A KC Map of Valued Decision Diagrams
 - application to product configuration -

Hélène Fargier ${ }^{1} \quad$ Pierre Marquis ${ }^{2}$
Alexandre Niveau ${ }^{3} \quad$ Nicolas Schmidt ${ }^{1,2}$
${ }^{1}$ IRIT-CNRS, Univ. Paul Sabatier, Toulouse, France
${ }^{2}$ CRIL-CNRS, Univ. Artois, Lens, France
${ }^{3}$ GREYC-CNRS, Univ. Caen, France

$$
\text { June 4, } 2015
$$

Outline

Configuration and Compilation

Valued Decision Diagrams

A Compilation Map for Real Valued Decision Diagrams

Experiments

Outline

Configuration and Compilation

Valued Decision Diagrams

A Compilation Map for Real Valued Decision Diagrams

Experiments

Introductory example

- Problem of interactive product configuration: a car
- Configure :
- the motor - solar or pedals
- the color - blue or red
- the size - family car or two-seater
- the radio option - with or without

Introductory example

- Problem of interactive product configuration: a car
- Configure :
- the motor - solar or pedals
- the color - blue or red
- the size - family car or two-seater
- the radio option - with or without
- Constraints:
- pedal cars must be red
- solar panels do not fit on two-seaters
- family cars all have a radio

Basic Problem

- Configurable product \rightarrow constraint satisfaction problem (CSP)
- Configuration parameter $=$ a CSP variable (finite domain)
- Constraints

$$
\left\{\begin{array}{c}
\text { motor }=\text { pedals } \quad \rightarrow \quad \text { color }=\text { red } \\
\text { motor }=\text { solar } \quad \rightarrow \quad \text { size }>\text { twoseater } \\
\text { size }=\text { twoseater } \quad \vee \quad \text { radio }=\text { with }
\end{array}\right.
$$

- each solution corresponds to an admissible configuration

Basic Problem

- Configurable product \rightarrow constraint satisfaction problem (CSP)
- Configuration parameter $=$ a CSP variable (finite domain)
- Constraints
- each solution corresponds to an admissible configuration
- Configuration process:
- The program presents, for each variable, values that lead to at least one solution
- The user assigns a value to some variable
- Which are the values of the free variables that are not consistent?

Basic Problem

- Configurable product \rightarrow constraint satisfaction problem (CSP)
- Configuration parameter $=$ a CSP variable (finite domain)
- Constraints
- each solution corresponds to an admissible configuration
- Configuration process:
- The program presents, for each variable, values that lead to at least one solution
- The user assigns a value to some variable
- Which are the values of the free variables that are not consistent?
- NP-complete problem ... but the user cannot wait too long after each choice

A solution: knowledge compilation

- The CSP is a fixed part of the problem
\rightarrow we can compile it into a suitable data structure, such as an OBDD or a MDD:

- Assigning values to variables (conditioning) and checking consistency are polynomial operations on MDDs/OBDDs
\rightarrow the user's wait is reduced

Configuration and Compilation

Configuration is an "Historical" application of compilation techniques

- Synthesis Trees [Weigel and Faltings, 1999]
- Prime Implicates (?) [Sinz, 2002]
- OBDDs, Ordered MDD [Amilhastre et al., 2002, Hadzic, 2004]
- Cluster Trees [Pargamin, 2002]

By the way, several properties a not compulsory: "linerarity" of the structure, determinism, ordering of the variables.

Choosing a compilation language

- Which language is the best for my application?
\rightarrow use the compilation map [Darwiche and Marquis, 2002]
- Compares langages according to two criteria:

1. efficiency of operations
2. succinctness

Compilation map: operations

- All online manipulations amount to elementary queries and transformations

L					
NNF	$\bigcirc \bigcirc$	\bigcirc	\bigcirc	\bigcirc	\bigcirc
DNNF	$\sqrt{ }$ ○	$\sqrt{ }$ ○	\bigcirc	\bigcirc	$\bigcirc \sqrt{ }$
BDD	\bigcirc	$\bigcirc \circ$	\bigcirc	\bigcirc	\bigcirc
FBDD	$\sqrt{ } \sqrt{ }$	$\sqrt{ } \sqrt{ }$?	\bigcirc	$\sqrt{ } \sqrt{ }$
OBDD	$\sqrt{ } \sqrt{ }$	$\sqrt{ } \sqrt{ }$	\checkmark	\bigcirc	$\sqrt{ } \sqrt{ }$
DNF	$\sqrt{ }$ ○	$\sqrt{ } \circ$	\bigcirc	\bigcirc	$\bigcirc \sqrt{ }$
CNF	$\bigcirc \sqrt{ }$	$\bigcirc \sqrt{ }$	-	\bigcirc	\bigcirc

L					
$\begin{gathered} \text { NNF } \\ \text { DNNF } \end{gathered}$	$\begin{aligned} & \sqrt{ } \\ & \sqrt{ } \end{aligned}$	$\begin{array}{ll} \circ & \sqrt{ } \\ \sqrt{ } & \sqrt{ } \end{array}$	$\begin{array}{ll}\sqrt{ } & \sqrt{ } \\ \circ & \\ \circ & \\ \end{array}$	$\sqrt{\sqrt{ } \sqrt{ }}$	\checkmark
$\begin{gathered} \hline \text { BDD } \\ \text { FBDD } \\ \text { OBDD } \end{gathered}$	$\sqrt{\sqrt{V}}$		$\begin{array}{ll}\sqrt{ } & \sqrt{ } \\ \bullet \bullet & 0 \\ \bullet & 0\end{array}$	$\begin{array}{ll}\sqrt{ } & \sqrt{ } \\ \bullet- & 0 \\ \bullet & 0\end{array}$	$\sqrt{ }$ $\sqrt{ }$ $\sqrt{ }$
$\begin{aligned} & \hline \text { DNF } \\ & \text { CNF } \end{aligned}$	$\sqrt{\sqrt{*}}$		$\stackrel{\rightharpoonup}{\bullet} \sqrt{ }{ }^{\text {b }}$	- ${ }^{\bullet} \sqrt{ } \sqrt{ }$	\bullet

