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Introductory example

• Problem of interactive product con�guration: a car

• Con�gure :

I the motor � solar or pedals
I the color � blue or red
I the size � family car or two-seater
I the radio option � with or without

• Constraints:

I pedal cars must be red
I solar panels do not �t on two-seaters
I family cars all have a radio
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Basic Problem

• Con�gurable product → constraint satisfaction problem (CSP)

I Con�guration parameter = a CSP variable (�nite domain)
I Constraints

motor = pedals → color = red

motor = solar → size > twoseater

size = twoseater ∨ radio = with

I each solution corresponds to an admissible con�guration

• Con�guration process:

I The program presents, for each variable, values that lead to at
least one solution

I The user assigns a value to some variable
I Which are the values of the free variables that are not

consistent ?

• NP-complete problem . . . but the user cannot wait too long after
each choice
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A solution: knowledge compilation

• The CSP is a �xed part of the problem

→ we can compile it into a suitable data structure, such as an OBDD
or a MDD:

motor color

size

size

radio

>

⊥

Ped

Sol

red

blue

twoseater

family

twoseater

family

with

without

• Assigning values to variables (conditioning) and checking
consistency are polynomial operations on MDDs/OBDDs

→ the user's wait is reduced
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Con�guration and Compilation

Con�guration is an "Historical" application of compilation techniques

• Synthesis Trees [Weigel and Faltings, 1999]

• Prime Implicates (?) [Sinz, 2002]

• OBDDs, Ordered MDD [Amilhastre et al., 2002, Hadzic, 2004]

• Cluster Trees [Pargamin, 2002]

• ...

By the way, several properties a not compulsory: "linerarity" of the
structure, determinism, ordering of the variables.
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Choosing a compilation language

OBDD

DNNF

d−DNNF

CNF

DNF

...

PROBLEM

• Which language is the best for my application?

→ use the compilation map [Darwiche and Marquis, 2002]

• Compares langages according to two criteria:

1. e�ciency of operations
2. succinctness
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Compilation map: operations

• All online manipulations amount to elementary queries and
transformations
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Compilation map: succinctness

• Succinctness relation (≤s): orders languages

• L1 ≤s L2 means �L1 is at least as succinct as L2�

..
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The full con�guration process

A more complex process:

• The program presents, for each variable, values that satisfy the
constraints (given the current choices), and discards the others

• The user assigns a value to some variable, or removes a previous

assignment (without ny prescribed order)

• The programm should provide explanations for invalid choices,
propose restorations, alternative values, etc

• The program maintains the cost of cheapest car consistent with the
current choices

• Upon deman, it present the minimal and maximal costs associated
to the remaining choices

• The programm shall recommend interesting values for the next
variable, given the current choices and selling histories

Study non-Boolean compilation languages
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Problematics

Many AI applications use functions with non-Boolean values

• cost or utility functions (e.g. in con�guration problems)

• probability distributions (e.g. selling histories)

• weighted knowledge bases. . .

Compilation into a suitable language

• Valued CSPs, GAI-nets, Bayesian networks, weighted bases: the
problem is expressed compactly, but optimization is hard

• Valued Decision Diagrams : ADD, SLDDs, AADDs (generalization
of OBDDs)

• More freedom in the structure: arithmetic circuits, probabilistic
sentential decision diagrams

This talk: Valued Decision Diagrams : KC map + experiments
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ADDs: algebraic decision diagrams [Bahar et al., 1993]

• Like OBDDs, but each leaf is a value from a set V

(V = R+)

• Optimization is trivial, Conditionning and Marginalization on one
variable are easy

10 / 38



SLDDs: semiring-labeled decision diagrams [Wilson, 2005]

• Problem of ADDs: one leaf per value

• Idea: move values up on the arcs, so that they can be shared

• Value of a path = aggregation of encountered values

Example in con�guration w.r.t. pricing

function: V = R+, aggregation by sum

→ SLDD+ language

Other possibility for V = R+:

aggregating by product

→ SLDD× language → for probability

distributions
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AADDs: A�ne Agebraic DD [Sanner and McAllester, 2005]

