
A KC Map of Valued Decision Diagrams
- application to product con�guration -

Hélène Fargier1 Pierre Marquis2

Alexandre Niveau3 Nicolas Schmidt1,2

1 IRIT-CNRS, Univ. Paul Sabatier, Toulouse, France

2 CRIL-CNRS, Univ. Artois, Lens, France

3 GREYC-CNRS, Univ. Caen, France

June 4, 2015

0 / 38

Outline

Con�guration and Compilation

Valued Decision Diagrams

A Compilation Map for Real Valued Decision Diagrams

Experiments

0 / 38

Outline

Con�guration and Compilation

Valued Decision Diagrams

A Compilation Map for Real Valued Decision Diagrams

Experiments

0 / 38

Introductory example

• Problem of interactive product con�guration: a car

• Con�gure :

I the motor � solar or pedals
I the color � blue or red
I the size � family car or two-seater
I the radio option � with or without

• Constraints:

I pedal cars must be red
I solar panels do not �t on two-seaters
I family cars all have a radio

1 / 38

Introductory example

• Problem of interactive product con�guration: a car

• Con�gure :

I the motor � solar or pedals
I the color � blue or red
I the size � family car or two-seater
I the radio option � with or without

• Constraints:

I pedal cars must be red
I solar panels do not �t on two-seaters
I family cars all have a radio

1 / 38

Basic Problem

• Con�gurable product → constraint satisfaction problem (CSP)

I Con�guration parameter = a CSP variable (�nite domain)
I Constraints

motor = pedals → color = red

motor = solar → size > twoseater

size = twoseater ∨ radio = with

I each solution corresponds to an admissible con�guration

• Con�guration process:

I The program presents, for each variable, values that lead to at
least one solution

I The user assigns a value to some variable
I Which are the values of the free variables that are not

consistent ?

• NP-complete problem . . . but the user cannot wait too long after
each choice

2 / 38

Basic Problem

• Con�gurable product → constraint satisfaction problem (CSP)

I Con�guration parameter = a CSP variable (�nite domain)
I Constraints

motor = pedals → color = red

motor = solar → size > twoseater

size = twoseater ∨ radio = with

I each solution corresponds to an admissible con�guration

• Con�guration process:

I The program presents, for each variable, values that lead to at
least one solution

I The user assigns a value to some variable
I Which are the values of the free variables that are not

consistent ?

• NP-complete problem . . . but the user cannot wait too long after
each choice

2 / 38

Basic Problem

• Con�gurable product → constraint satisfaction problem (CSP)

I Con�guration parameter = a CSP variable (�nite domain)
I Constraints

motor = pedals → color = red

motor = solar → size > twoseater

size = twoseater ∨ radio = with

I each solution corresponds to an admissible con�guration

• Con�guration process:

I The program presents, for each variable, values that lead to at
least one solution

I The user assigns a value to some variable
I Which are the values of the free variables that are not

consistent ?

• NP-complete problem . . . but the user cannot wait too long after
each choice

2 / 38

A solution: knowledge compilation

• The CSP is a �xed part of the problem

→ we can compile it into a suitable data structure, such as an OBDD
or a MDD:

motor color

size

size

radio

>

⊥

Ped

Sol

red

blue

twoseater

family

twoseater

family

with

without

• Assigning values to variables (conditioning) and checking
consistency are polynomial operations on MDDs/OBDDs

→ the user's wait is reduced

3 / 38

Con�guration and Compilation

Con�guration is an "Historical" application of compilation techniques

• Synthesis Trees [Weigel and Faltings, 1999]

• Prime Implicates (?) [Sinz, 2002]

• OBDDs, Ordered MDD [Amilhastre et al., 2002, Hadzic, 2004]

• Cluster Trees [Pargamin, 2002]

• ...

By the way, several properties a not compulsory: "linerarity" of the
structure, determinism, ordering of the variables.

4 / 38

Choosing a compilation language

OBDD

DNNF

d−DNNF

CNF

DNF

...

PROBLEM

• Which language is the best for my application?