$\begin{array}{ll}\sqrt{ } & \text { polynomial } \\ \circ & \text { not polynomial, unless } P=N P \\ \text { - } & \text { not polynomial }\end{array}$

Compilation map: operations

- All online manipulations amount to elementary queries and transformations

L					
NNF	$\bigcirc \circ$	$\bigcirc \bigcirc$	\bigcirc	\bigcirc	\bigcirc
DNNF	$\sqrt{ }$ ○	$\sqrt{ }$ ○	\bigcirc	\bigcirc	- $\sqrt{ }$
BDD	\bigcirc	$\bigcirc \circ$	-	\bigcirc	\bigcirc
FBDD	$\sqrt{ } \sqrt{ }$	$\sqrt{ } \sqrt{ }$?	\bigcirc	$\sqrt{ } \sqrt{ }$
OBDD	$\sqrt{ } \sqrt{ }$	$\sqrt{ } \sqrt{ }$	$\sqrt{ }$	\bigcirc	$\sqrt{ } \sqrt{ }$
DNF	$\sqrt{ }$ ○	\checkmark	\bigcirc	\bigcirc	$\bigcirc \sqrt{ }$
CNF	$\bigcirc \sqrt{ }$	$\bigcirc \sqrt{ }$	\bigcirc	\bigcirc	\bigcirc

L					
$\begin{gathered} \text { NNF } \\ \text { DNNF } \end{gathered}$	$\sqrt{\sqrt{*}}$		$\begin{array}{ll}\sqrt{ } & \sqrt{ } \\ \circ & 0\end{array}$	$\sqrt{\sqrt{*}} \sqrt{ }$	\checkmark
$\begin{gathered} \hline \text { BDD } \\ \text { FBDD } \\ \text { OBDD } \\ \hline \end{gathered}$	$\sqrt{ } /$ $\sqrt{ }$ $\sqrt{ }$ $\sqrt{ }$	$\begin{array}{ll}\circ & \sqrt{ } \\ \text { - } & \circ \\ \text { - } & \sqrt{ }\end{array}$	 - -	$\begin{array}{ll}\sqrt{ } & \sqrt{ } \\ \bullet- & 0 \\ - & 0\end{array}$	$\sqrt{ }$ $\sqrt{ }$ $\sqrt{ }$
$\begin{aligned} & \mathrm{DNF} \\ & \mathrm{CNF} \end{aligned}$	$\sqrt{ }$ $\sqrt{ }$	$\sqrt{ } \sqrt{ } \sqrt{ }$ \circ \circ	$\begin{array}{lll}\bullet \bullet & \sqrt{ } \\ \sqrt{ } \times \sqrt{ }\end{array}$	V $\sqrt{ }$ - $\sqrt{ }$	$\stackrel{ }{\bullet}$

$\begin{array}{ll}\sqrt{ } & \text { polynomial } \\ \circ & \text { not polynomial, unless } P=N P \\ \text { - } & \text { not polynomial }\end{array}$

Compilation map: operations

- All online manipulations amount to elementary queries and transformations

L				
wry	$\bigcirc \circ$			
$\frac{\operatorname{linNF}}{\mathrm{BDD}}$	$\checkmark \circ$	\checkmark -	\bigcirc	$\bigcirc \checkmark$
$\begin{aligned} & \text { BDD } \\ & \text { EDDD } \end{aligned}$	$\stackrel{\circ}{ } \stackrel{\circ}{ }$	$\stackrel{\circ}{ } \stackrel{\circ}{ }{ }^{\text {b }}$	$\stackrel{\circ}{?}$	$\stackrel{\circ}{\circ} \stackrel{\circ}{ }$
D	$\checkmark \mathrm{v}$	$\checkmark \checkmark$	$\checkmark \circ$	$\checkmark \vee$
cinf	$\stackrel{\checkmark}{\circ}$	\bigcirc	$\stackrel{\circ}{\circ}$	\bigcirc

1	$\begin{array}{\|l\|l} \\ \hline \end{array}$				
	\checkmark	$\stackrel{\circ}{V}$	VV	$\checkmark \vee$	\checkmark
	$\stackrel{\rightharpoonup}{v}$		V	\cdots	V_{V}
(Dive	\checkmark	$\stackrel{\checkmark}{ } \stackrel{\rightharpoonup}{ }{ }^{\circ}$	$\stackrel{\checkmark}{\vee}$	$\checkmark \vee$:

$\begin{array}{ll}\sqrt{ } & \text { polynomial } \\ \circ & \text { not polynomial, unless } P=N P \\ \text { - } & \text { not polynomial }\end{array}$

Compilation map: succinctness

- Succinctness relation $\left(\leq_{s}\right)$: orders languages
- $\mathrm{L}_{1} \leq_{s} \mathrm{~L}_{2}$ means " L_{1} is at least as succinct as L_{2} "

Compilation map: succinctness

- Succinctness relation $\left(\leq_{s}\right)$: orders languages
- $\mathrm{L}_{1} \leq_{s} \mathrm{~L}_{2}$ means " L_{1} is at least as succinct as L_{2} "

The full configuration process

A more complex process:

- The program presents, for each variable, values that satisfy the constraints (given the current choices), and discards the others

The full configuration process

A more complex process:

- The program presents, for each variable, values that satisfy the constraints (given the current choices), and discards the others
- The user assigns a value to some variable, or removes a previous assignment (without ny prescribed order)

The full configuration process

A more complex process:

- The program presents, for each variable, values that satisfy the constraints (given the current choices), and discards the others
- The user assigns a value to some variable, or removes a previous assignment (without ny prescribed order)
- The programm should provide explanations for invalid choices, propose restorations, alternative values, etc

The full configuration process

A more complex process:

- The program presents, for each variable, values that satisfy the constraints (given the current choices), and discards the others
- The user assigns a value to some variable, or removes a previous assignment (without ny prescribed order)
- The programm should provide explanations for invalid choices, propose restorations, alternative values, etc
- The program maintains the cost of cheapest car consistent with the current choices

The full configuration process

A more complex process:

- The program presents, for each variable, values that satisfy the constraints (given the current choices), and discards the others
- The user assigns a value to some variable, or removes a previous assignment (without ny prescribed order)
- The programm should provide explanations for invalid choices, propose restorations, alternative values, etc
- The program maintains the cost of cheapest car consistent with the current choices
- Upon deman, it present the minimal and maximal costs associated to the remaining choices

The full configuration process

A more complex process:

- The program presents, for each variable, values that satisfy the constraints (given the current choices), and discards the others
- The user assigns a value to some variable, or removes a previous assignment (without ny prescribed order)
- The programm should provide explanations for invalid choices, propose restorations, alternative values, etc
- The program maintains the cost of cheapest car consistent with the current choices
- Upon deman, it present the minimal and maximal costs associated to the remaining choices
- The programm shall recommend interesting values for the next variable, given the current choices and selling histories

The full configuration process

A more complex process:

- The program presents, for each variable, values that satisfy the constraints (given the current choices), and discards the others
- The user assigns a value to some variable, or removes a previous assignment (without ny prescribed order)
- The programm should provide explanations for invalid choices, propose restorations, alternative values, etc
- The program maintains the cost of cheapest car consistent with the current choices
- Upon deman, it present the minimal and maximal costs associated to the remaining choices
- The programm shall recommend interesting values for the next variable, given the current choices and selling histories

Study non-Boolean compilation languages

Problematics

Many AI applications use functions with non-Boolean values

- cost or utility functions (e.g. in configuration problems)
- probability distributions (e.g. selling histories)
- weighted knowledge bases. . .

Problematics

Many AI applications use functions with non-Boolean values

- cost or utility functions (e.g. in configuration problems)
- probability distributions (e.g. selling histories)
- weighted knowledge bases...

Compilation into a suitable language

- Valued CSPs, GAI-nets, Bayesian networks, weighted bases: the problem is expressed compactly, but optimization is hard
- Valued Decision Diagrams : ADD, SLDDs, AADDs (generalization of OBDDs)
- More freedom in the structure: arithmetic circuits, probabilistic sentential decision diagrams

Problematics

Many AI applications use functions with non-Boolean values

- cost or utility functions (e.g. in configuration problems)
- probability distributions (e.g. selling histories)
- weighted knowledge bases...

Compilation into a suitable language

- Valued CSPs, GAI-nets, Bayesian networks, weighted bases: the problem is expressed compactly, but optimization is hard
- Valued Decision Diagrams : ADD, SLDDs, AADDs (generalization of OBDDs)
- More freedom in the structure: arithmetic circuits, probabilistic sentential decision diagrams

This talk: Valued Decision Diagrams: KC map + experiments

Outline

Configuration and Compilation

Valued Decision Diagrams

A Compilation Map for Real Valued Decision Diagrams

Experiments

ADDs: algebraic decision diagrams [Bahar et al., 1993]

- Like OBDDs, but each leaf is a value from a set \mathcal{V}

- Optimization is trivial, Conditionning and Marginalization on one variable are easy

SLDDs: semiring-labeled decision diagrams [Wilson, 2005]

- Problem of ADDs: one leaf per value
- Idea: move values up on the arcs, so that they can be shared
- Value of a path $=$ aggregation of encountered values

Example in configuration w.r.t. pricing function: $\mathcal{V}=\mathbb{R}^{+}$, aggregation by sum \rightarrow SLDD+ language

Other possibility for $\mathcal{V}=\mathbb{R}^{+}$:
aggregating by product
\rightarrow SLDD $_{\times}$language \rightarrow for probability distributions

SLDDs: semiring-labeled decision diagrams [Wilson, 2005]

- Problem of ADDs: one leaf per value
- Idea: move values up on the arcs, so that they can be shared
- Value of a path $=$ aggregation of encountered values

Example in configuration w.r.t. pricing function: $\mathcal{V}=\mathbb{R}^{+}$, aggregation by sum \rightarrow SLDD + language

Other possibility for $\mathcal{V}=\mathbb{R}^{+}$:
aggregating by product
\rightarrow SLDD \times language \rightarrow for probability distributions

SLDDs: semiring-labeled decision diagrams [Wilson, 2005]

- Problem of ADDs: one leaf per value
- Idea: move values up on the arcs, so that they can be shared
- Value of a path $=$ aggregation of encountered values

Example in configuration w.r.t. pricing function: $\mathcal{V}=\mathbb{R}^{+}$, aggregation by sum \rightarrow SLDD + language

Other possibility for $\mathcal{V}=\mathbb{R}^{+}$:
aggregating by product
\rightarrow SLDD $_{\times}$language \rightarrow for probability distributions

SLDDs: semiring-labeled decision diagrams [Wilson, 2005]

- Problem of ADDs: one leaf per value
- Idea: move values up on the arcs, so that they can be shared
- Value of a path $=$ aggregation of encountered values

Example in configuration w.r.t. pricing function: $\mathcal{V}=\mathbb{R}^{+}$, aggregation by sum \rightarrow SLDD+ language

Other possibility for $\mathcal{V}=\mathbb{R}^{+}$:
aggregating by product
\rightarrow SLDD $_{\times}$language \rightarrow for probability distributions

SLDDs: semiring-labeled decision diagrams [Wilson, 2005]

- Problem of ADDs: one leaf per value
- Idea: move values up on the arcs, so that they can be shared
- Value of a path $=$ aggregation of encountered values

Example in configuration w.r.t. pricing function: $\mathcal{V}=\mathbb{R}^{+}$, aggregation by sum \rightarrow SLDD + language