• A variant of SLDD: aggregation by a combination of sum and
product

→ two factors on each arc a, an additive one and a multiplicative one
〈q, f 〉

• Path starting with a : value q + f × Vrec, with Vrec the value of the
rest of the path

SLDD: "Red, Solar": 4+ 1 = 5

AADD: "Red, Solar":

0+ 1.(1+ 1.(4+ 1.0)) = 5

• Normalization conditions → all paths to the leaf have value ∈ [0, 1];
extrema can be read on the root's o�set

12 / 38
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The R+-VDDs languages

Recall that a L-representation α is a data structure that represent a
function f Lα ( #—x )

• We ca have a AADD, VCSP or a ADD representation of function
f (x1, . . . , xn) = Σi=1,n2

i−1xi on {0, 1}n

• Two representations α and β are equivalent i� f Lα = f L
′

β
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The R+-VDDs languages

• We restrict ourselves to languages ADD on R+, SLDD+, SLDD× and
AADD.

• All satisfy canonicity (upon normalization) : equivalent
sub-functions are isomorphic ; caching is e�cient.

• A hierarchy of languages : ADD v SLDD+, SLDD× v AADD

14 / 38



Map for R+-VDDs: Succinctness

L1 is at least as succinct as L2, denoted L1 ≤s L2, i� there exists a
polynomial p such that for every L2 representation α, there exists a L1
representation β which is equivalent to α and s.t. size(β) ≤ p(size(α)).

AADD

SLDD+

SLDD×

ADD

e.g. because the function f (x1, . . . , xn) = Σi=1,n2
i−1xi on {0, 1}n maps

to an exponential set of values and cannot be represented by a product .
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Queries

A VDD α represent function fα( #—x ) taking its values in an ordered
valuation scale V (here, V = R+)

• Equivalence query EQ similar to the Boolean case: indicating
whether ∀ #—x , f Lα ( #—x ) = f Lβ ( #—x )
→ are these two catalogs the same?

• Sentential entailment SE: given a preorder � on V, indicating
whether ∀ #—x , f Lα ( #—x ) � f Lβ ( #—x )
→ Is this e-shop always cheaper than this other one?

• A language L satis�es OPTmin if there exists a polynomial
algorithm mapping any formula α of L to the value min #—x f Lα ( #—x ).
→ what is the price of the cheapest cars ?
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Queries on cuts

Many of the other queries are based on cuts

Let f be a V-valued function, � a preorder on V, and γ ∈ V; we de�ne
the following sets:

• CUT�γ(f ) = { #—x | f ( #—x ) � γ }
→ cars cheaper than 10 000 euros

• CUT∼γ(f ) = { #—x | f ( #—x ) ∼ γ }
→ cars costing exactly 10 000 euros

• CUTmin(f ) = { #—x ∗ | ∀ #—x ,¬(f ( #—x ) ≺ f ( #—x ∗)) }
→ the cheapest cars
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Queries on cuts

Cut ≈ set of �models�

• CTmin: counting minimal elements for � (i.e., returning the
cardinal of CUTmin(f Lα ))
→ how many cheapest con�gurations?

• Partial consistency CO∼γ : indicating whether ∃ #—x , f Lα ( #—x ) ∼ γ (i.e.,
whether CUT∼γ(f Lα ) 6= ∅)
→ is there a car costing exactly 10 000 euros?

• MX�γ , ME�γ : exhibiting an #—x , enumerating all #—x such that
f Lα ( #—x ) � γ
→ which cars are cheaper than 10 000 euros?

. . . and the other combinations
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Map for queries

Query ADD SLDD+ SLDD× AADD VCSP+

EQ
√ √ √ √

?
SE

√ √ √
? ◦

OPTmin

√ √ √ √ ◦
MXmin / MEmin

√ √ √ √ ◦
CTmin

√ √ √ √ ◦
CO∼γ / MX∼γ / ME∼γ

√ ◦ ◦ ◦ ◦
CO�γ / MX�γ / ME�γ

√ √ √ √ ◦
CT∼γ / CT�γ

√ ◦ ◦ ◦ ◦

• ADD satis�es all queries

• SLDD+, SLDD×, and AADD behave the same on queries

• Queries on optimal cuts are easy

• Counting is hard on γ-cuts

• All queries on exact γ-cuts are hard (red. from subset sum)
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Cut transformations