→ use the compilation map [Darwiche and Marquis, 2002]

• Compares langages according to two criteria:

1. e�ciency of operations
2. succinctness

5 / 38

Compilation map: operations

• All online manipulations amount to elementary queries and
transformations

L C
O

(c
o
n
si
st
e
n
c
y
)

V
A
(v
a
li
d
it
y
)

C
E
(c
la
u
se

e
n
ta
il
m
t.
)

IM
(i
m
p
li
c
a
n
t
c
h
e
c
k
)

E
Q

(e
q
u
iv
a
le
n
c
e
)

S
E
(e
n
ta
il
m
e
n
t)

C
T
(m

o
d
e
l
c
o
u
n
t)

M
E
(m

o
d
e
l
e
n
u
m
.)

NNF ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦
DNNF

√
◦

√
◦ ◦ ◦ ◦

√

BDD ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦
FBDD

√ √ √ √
? ◦

√ √

OBDD
√ √ √ √ √

◦
√ √

DNF
√
◦

√
◦ ◦ ◦ ◦

√

CNF ◦
√

◦
√

◦ ◦ ◦ ◦

L C
D

(c
o
n
d
it
io
n
in
g
)

F
O

(f
o
rg
e
tt
in
g
)

S
F
O

(s
in
g
le
fo
rg
.)

∧
C
(c
o
n
ju
n
c
ti
o
n
)

∧
B
C
(b
o
u
n
d
e
d
c
o
n
j.
)

∨
C
(d
is
ju
n
c
ti
o
n
)

∨
B
C
(b
o
u
n
d
e
d
d
is
j.
)

¬
C
(n
e
g
a
ti
o
n
)

NNF
√

◦
√ √ √ √ √ √

DNNF
√ √ √

◦ ◦
√ √

◦
BDD

√
◦
√ √ √ √ √ √

FBDD
√

• ◦ • ◦ • ◦
√

OBDD
√

•
√

• ◦ • ◦
√

DNF
√ √ √

•
√ √ √

•
CNF

√
◦
√ √ √

•
√

•

√
polynomial

◦ not polynomial, unless P = NP

• not polynomial

6 / 38

Compilation map: operations

• All online manipulations amount to elementary queries and
transformations

L C
O

(c
o
n
si
st
e
n
c
y
)

V
A
(v
a
li
d
it
y
)

C
E
(c
la
u
se

e
n
ta
il
m
t.
)

IM
(i
m
p
li
c
a
n
t
c
h
e
c
k
)

E
Q

(e
q
u
iv
a
le
n
c
e
)

S
E
(e
n
ta
il
m
e
n
t)

C
T
(m

o
d
e
l
c
o
u
n
t)

M
E
(m

o
d
e
l
e
n
u
m
.)

NNF ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦
DNNF

√
◦

√
◦ ◦ ◦ ◦

√

BDD ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦
FBDD

√ √ √ √
? ◦

√ √

OBDD
√ √ √ √ √

◦
√ √

DNF
√
◦

√
◦ ◦ ◦ ◦

√

CNF ◦
√

◦
√

◦ ◦ ◦ ◦

L C
D

(c
o
n
d
it
io
n
in
g
)

F
O

(f
o
rg
e
tt
in
g
)

S
F
O

(s
in
g
le
fo
rg
.)

∧
C
(c
o
n
ju
n
c
ti
o
n
)

∧
B
C
(b
o
u
n
d
e
d
c
o
n
j.
)

∨
C
(d
is
ju
n
c
ti
o
n
)

∨
B
C
(b
o
u
n
d
e
d
d
is
j.
)

¬
C
(n
e
g
a
ti
o
n
)

NNF
√

◦
√ √ √ √ √ √

DNNF
√ √ √

◦ ◦
√ √

◦
BDD

√
◦
√ √ √ √ √ √

FBDD
√

• ◦ • ◦ • ◦
√

OBDD
√

•
√

• ◦ • ◦
√

DNF
√ √ √

•
√ √ √

•
CNF

√
◦
√ √ √

•
√

•

√
polynomial

◦ not polynomial, unless P = NP

• not polynomial

6 / 38

Compilation map: operations

• All online manipulations amount to elementary queries and
transformations

L C
O

(c
o
n
si
st
e
n
c
y
)

V
A
(v
a
li
d
it
y
)

C
E
(c
la
u
se

e
n
ta
il
m
t.
)

IM
(i
m
p
li
c
a
n
t
c
h
e
c
k
)

E
Q

(e
q
u
iv
a
le
n
c
e
)

S
E
(e
n
ta
il
m
e
n
t)

C
T
(m

o
d
e
l
c
o
u
n
t)

M
E
(m

o
d
e
l
e
n
u
m
.)