Other possibility for $\mathcal{V}=\mathbb{R}^{+}$:
aggregating by product
\rightarrow SLDD \times language \rightarrow for probability distributions

AADDs: Affine Agebraic DD [Sanner and McAllester, 2005]

- A variant of SLDD: aggregation by a combination of sum and product
\rightarrow two factors on each arc a, an additive one and a multiplicative one $\langle q, f\rangle$
- Path starting with a : value $q+f \times V_{\text {rec }}$, with $V_{\text {rec }}$ the value of the rest of the path

SLDD: "Red, Solar": $4+1=5$
AADD: "Red, Solar":
$0+1 .(1+1 .(4+1.0))=5$

AADDs: Affine Agebraic DD [Sanner and McAllester, 2005]

- A variant of SLDD: aggregation by a combination of sum and product
\rightarrow two factors on each arc a, an additive one and a multiplicative one $\langle q, f\rangle$
- Path starting with a : value $q+f \times V_{\text {rec }}$, with $V_{\text {rec }}$ the value of the rest of the path

SLDD: "Red, Solar": $4+1=5$
AADD: "Red, Solar":
$0+1 .(1+1 .(4+1.0))=5$

AADDs: Affine Agebraic DD [Sanner and McAllester, 2005]

- A variant of SLDD: aggregation by a combination of sum and product
\rightarrow two factors on each arc a, an additive one and a multiplicative one $\langle q, f\rangle$
- Path starting with a : value $q+f \times V_{\text {rec }}$, with $V_{\text {rec }}$ the value of the rest of the path

SLDD: "Red, Solar": $4+1=5$
AADD: "Red, Solar":
$0+1 .(1+1 .(4+1.0))=5$

AADDs: Affine Agebraic DD [Sanner and McAllester, 2005]

- A variant of SLDD: aggregation by a combination of sum and product
\rightarrow two factors on each arc a, an additive one and a multiplicative one $\langle q, f\rangle$
- Path starting with a : value $q+f \times V_{\text {rec }}$, with $V_{\text {rec }}$ the value of the rest of the path

SLDD: "Red, Solar": $4+1=5$
AADD: "Red, Solar":
$0+1 .(1+1 .(4+1.0))=5$

AADDs: Affine Agebraic DD [Sanner and McAllester, 2005]

- A variant of SLDD: aggregation by a combination of sum and product
\rightarrow two factors on each arc a, an additive one and a multiplicative one $\langle q, f\rangle$
- Path starting with a : value $q+f \times V_{\text {rec }}$, with $V_{\text {rec }}$ the value of the rest of the path

SLDD: "Red, Solar": $4+1=5$
AADD: "Red, Solar":
$0+1 .(1+1 .(4+1.0))=5$

AADDs: Affine Agebraic DD [Sanner and McAllester, 2005]

- A variant of SLDD: aggregation by a combination of sum and product
\rightarrow two factors on each arc a, an additive one and a multiplicative one $\langle q, f\rangle$
- Path starting with a : value $q+f \times V_{\text {rec }}$, with $V_{\text {rec }}$ the value of the rest of the path

SLDD: "Red, Solar": $4+1=5$
AADD: "Red, Solar":
$0+1 .(1+1 .(4+1.0))=5$

AADDs: Affine Agebraic DD [Sanner and McAllester, 2005]

- A variant of SLDD: aggregation by a combination of sum and product
\rightarrow two factors on each arc a, an additive one and a multiplicative one $\langle q, f\rangle$
- Path starting with a : value $q+f \times V_{\text {rec }}$, with $V_{\text {rec }}$ the value of the rest of the path

SLDD: "Red, Solar": $4+1=5$
AADD: "Red, Solar":
$0+1 .(1+1 .(4+1.0))=5$

- Normalization conditions \rightarrow all paths to the leaf have value $\in[0,1]$; extrema can be read on the root's offset

Outline

Configuration and Compilation

Valued Decision Diagrams

A Compilation Map for Real Valued Decision Diagrams

Experiments

The \mathbb{R}^{+}-VDDs languages

Recall that a L-representation α is a data structure that represent a function $f_{\alpha}^{L}(\vec{x})$

- We ca have a AADD, VCSP or a ADD representation of function $f\left(x_{1}, \ldots, x_{n}\right)=\Sigma_{i=1, n} 2^{i-1} x_{i}$ on $\{0,1\}^{n}$
- Two representations α and β are equivalent iff $f_{\alpha}^{L}=f_{\beta}^{L^{\prime}}$

The \mathbb{R}^{+}-VDDs languages

- We restrict ourselves to languages ADD on $\mathbb{R}^{+}, \mathrm{SLDD}_{+}, \mathrm{SLDD}_{\times}$and AADD.
- All satisfy canonicity (upon normalization) : equivalent sub-functions are isomorphic ; caching is efficient.
- A hierarchy of languages: ADD $\sqsubseteq \mathrm{SLDD}_{+}, \mathrm{SLDD}_{\times} \sqsubseteq \mathrm{AADD}$

Map for \mathbb{R}^{+}-VDDs: Succinctness

L_{1} is at least as succinct as L_{2}, denoted $\mathcal{L}_{1} \leq_{s} \mathcal{L}_{2}$, iff there exists a polynomial p such that for every L_{2} representation α, there exists a L_{1} representation β which is equivalent to α and s.t. $\operatorname{size}(\beta) \leq p(\operatorname{size}(\alpha))$.

Map for \mathbb{R}^{+}-VDDs: Succinctness

L_{1} is at least as succinct as L_{2}, denoted $\mathcal{L}_{1} \leq_{s} \mathcal{L}_{2}$, iff there exists a polynomial p such that for every L_{2} representation α, there exists a L_{1} representation β which is equivalent to α and s.t. $\operatorname{size}(\beta) \leq p(\operatorname{size}(\alpha))$.

e.g. because the function $f\left(x_{1}, \ldots, x_{n}\right)=\Sigma_{i=1, n} 2^{i-1} x_{i}$ on $\{0,1\}^{n}$ maps to an exponential set of values and cannot be represented by a product .