A language L satis�es a transformation if there exists a polynomial
algorithm performing it while staying in L

Given a L representation α of f , we want a L representation of a cut of f :

• CUTmin: compute a L representation of the set of cheapest cars

• CUT�γ : compute a L representing the set of cars are cheaper than
10 000 euros

• CUT∼γ : compute a L representing the set of cars costing exactly
10 000 euros
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Cut transformations

On ADD, CUTmin,CUT�γ , CUT∼γ , etc. are trivial:

this is why ADD satis�es all queries related to cuts.
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Cut-based transformations

Transformation ADD SLDD+ SLDD× AADD

CUTmin

√ √ √ √

CUT∼γ
√ • • •

CUT�γ
√ • • •

• Cutting to the optimum is easy, even on SLDD and AADD: after
normalizing, the minimal paths are those in which all arcs have
factor 0

• Cutting w.r.t. a threshold is not polynomial (it may require a
complete unfolding of the structure)
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Conditioning and Combinations

Conditioning CD de�ned as in the Boolean case

The other transformations are parameterized by an associative and
commutative binary operator � on V

• �C: combining n formulas by � (i.e., building a formula in L

representing the function
⊙n

i=1 f
L

αi
)

I +C ×C: useful for bottom un compilation

• �BC: combining a bounded number of L representations

I ×BC
→ making a discount

I minBC
→ choosing in two catalogs
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Map for transformations: combinations

Transformation ADD SLDD+ SLDD× AADD

minC / +C / ×C • • • •
minBC

√ • • •
+BC

√ √ • •
×BC √ • √ •

• ADD satis�es all bounded combinations
→ �apply� algorithm, similar to OBDDs

• SLDD+ satis�es the combination by +
SLDD× satis�es the combination by ×
→ the �apply� algorithm also works because the operators are

associative and commutative
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Map for transformations: combinations

Transformation ADD SLDD+ SLDD× AADD

minC / +C / ×C • • • •
minBC

√ • • •
+BC

√ √ • •
×BC √ • √ •

• SLDD+ does not satisfy the combination by ×:
consider the function f ( #—x ) =

∑n−1

i=0 xi · 2i and
g( #—x ) = 2n+1 − 1− f ( #—x ); linear SLDD+ representation, but f × g
has only exponential SLDD+ representations

• SLDD× does not satisfy the combination by +: similar proof

• AADD does not satisfy any bounded combination.
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Transformations: variable elimination

• �Elim, elimination of variables Y w.r.t. � : building a formula in L

representing
⊙

#—y f Lα | #—y
→ e.g., forgetting = max-elimination

• �Marg, marginalization on a single variable w.r.t. �: eliminating
all variables but one
→ +-marginalization on a variable in Bayesian networks
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Map for transformations: marginalization

Transformation ADD SLDD+ SLDD× AADD

minMarg
√ √ √ √

+Marg
√ √ √ √

×Marg
√

?
√

?

Marginalization is easy when the elimination of the last variable can be
done in linear time.

Works for +Marg on SLDD× and AADD basically because multiplication
distributes over addition
→ does not work for ×Marg on SLDD+ and AADD
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Map for transformations: Variable Elimination

No language satis�es any elimination, even of a single variable, as long as
its domain is unbounded

Transformation ADD SLDD+ SLDD× AADD

minElim/ +Elim / ×Elim • • • •
SminElim / S+Elim / S×Elim • • • •
SBmaxElim / SBminElim

√ • • •
SB+Elim

√ √ • •
SB×Elim √ • √ •

S�Elim: eliminating a single variable

SB�Elim: eliminating a single bounded-domain variable
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Summary

• Conditionning and Optimization satis�ed on AADD,SLDD+, SLDD×,
ADD

• minBC satis�ed on ADD only

• AADD "more succinct" than SLDD+, SLDD×, themselves "more
succinct" than ADD

• +BC ok on SLDD+ and ADD only
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On the pratical succintness of valued decision diagrams

• Design of a bottom-up ordered SLDD+ SLDD× compiler.

I Input: VCSP instance (XML format) or Bayesian Nets (XML
format).

