT := CLS \ SAT .
Let PASS be the set of partial assignments.
For ϕ ∈ PASS and F ∈ CLS let ϕ ∗ F ∈ CLS be the result of
applying ϕ to F .

In Beyersdorff and Kullmann [3] the following approach was formally
introduced:

Consider h0 : USAT → N0.

We extend to h : CLS → N0 by

h(F ) := max{h0(ϕ ∗ F ) : ϕ ∈ PASS ∧ ϕ ∗ F ∈ USAT }.

If we assume that applying partial assignments does no increase h0
(and this we always do), then this holds also for h.
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Hardness measures

Many characterisations of hardness’s I

We characterise hd(F ) and awid(F ) (indeed for arbitrary F ∈ CLS) by
games in [3], extending

Pudlák and Impagliazzo [14]

and Atserias and Dalmau [1].

Since the hardness-game can be simulated by the asymmetric-width
game, we obtain

∀F ∈ CLS : awid(F ) ≤ hd(F ).

Algorithmically appealing are the characterisations of hd,phd via
generalised UCP.
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Hardness measures

Generalised UCP

Let rk : CLS → CLS denote generalised unit-clause propagation.
r1 is UCP.
r2 is (complete) failed literal elimination.

Now for F ∈ USAT :

hd(F ) = min{k ∈ N0 : rk (F ) = {⊥}}

So hd(F ) is the minimal level where rk detects unsatisfiability. Via the
general extension follows for F ∈ CLS:

hd(F ) = min{k ∈ N0 | ∀ϕ ∈ PASS : ϕ ∗ F ∈ USAT ⇒ rk (F ) = {⊥}}.
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Hardness measures

Characterising p-hardness

phd on USAT is just hd, so this special measure is not defined by the
general extension process.

Instead we have for F ∈ CLS:

phd(F ) = min{k ∈ N0 | ∀ϕ ∈ PASS : rk (ϕ ∗ F ) = r∞(F )},

where r∞ : CLS → CLS is the complete elimination of forced literals
(forced assignments, implied units, backbone literals).
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Hierarchies

Relations to resolution complexity

For F ∈ USAT holds:

2hd(F ) ≤ Comp*
R(F ) ≤ (n(F ) + 1)hd(F )

exp(
1
8

awid(F )2

n(F )
) < CompR(F ) < 6 · n(F )awid(F )+2

where
Comp*

R(F ) is the minimal number of leaves in a tree resolution
refutation of F ;
CompR(F ) is the minimal number of nodes in a dag resolution
refutation of F .
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Hierarchies

Basic relations

PC0 ⊂ UC0 ⊂ PC1 ⊂ UC1 ⊂ PC2 ⊂ UC2 . . .

WC0 ⊂ WC1 ⊂ WC2 ⊂ . . .

UC0 =WC0

UC1 =WC1

UCk ⊂ WCk for k ≥ 2
PCk+1 6⊆ WCk for k ≥ 0
WC3 6⊆ UCk for k ≥ 0.

Open Problem
For the last relation, can we useWC2 ?
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Hierarchies

Decision complexity

PC0 = {>} ∪ {F ∈ CLS : ⊥ ∈ F}.
(PC0 is the only functionally incomplete level.)

UC0 =WC0 is decidable in polynomial time.
(These are the primal clause-sets (modulo subsumption).)

All UCk ,PCk ,WCk for k ≥ 1 are coNP-complete.
(Via simple reductions to the first level, applying Čepek et al. [5]

(SLUR) and Babka, Balyo, Čepek, Štefan Gurský, Kučera, and Vlček
[2].)

O Kullmann (Swansea) SAT representations KC 2015 15 / 22



Separations

Strong separation

In Gwynne and Kullmann [8] we show:

Theorem
For all k ≥ 0 there are (sequences of) short clause-sets in UCk+1,
where all (sequences of) equivalent clause-sets inWCk are of
exponential size.

Conjecture

This strong separation holds between classes C,D ∈ {UCp,PCp,WCq}
iff it is not trivially false, i.e., iff C 6⊆ D.
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Separations

Allowing auxiliary variables

Consider F ,G ∈ CLS with var(F ) ⊆ var(G).

Definition
G represents F if the satisfying assignments of G projected to var(F )
are precisely the satisfying assignments of F .

Conjecture
For all k ≥ 0 there are (sequences of) short clause-sets in UCk+1,
where all (sequences of) representing clause-sets inWCk are of
exponential size.
More generally, such a separation holds between classes
C,D ∈ {UCp,Propcq,WCq} iff it is not trivially false.
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Separations

The “relative condition”

If G represents F , then the absolute condition for G is a requirement
G ∈ UCk or
G ∈ WCk

for some suitable k .

So the requirements on prime implicates also concern
prime implicates containing auxiliary variables

(i.e., variables in G but not in F ).

Now the relative condition considers only prime implicates with
variables from F .

We then speak of relative hardness.

This is, when using auxiliary variables, a weaker requirement.
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Separations

Collapse under the relative condition

In [13] we show:

Theorem
Allowing representations with auxiliary variables, under the relative
condition all classes UCk ,PCk ,WCk collapse in polynomial time to UC0
or PC1.

“Relative PC1” is indeed what nearly everybody uses for SAT
representations, typically called “generalised arc-consistency”.

Conjecture
There are (sequences of) clause-sets which have short
representations of relative hardness 1, but for each k have only
(sequences of) superpolynomial / exponential size representations in
WCk .
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Separations

Strongly forcing

Theorem ([11])

From a family of clause-sets F and V ⊆ var(F ), such that the relative
asymmetric width of F w.r.t. V is a constant k, we can compute in
polynomial time a G ∈ CLS with V ⊆ var(G) such that

G represents the same boolean function w.r.t. V as F.
G has relative p-hardness 1.
Moreover, for every ϕ with var(ϕ) = V, such that ϕ ∗G is
satisfiable, running unit-clause propagation on ϕ ∗G yields >.

The terminology “strongly forcing” has been developed in collaboration
with Donald Knuth (for his forthcoming fascicle on satisfiability).
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Conclusion

Summary and outlook

I Hopefully a theory of “good SAT representations” will emerge.
II The translation of XOR-systems is a good first test-case: Despite

the bad news “no poly-size good representation” ([10, 11]), there
seem to be a lot of opportunities for good representations (under
various circumstances).

III Fascinating connections to space-measurements for resolution
(which also yield target classes!).

IV By [12]: For F ∈ CLS holds wid(F ) ≤ tw(F ) + 1 (symmetric width
vs. primal treewidth). We believe the Conjecture ([11]):
awid(F ) ≤ tw*(F ) (asymmetric width vs. incidence treewidth).
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Conclusion

End

(references on the remaining slides).

For my papers see
http://cs.swan.ac.uk/~csoliver/papers.html.
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