Queries

A VDD α represent function $f_{\alpha}(\vec{x})$ taking its values in an ordered valuation scale \mathcal{V} (here, $\mathcal{V}=\mathbb{R}^{+}$)

- Equivalence query EQ similar to the Boolean case: indicating whether $\forall \vec{x}, f_{\alpha}^{\mathrm{L}}(\vec{x})=f_{\beta}^{\mathrm{L}}(\vec{x})$
\rightarrow are these two catalogs the same?

Queries

A VDD α represent function $f_{\alpha}(\vec{x})$ taking its values in an ordered valuation scale \mathcal{V} (here, $\mathcal{V}=\mathbb{R}^{+}$)

- Equivalence query EQ similar to the Boolean case: indicating whether $\forall \vec{x}, f_{\alpha}^{\mathrm{L}}(\vec{x})=f_{\beta}^{\mathrm{L}}(\vec{x})$
\rightarrow are these two catalogs the same?
- Sentential entailment SE: given a preorder \preceq on \mathcal{V}, indicating whether $\forall \vec{x}, f_{\alpha}^{\mathrm{L}}(\vec{x}) \succeq f_{\beta}^{\mathrm{L}}(\vec{x})$
\rightarrow Is this e-shop always cheaper than this other one?

Queries

A VDD α represent function $f_{\alpha}(\vec{x})$ taking its values in an ordered valuation scale \mathcal{V} (here, $\mathcal{V}=\mathbb{R}^{+}$)

- Equivalence query EQ similar to the Boolean case: indicating whether $\forall \vec{x}, f_{\alpha}^{\mathrm{L}}(\vec{x})=f_{\beta}^{\mathrm{L}}(\vec{x})$
\rightarrow are these two catalogs the same?
- Sentential entailment SE: given a preorder \preceq on \mathcal{V}, indicating whether $\forall \vec{x}, f_{\alpha}^{\mathrm{L}}(\vec{x}) \succeq f_{\beta}^{\mathrm{L}}(\vec{x})$
\rightarrow Is this e-shop always cheaper than this other one?
- A language L satisfies $\mathbf{O P T}_{\text {min }}$ if there exists a polynomial algorithm mapping any formula α of L to the value $\min _{\vec{x}} f_{\alpha}^{\mathrm{L}}(\vec{x})$.
\rightarrow what is the price of the cheapest cars?

Queries on cuts

Many of the other queries are based on cuts
Let f be a \mathcal{V}-valued function, \preceq a preorder on \mathcal{V}, and $\gamma \in \mathcal{V}$; we define the following sets:

- $\operatorname{CUT}^{\preceq \gamma}(f)=\{\vec{x} \mid f(\vec{x}) \preceq \gamma\}$
\rightarrow cars cheaper than 10000 euros
- $\operatorname{CUT}^{\sim \gamma}(f)=\{\vec{x} \mid f(\vec{x}) \sim \gamma\}$
\rightarrow cars costing exactly 10000 euros
- $\operatorname{CUT}^{\text {min }}(f)=\left\{\vec{x}^{*} \mid \forall \vec{x}, \neg\left(f(\vec{x}) \prec f\left(\vec{x}^{*}\right)\right)\right\}$
\rightarrow the cheapest cars

Queries on cuts

Cut \approx set of "models"

- CT $_{\text {min }}$: counting minimal elements for \preceq (i.e., returning the cardinal of $\left.C U T^{\text {min }}\left(f_{\alpha}^{\mathrm{L}}\right)\right)$
\rightarrow how many cheapest configurations?
- Partial consistency $\mathbf{C O}_{\sim \gamma}$: indicating whether $\exists \vec{x}, f_{\alpha}^{\mathrm{L}}(\vec{x}) \sim \gamma$ (i.e., whether $\left.\operatorname{CUT}^{\sim \gamma}\left(f_{\alpha}^{\mathrm{L}}\right) \neq \varnothing\right)$
\rightarrow is there a car costing exactly 10000 euros?
- $\mathbf{M X}_{\preceq \gamma}, \mathbf{M E}_{\preceq \gamma}$: exhibiting an \vec{x}, enumerating all \vec{x} such that $f_{\alpha}^{\mathrm{L}}(\vec{x}) \preceq \gamma$
\rightarrow which cars are cheaper than 10000 euros?
... and the other combinations

Map for queries

Query	ADD	SLDD_{+}	$\operatorname{SLDD}_{\times}$	AADD	VCSP_{+}
EQ	$\sqrt{ }$	\checkmark	\checkmark	\checkmark	?
SE	$\sqrt{ }$	\checkmark	\checkmark	?	\bigcirc
OPT ${ }_{\text {min }}$	$\sqrt{ }$	\checkmark	\checkmark	\checkmark	\bigcirc
$M X_{\text {min }} / \mathrm{ME}_{\text {min }}$	$\sqrt{ }$	\checkmark	$\sqrt{ }$	\checkmark	\bigcirc
$\mathrm{CT}_{\text {min }}$	$\sqrt{ }$	\checkmark	\checkmark	$\sqrt{ }$	\bigcirc
$\mathrm{CO}_{\sim \gamma} / \mathbf{M X} \mathrm{X}_{\sim \gamma} / \mathrm{ME}_{\sim \gamma}$	$\sqrt{ }$	\bigcirc	-	\bigcirc	\bigcirc
$\mathrm{CO}_{\preceq \gamma} / \mathrm{MX}_{\preceq \gamma} / \mathrm{ME}_{\preceq \gamma}$	$\sqrt{ }$	\checkmark	\checkmark	\checkmark	\bigcirc
$\mathbf{C T}_{\sim \gamma} / \mathbf{C T}_{\preceq \gamma}$	$\sqrt{ }$	\bigcirc	-	-	\bigcirc