I Output: an equivalent SLDD+ / SLDD×,

• Test of a large set of variable ordering heuristics.

• Design of toolbox of transformation procedures (that are basically
normalization procedures)

I SLDD+ (resp. SLDD×) to ADD
I ADD to SLDD+, SLDD×
I SLDD+ (resp. SLDD×) to AADD
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Benchmark tested

Two families of benchmarks.

• VCSP instances encoding car con�gurations problems with pricing
functions

I Small: #variables=139; max. domain size=16;
#constraints=176 (including 29 soft constraints)

I Medium: #variables=148; max. domain size=20;
#constraints=268 (including 94 soft constraints)

I Big: #variables=268; max. domain size=324;
#constraints=2157 (including 1825 soft constraints)

• Bayesian networks: Cancer, Asia, Car-starts, Alarm,

Hailfinder25
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Heuristics

MCF Band-Width MCS Force

Instance nodes cpu nodes cpu nodes cpu nodes cpu

VCSP
7→SLDD+

Small 3 100 1,2s 4 349 1,0s 2 344 1,0s 3 415 1,2s
Medium 5 660 1,5s 11 700 1,6s 6 242 1,4s 13 603 1,5s
Big m-o - 326 884 112s 196 098 71s m-o -

Bayes
7→SLDD×
Asia 35 0,06s 29 0,06s 23 0,06s 25 0,06s
Car-starts 60 0,1s 40 0,09s 40 0,09s 41 0,09s
Alarm m-o - 5 843 0,8s 1 301 0.5 7 054 1,0s
Hail m-o - m-o - 15 333 1,3s 139 172 114s
�nder25

MCS = Maximum Cardinality Search heuristic
[Tarjan and Yannakakis, 1984] in reverse order
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Pratical Succinctness

SLDD+ ADD SLDD× AADD

Instance nodes temps nodes nodes nodes

Small 1 744 0,9s 28 971 19 930 1 744

Medium 3 238 1,3s 463 383 354 122 3 156

Big 73 702 34s m-o m-o 73 702

Rés. bay. SLDD× ADD SLDD+ AADD

Instance nodes temps nodes nodes nodes

Asia 23 0, 07s 415 216 23

Car-starts 40 0, 1s 42 741 19 632 40

Alarm 1 301 0, 5s m-o m-o 1 301

Hail�nder25 15 333 1,8s m-o m-o 15 331

• AADD, SLDD+, SLDD× < ADD;

• AADD < SLDD+, SLDD× but not so much :

I AADD and SLDD+ comparable on additive pricing functions,
I AADD and SLDD× comparable on bayesian nets (multiplicative)
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On line use : CD + marginalization on each variable

VCSP SLDD+ AADD ratio

Small 222µs 281µs 1,27

Medium 487µs 578µs 1,19

Big 22,1ms 39,9ms 1,81

Bayes SLDD× AADD ratio

Asia 29,0µs 32,3µs 1,11

Car-starts 61,5µs 75,6µs 1,23

Alarm 259µs 292µs 1,13

Hail�nder25 7,68ms 9,16ms 1,19

SLDD is more e�cient: less number manipulations (AADD makes many
unsuccessful attempts of saving space), less rounding errors
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On line use : CD + marginalization on each variable

Figure: Average and maximal time (ms) for conditionning +
marginalization on the big car con�guration instance.
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On line use : full con�guration process (without prices)

Figure: Average time (ms) for conditionning + marginalization on the big
car con�guration instance.
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Conclusion and perspectives
Done:

• Premisses of a KC map of non-Boolean functions (here :
R+-valued functions)

• SLDD : implementation of a compiler + a toolbox (SALADD)

• Very e�cient on our con�guration problems

• Experimental results may contrast with theoretical ones on some
instances (SLDD+ vs. AADD)

I Do not necessarily "recompile" on line : fusion of isomorphic
nodes, determinism are not compulsory

To Do / Further Research

• Complete the KC map: Arithmetic circuits, V-AOMDD, Sentential
Networks (ideally an Algebraic map)

• Application of AADD to problems that need their full power

• Learning preferences : SLDD× , Bayesian nets, SDDs
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