NNF ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦
DNNF

√
◦

√
◦ ◦ ◦ ◦

√

BDD ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦
FBDD

√ √ √ √
? ◦

√ √

OBDD
√ √ √ √ √

◦
√ √

DNF
√
◦

√
◦ ◦ ◦ ◦

√

CNF ◦
√

◦
√

◦ ◦ ◦ ◦

L C
D

(c
o
n
d
it
io
n
in
g
)

F
O

(f
o
rg
e
tt
in
g
)

S
F
O

(s
in
g
le
fo
rg
.)

∧
C
(c
o
n
ju
n
c
ti
o
n
)

∧
B
C
(b
o
u
n
d
e
d
c
o
n
j.
)

∨
C
(d
is
ju
n
c
ti
o
n
)

∨
B
C
(b
o
u
n
d
e
d
d
is
j.
)

¬
C
(n
e
g
a
ti
o
n
)

NNF
√

◦
√ √ √ √ √ √

DNNF
√ √ √

◦ ◦
√ √

◦
BDD

√
◦
√ √ √ √ √ √

FBDD
√

• ◦ • ◦ • ◦
√

OBDD
√

•
√

• ◦ • ◦
√

DNF
√ √ √

•
√ √ √

•
CNF

√
◦
√ √ √

•
√

•

√
polynomial

◦ not polynomial, unless P = NP

• not polynomial

6 / 38

Compilation map: succinctness

• Succinctness relation (≤s): orders languages

• L1 ≤s L2 means �L1 is at least as succinct as L2�

..

SO - DDG

.

BDD

.

DNF

.

FBDD

.

d - DNNF

.

NNF

.

DNNF

.
OBDD<

.

CNF

.

OBDD

.

DDG

.

HORN - C[∨]

.
IP

.

KROM - C[∨]

.

PI

.

renH - C[∨]

.

K/H - C[∨]

.

O - DDG

.

DG

.

7 / 38

Compilation map: succinctness

• Succinctness relation (≤s): orders languages

• L1 ≤s L2 means �L1 is at least as succinct as L2�

..

SO - DDG

.

BDD

.

DNF

.

FBDD

.

d - DNNF

.

NNF

.

DNNF

.
OBDD<

.

CNF

.

OBDD

.

DDG

.

HORN - C[∨]

.
IP

.

KROM - C[∨]

.

PI

.

renH - C[∨]

.

K/H - C[∨]

.

O - DDG

.

DG

.

7 / 38

The full con�guration process

A more complex process:

• The program presents, for each variable, values that satisfy the
constraints (given the current choices), and discards the others

• The user assigns a value to some variable, or removes a previous

assignment (without ny prescribed order)

• The programm should provide explanations for invalid choices,
propose restorations, alternative values, etc

• The program maintains the cost of cheapest car consistent with the
current choices

• Upon deman, it present the minimal and maximal costs associated
to the remaining choices

• The programm shall recommend interesting values for the next
variable, given the current choices and selling histories

Study non-Boolean compilation languages

8 / 38

The full con�guration process

A more complex process:

• The program presents, for each variable, values that satisfy the
constraints (given the current choices), and discards the others

• The user assigns a value to some variable, or removes a previous

assignment (without ny prescribed order)

• The programm should provide explanations for invalid choices,
propose restorations, alternative values, etc

• The program maintains the cost of cheapest car consistent with the
current choices

• Upon deman, it present the minimal and maximal costs associated
to the remaining choices

• The programm shall recommend interesting values for the next
variable, given the current choices and selling histories

Study non-Boolean compilation languages

8 / 38

The full con�guration process

A more complex process:

• The program presents, for each variable, values that satisfy the
constraints (given the current choices), and discards the others

• The user assigns a value to some variable, or removes a previous

assignment (without ny prescribed order)