- ADD satisfies all queries
- SLDD $_{+}$, SLDD $_{\times}$, and AADD behave the same on queries
- Queries on optimal cuts are easy
- Counting is hard on γ-cuts
- All queries on exact γ-cuts are hard (red. from subset sum)

Cut transformations

A language L satisfies a transformation if there exists a polynomial algorithm performing it while staying in L

Given a L representation α of f, we want a L representation of a cut of f :

- CUT $_{\text {min }}$: compute a L representation of the set of cheapest cars
- CUT $_{\preceq \gamma}$: compute a L representing the set of cars are cheaper than 10000 euros
- CUT $_{\sim \gamma}$: compute a L representing the set of cars costing exactly 10000 euros

Cut transformations

On ADD, $\mathbf{C U T}_{\text {min }}$, CUT $_{\preceq \gamma}, \mathbf{C U T}_{\sim \gamma}$, etc. are trivial:

this is why ADD satisfies all queries related to cuts.

Cut-based transformations

Transformation	ADD	SLDD $_{+}$	SLDD $_{\times}$	AADD
CUT $_{\text {min }}$	$\sqrt{ }$	$\sqrt{ }$	$\sqrt{ }$	$\sqrt{ }$
CUT $_{\sim \gamma}$	$\sqrt{ }$	\bullet	\bullet	\bullet
CUT $_{\preceq \gamma}$	$\sqrt{ }$	\bullet	\bullet	\bullet

- Cutting to the optimum is easy, even on SLDD and AADD: after normalizing, the minimal paths are those in which all arcs have factor 0
- Cutting w.r.t. a threshold is not polynomial (it may require a complete unfolding of the structure)

Conditioning and Combinations

Conditioning CD defined as in the Boolean case

The other transformations are parameterized by an associative and commutative binary operator \odot on \mathcal{V}

- \odot C combining n formulas by \odot (i.e., building a formula in L representing the function $\left.\bigodot_{i=1}^{n} f_{\alpha_{i}}^{\mathrm{L}}\right)$
- $+\mathbf{C} \times \mathbf{C}$: useful for bottom un compilation
- \odot BC: combining a bounded number of L representations
- \times BC
\rightarrow making a discount
- minBC
\rightarrow choosing in two catalogs

Map for transformations: combinations

Transformation	ADD	SLDD $_{+}$	SLDD $_{\times}$	AADD
$\operatorname{minC} /+\mathbf{C} / \times \mathbf{C}$	\bullet	\bullet	\bullet	\bullet
minBC	$\sqrt{ }$	\bullet	\bullet	\bullet
+ BC	$\sqrt{ }$	$\sqrt{ }$	\bullet	\bullet
\times BC	$\sqrt{ }$	\bullet	$\sqrt{ }$	\bullet

- ADD satisfies all bounded combinations
\rightarrow "apply" algorithm, similar to OBDDs
- SLDD $_{+}$satisfies the combination by + SLDD $_{\times}$satisfies the combination by \times
\rightarrow the "apply" algorithm also works because the operators are associative and commutative

Map for transformations: combinations

Transformation	ADD	SLDD $_{+}$	SLDD $_{\times}$	AADD
$\operatorname{minC} /+\mathbf{C} / \times \mathbf{C}$	\bullet	\bullet	\bullet	\bullet
minBC	$\sqrt{ }$	\bullet	\bullet	\bullet
+ BC	$\sqrt{ }$	$\sqrt{ }$	\bullet	\bullet
\times BC	$\sqrt{ }$	\bullet	$\sqrt{ }$	\bullet

- SLDD $_{+}$does not satisfy the combination by \times: consider the function $f(\vec{x})=\sum_{i=0}^{n-1} x_{i} \cdot 2^{i}$ and $g(\vec{x})=2^{n+1}-1-f(\vec{x})$; linear SLDD $_{+}$representation, but $f \times g$ has only exponential SLDD_{+}representations
- SLDD $_{\times}$does not satisfy the combination by + : similar proof
- AADD does not satisfy any bounded combination.

Transformations: variable elimination

- \odot Elim, elimination of variables Y w.r.t. \odot : building a formula in L representing $\left.\bigodot_{\vec{y}} f_{\alpha}^{\mathrm{L}}\right|_{\vec{y}}$
\rightarrow e.g., forgetting $=$ max-elimination
- \odot Marg, marginalization on a single variable w.r.t. \odot : eliminating all variables but one
$\rightarrow+$-marginalization on a variable in Bayesian networks

Map for transformations: marginalization

Transformation	ADD	SLDD $_{+}$	SLDD $_{\times}$	AADD
minMarg	$\sqrt{ }$	$\sqrt{ }$	$\sqrt{ }$	$\sqrt{ }$
+ Marg	$\sqrt{ }$	$\sqrt{ }$	$\sqrt{ }$	$\sqrt{ }$
\times Marg	$\sqrt{ }$	$?$	$\sqrt{ }$	$?$

Marginalization is easy when the elimination of the last variable can be done in linear time.
Works for + Marg on SLDD $_{\times}$and AADD basically because multiplication distributes over addition
\rightarrow does not work for \times Marg on SLDD $_{+}$and AADD

Map for transformations: Variable Elimination

No language satisfies any elimination, even of a single variable, as long as its domain is unbounded

Transformation	ADD	SLDD $_{+}$	SLDD $_{\times}$	AADD
minElim $/+$ Elim $/ \times \operatorname{Elim}$	\bullet	\bullet	\bullet	\bullet
SminElim / S + Elim / S \times Elim	\bullet	\bullet	\bullet	\bullet
SBmaxElim / SBminElim	$\sqrt{ }$	\bullet	\bullet	\bullet
SB+Elim	$\sqrt{ }$	$\sqrt{ }$	\bullet	\bullet
SB \times Elim	$\sqrt{ }$	\bullet	$\sqrt{ }$	\bullet

$\mathbf{S} \odot$ Elim: eliminating a single variable
SB \odot Elim: eliminating a single bounded-domain variable

Summary

- Conditionning and Optimization satisfied on $A A D D$, SLDD $_{+}$, SLDD $_{\times}$, ADD
- minBC satisfied on ADD only
- AADD "more succinct" than SLDD $_{+}$, SLDD $_{\times}$, themselves "more succinct" than ADD
- + BC ok on SLDD_{+}and ADD only

Outline

Configuration and Compilation

Valued Decision Diagrams

A Compilation Map for Real Valued Decision Diagrams

Experiments

On the pratical succintness of valued decision diagrams

- Design of a bottom-up ordered SLDD $_{+}$SLDD $_{\times}$compiler.
- Input: VCSP instance (XML format) or Bayesian Nets (XML format).
- Output: an equivalent SLDD $_{+} /$SLDD $_{\times}$,
- Test of a large set of variable ordering heuristics.
- Design of toolbox of transformation procedures (that are basically normalization procedures)
- SLDD $_{+}$(resp. SLDD $_{\times}$) to ADD
- ADD to SLDD $_{+}$, SLDD $_{\times}$
- SLDD $_{+}$(resp. SLDD $_{\times}$) to AADD

Benchmark tested

Two families of benchmarks.

- VCSP instances encoding car configurations problems with pricing functions
- Small: \#variables=139; max. domain size=16; \#constraints=176 (including 29 soft constraints)
- Medium: \#variables=148; max. domain size=20; \#constraints=268 (including 94 soft constraints)
- Big: \#variables=268; max. domain size=324; \#constraints $=2157$ (including 1825 soft constraints)
- Bayesian networks: Cancer, Asia, Car-starts, Alarm, Hailfinder25

Heuristics

	MCF		Band-Width		MCS		Force	
Instance	nodes	cpu	nodes	cpu	nodes	cpu	nodes	cpu
$\begin{aligned} & \text { VCSP } \\ & \mapsto \text { SLDD }_{+} \end{aligned}$								
Small Medium Big	$\begin{aligned} & 3100 \\ & 5660 \end{aligned}$ $\mathbf{m}-\mathbf{o}$	$\begin{aligned} & 1,2 \mathrm{~s} \\ & 1,5 \mathrm{~s} \end{aligned}$	$\begin{gathered} 4349 \\ 11700 \\ 326884 \end{gathered}$	$\begin{aligned} & \hline 1,0 \mathrm{~s} \\ & 1,6 \mathrm{~s} \\ & 112 \mathrm{~s} \\ & \hline \end{aligned}$	$\begin{gathered} 2344 \\ 6242 \\ 196098 \end{gathered}$	$\begin{aligned} & 1,0 \mathrm{~s} \\ & 1,4 \mathrm{~s} \\ & 71 \mathrm{~s} \\ & \hline \end{aligned}$	$\begin{gathered} 3415 \\ 13603 \\ m-o \end{gathered}$	$\begin{aligned} & 1,2 \mathrm{~s} \\ & 1,5 \mathrm{~s} \end{aligned}$
$\begin{aligned} & \text { Bayes } \\ & \mapsto \text { SLDD }_{\times} \end{aligned}$								
Asia Car-starts Alarm Hail finder 25	$\begin{gathered} 35 \\ 60 \\ \mathrm{~m}-\mathrm{o} \\ \mathrm{~m}-\mathrm{o} \end{gathered}$	$\begin{gathered} 0,06 s \\ 0,1 \mathrm{~s} \end{gathered}$	$\begin{gathered} 29 \\ 40 \\ 5843 \\ m-0 \end{gathered}$	$\begin{gathered} 0,06 \mathrm{~s} \\ 0,09 \mathrm{~s} \\ 0,8 \mathrm{~s} \end{gathered}$	23 40 1301 15333	$\begin{gathered} \hline 0,06 \mathrm{~s} \\ 0,09 \mathrm{~s} \\ 0.5 \\ 1,3 \mathrm{~s} \end{gathered}$	25 41 7054 139172	$\begin{gathered} \hline 0,06 \mathrm{~s} \\ 0,09 \mathrm{~s} \\ 1,0 \mathrm{~s} \\ 114 \mathrm{~s} \end{gathered}$

MCS = Maximum Cardinality Search heuristic [Tarjan and Yannakakis, 1984] in reverse order

Pratical Succinctness

	SLDD $_{+}$		ADD	SLDD $_{\times}$	AADD
Instance	nodes	temps	nodes	nodes	nodes
Small	1744	$0,9 \mathrm{~s}$	28971	19930	1744
Medium	3238	$1,3 \mathrm{~s}$	463383	354122	3156
Big	73702	34 s	m-o	m-o	73702
Rés. bay.	SLDD		ADD	SLDD $_{+}$	AADD
Instance	nodes	temps	nodes	nodes	nodes
Asia	23	$0,07 \mathrm{~s}$	415	216	23
Car-starts	40	$0,1 \mathrm{~s}$	42741	19632	40
Alarm	1301	$0,5 \mathrm{~s}$	$\mathrm{~m}-\mathrm{o}$	$\mathrm{m}-\mathrm{o}$	1301
Hailfinder25	15333	$1,8 \mathrm{~s}$	$\mathrm{~m}-\mathrm{o}$	$\mathrm{m}-\mathrm{o}$	15331

- AADD, SLDD $_{+}$, SLDD $_{\times}<$ADD;
- $\operatorname{AADD}<\mathrm{SLDD}_{+}, \mathrm{SLDD}_{\times}$but not so much :
- AADD and SLDD ${ }_{+}$comparable on additive pricing functions,
- AADD and SLDD \times comparable on bayesian nets (multiplicative)