• The programm should provide explanations for invalid choices,
propose restorations, alternative values, etc

• The program maintains the cost of cheapest car consistent with the
current choices

• Upon deman, it present the minimal and maximal costs associated
to the remaining choices

• The programm shall recommend interesting values for the next
variable, given the current choices and selling histories

Study non-Boolean compilation languages

8 / 38

The full con�guration process

A more complex process:

• The program presents, for each variable, values that satisfy the
constraints (given the current choices), and discards the others

• The user assigns a value to some variable, or removes a previous

assignment (without ny prescribed order)

• The programm should provide explanations for invalid choices,
propose restorations, alternative values, etc

• The program maintains the cost of cheapest car consistent with the
current choices

• Upon deman, it present the minimal and maximal costs associated
to the remaining choices

• The programm shall recommend interesting values for the next
variable, given the current choices and selling histories

Study non-Boolean compilation languages

8 / 38

The full con�guration process

A more complex process:

• The program presents, for each variable, values that satisfy the
constraints (given the current choices), and discards the others

• The user assigns a value to some variable, or removes a previous

assignment (without ny prescribed order)

• The programm should provide explanations for invalid choices,
propose restorations, alternative values, etc

• The program maintains the cost of cheapest car consistent with the
current choices

• Upon deman, it present the minimal and maximal costs associated
to the remaining choices

• The programm shall recommend interesting values for the next
variable, given the current choices and selling histories

Study non-Boolean compilation languages

8 / 38

The full con�guration process

A more complex process:

• The program presents, for each variable, values that satisfy the
constraints (given the current choices), and discards the others

• The user assigns a value to some variable, or removes a previous

assignment (without ny prescribed order)

• The programm should provide explanations for invalid choices,
propose restorations, alternative values, etc

• The program maintains the cost of cheapest car consistent with the
current choices

• Upon deman, it present the minimal and maximal costs associated
to the remaining choices

• The programm shall recommend interesting values for the next
variable, given the current choices and selling histories

Study non-Boolean compilation languages

8 / 38

The full con�guration process

A more complex process:

• The program presents, for each variable, values that satisfy the
constraints (given the current choices), and discards the others

• The user assigns a value to some variable, or removes a previous

assignment (without ny prescribed order)

• The programm should provide explanations for invalid choices,
propose restorations, alternative values, etc

• The program maintains the cost of cheapest car consistent with the
current choices

• Upon deman, it present the minimal and maximal costs associated
to the remaining choices

• The programm shall recommend interesting values for the next
variable, given the current choices and selling histories

Study non-Boolean compilation languages

8 / 38

Problematics

Many AI applications use functions with non-Boolean values

• cost or utility functions (e.g. in con�guration problems)

• probability distributions (e.g. selling histories)

• weighted knowledge bases. . .

Compilation into a suitable language

• Valued CSPs, GAI-nets, Bayesian networks, weighted bases: the
problem is expressed compactly, but optimization is hard

• Valued Decision Diagrams : ADD, SLDDs, AADDs (generalization
of OBDDs)

• More freedom in the structure: arithmetic circuits, probabilistic
sentential decision diagrams

This talk: Valued Decision Diagrams : KC map + experiments

9 / 38

Problematics

Many AI applications use functions with non-Boolean values

• cost or utility functions (e.g. in con�guration problems)

• probability distributions (e.g. selling histories)

• weighted knowledge bases. . .

Compilation into a suitable language

• Valued CSPs, GAI-nets, Bayesian networks, weighted bases: the
problem is expressed compactly, but optimization is hard

• Valued Decision Diagrams : ADD, SLDDs, AADDs (generalization
of OBDDs)

• More freedom in the structure: arithmetic circuits, probabilistic
sentential decision diagrams

This talk: Valued Decision Diagrams : KC map + experiments

9 / 38

Problematics

Many AI applications use functions with non-Boolean values

• cost or utility functions (e.g. in con�guration problems)

• probability distributions (e.g. selling histories)

• weighted knowledge bases. . .