On line use: CD + marginalization on each variable

VCSP	SLDD $_{+}$	AADD	ratio
Small	$222 \mu \mathrm{~s}$	$281 \mu \mathrm{~s}$	1,27
Medium	$487 \mu \mathrm{~s}$	$578 \mu \mathrm{~s}$	1,19
Big	$22,1 \mathrm{~ms}$	$39,9 \mathrm{~ms}$	1,81
Bayes	SLDD $_{\times}$	AADD	ratio
Asia	$29,0 \mu \mathrm{~s}$	$32,3 \mu \mathrm{~s}$	1,11
Car-starts	$61,5 \mu \mathrm{~s}$	$75,6 \mu \mathrm{~s}$	1,23
Alarm	$259 \mu \mathrm{~s}$	$292 \mu \mathrm{~s}$	1,13
Hailfinder25	$7,68 \mathrm{~ms}$	$9,16 \mathrm{~ms}$	1,19

SLDD is more efficient: less number manipulations (AADD makes many unsuccessful attempts of saving space), less rounding errors

On line use: CD + marginalization on each variable

Figure: Average and maximal time (ms) for conditionning + marginalization on the big car configuration instance.

On line use: full configuration process (without prices)

Figure: Average time (ms) for conditionning + marginalization on the big car configuration instance.

Conclusion and perspectives

Done:

- Premisses of a KC map of non-Boolean functions (here : R^{+}-valued functions)

Conclusion and perspectives

Done:

- Premisses of a KC map of non-Boolean functions (here : R^{+}-valued functions)
- SLDD : implementation of a compiler + a toolbox (SALADD)

Conclusion and perspectives

Done:

- Premisses of a KC map of non-Boolean functions (here : R^{+}-valued functions)
- SLDD : implementation of a compiler + a toolbox (SALADD)
- Very efficient on our configuration problems

Conclusion and perspectives

Done:

- Premisses of a KC map of non-Boolean functions (here : R^{+}-valued functions)
- SLDD : implementation of a compiler + a toolbox (SALADD)
- Very efficient on our configuration problems
- Experimental results may contrast with theoretical ones on some instances (SLDD ${ }_{+}$vs. AADD)
- Do not necessarily "recompile" on line : fusion of isomorphic nodes, determinism are not compulsory

Conclusion and perspectives

Done:

- Premisses of a KC map of non-Boolean functions (here : R^{+}-valued functions)
- SLDD : implementation of a compiler + a toolbox (SALADD)
- Very efficient on our configuration problems
- Experimental results may contrast with theoretical ones on some instances (SLDD + vs. AADD)
- Do not necessarily "recompile" on line : fusion of isomorphic nodes, determinism are not compulsory

To Do / Further Research

- Complete the KC map: Arithmetic circuits, V-AOMDD, Sentential Networks (ideally an Algebraic map)

Conclusion and perspectives

Done:

- Premisses of a KC map of non-Boolean functions (here : R^{+}-valued functions)
- SLDD : implementation of a compiler + a toolbox (SALADD)
- Very efficient on our configuration problems
- Experimental results may contrast with theoretical ones on some instances (SLDD + vs. AADD)
- Do not necessarily "recompile" on line : fusion of isomorphic nodes, determinism are not compulsory

To Do / Further Research

- Complete the KC map: Arithmetic circuits, V-AOMDD, Sentential Networks (ideally an Algebraic map)
- Application of AADD to problems that need their full power

Conclusion and perspectives

Done:

- Premisses of a KC map of non-Boolean functions (here : R^{+}-valued functions)
- SLDD : implementation of a compiler + a toolbox (SALADD)
- Very efficient on our configuration problems
- Experimental results may contrast with theoretical ones on some instances (SLDD + vs. AADD)
- Do not necessarily "recompile" on line: fusion of isomorphic nodes, determinism are not compulsory

To Do / Further Research

- Complete the KC map: Arithmetic circuits, V-AOMDD, Sentential Networks (ideally an Algebraic map)
- Application of AADD to problems that need their full power
- Learning preferences : SLDD $_{\times}$, Bayesian nets, SDDs

Conclusion and perspectives

Done:

- Premisses of a KC map of non-Boolean functions (here : R^{+}-valued functions)
- SLDD : implementation of a compiler + a toolbox (SALADD)
- Very efficient on our configuration problems
- Experimental results may contrast with theoretical ones on some instances (SLDD + vs. AADD)
- Do not necessarily "recompile" on line: fusion of isomorphic nodes, determinism are not compulsory

To Do / Further Research

- Complete the KC map: Arithmetic circuits, V-AOMDD, Sentential Networks (ideally an Algebraic map)
- Application of AADD to problems that need their full power
- Learning preferences : SLDD $_{\times}$, Bayesian nets, SDDs

Bibliography

Amilhastre, J., Fargier, H., and Marquis, P. (2002).
Consistency restoration and explanations in dynamic CSPs: Application to configuration. Artificial Intelligence, 135(1-2):199-234.

```
Bahar, R. I., Frohm, E. A., Gaona, C. M., Hachtel, G. D., Macii, E., Pardo, A., and Somenzi, F.
(1993).
Algebraic decision diagrams and their applications.
In Proceedings of ICCAD'93, pages 188-191.
Darwiche, A. and Marquis, P. (2002).
A knowledge compilation map.
Journal of Artificial Intelligence Research (JAIR), 17:229-264.
```


Fargier, H., Marquis, P., and Schmidt, N. (2013).
Semiring labelled decision diagrams, revisited: Canonicity and spatial efficiency issues.
In Proceedings of IJCAI'13.
Fargier, H., Niveau, A., Marquis, P., and Schmidt, N. (2014).
A knowledge compilation map for ordered real-valued decision diagrams.
In Proceedings of AAAI'2014.
Accepté pour publication.

Hadzic, T. (2004).
A bdd-based approach to interactive configuration.
In Proceedings of CP'04, page 797.

Kisa, D., den Broeck, G. V., Choi, A., and Darwiche, A. (2014).
Probabilistic sentential decision diagrams.

Bibliography

[Fargier et al., 2014, Fargier et al., 2013] [Kisa et al., 2014]