Compilation into a suitable language

• Valued CSPs, GAI-nets, Bayesian networks, weighted bases: the
problem is expressed compactly, but optimization is hard

• Valued Decision Diagrams : ADD, SLDDs, AADDs (generalization
of OBDDs)

• More freedom in the structure: arithmetic circuits, probabilistic
sentential decision diagrams

This talk: Valued Decision Diagrams : KC map + experiments

9 / 38

Outline

Con�guration and Compilation

Valued Decision Diagrams

A Compilation Map for Real Valued Decision Diagrams

Experiments

9 / 38

ADDs: algebraic decision diagrams [Bahar et al., 1993]

• Like OBDDs, but each leaf is a value from a set V

(V = R+)

• Optimization is trivial, Conditionning and Marginalization on one
variable are easy

10 / 38

SLDDs: semiring-labeled decision diagrams [Wilson, 2005]

• Problem of ADDs: one leaf per value

• Idea: move values up on the arcs, so that they can be shared

• Value of a path = aggregation of encountered values

Example in con�guration w.r.t. pricing

function: V = R+, aggregation by sum

→ SLDD+ language

Other possibility for V = R+:

aggregating by product

→ SLDD× language → for probability

distributions

11 / 38

SLDDs: semiring-labeled decision diagrams [Wilson, 2005]

• Problem of ADDs: one leaf per value

• Idea: move values up on the arcs, so that they can be shared

• Value of a path = aggregation of encountered values

Example in con�guration w.r.t. pricing

function: V = R+, aggregation by sum

→ SLDD+ language

Other possibility for V = R+:

aggregating by product

→ SLDD× language → for probability

distributions

11 / 38

SLDDs: semiring-labeled decision diagrams [Wilson, 2005]

• Problem of ADDs: one leaf per value

• Idea: move values up on the arcs, so that they can be shared

• Value of a path = aggregation of encountered values

Example in con�guration w.r.t. pricing

function: V = R+, aggregation by sum

→ SLDD+ language

Other possibility for V = R+:

aggregating by product

→ SLDD× language → for probability

distributions

11 / 38

SLDDs: semiring-labeled decision diagrams [Wilson, 2005]

• Problem of ADDs: one leaf per value

• Idea: move values up on the arcs, so that they can be shared

• Value of a path = aggregation of encountered values

Example in con�guration w.r.t. pricing

function: V = R+, aggregation by sum

→ SLDD+ language

Other possibility for V = R+:

aggregating by product

→ SLDD× language → for probability

distributions

11 / 38

SLDDs: semiring-labeled decision diagrams [Wilson, 2005]

• Problem of ADDs: one leaf per value

• Idea: move values up on the arcs, so that they can be shared

• Value of a path = aggregation of encountered values

Example in con�guration w.r.t. pricing

function: V = R+, aggregation by sum

→ SLDD+ language

Other possibility for V = R+:

aggregating by product

→ SLDD× language → for probability

distributions

11 / 38

AADDs: A�ne Agebraic DD [Sanner and McAllester, 2005]

• A variant of SLDD: aggregation by a combination of sum and
product

→ two factors on each arc a, an additive one and a multiplicative one
〈q, f 〉

• Path starting with a : value q + f × Vrec, with Vrec the value of the
rest of the path

SLDD: "Red, Solar": 4+ 1 = 5

AADD: "Red, Solar":

0+ 1.(1+ 1.(4+ 1.0)) = 5

• Normalization conditions → all paths to the leaf have value ∈ [0, 1];
extrema can be read on the root's o�set

12 / 38

AADDs: A�ne Agebraic DD [Sanner and McAllester, 2005]

• A variant of SLDD: aggregation by a combination of sum and
product

→ two factors on each arc a, an additive one and a multiplicative one
〈q, f 〉

• Path starting with a : value q + f × Vrec, with Vrec the value of the
rest of the path

SLDD: "Red, Solar": 4+ 1 = 5

AADD: "Red, Solar":

0+ 1.(1+ 1.(4+ 1.0)) = 5

• Normalization conditions → all paths to the leaf have value ∈ [0, 1];
extrema can be read on the root's o�set

12 / 38

AADDs: A�ne Agebraic DD [Sanner and McAllester, 2005]

• A variant of SLDD: aggregation by a combination of sum and
product

→ two factors on each arc a, an additive one and a multiplicative one
〈q, f 〉

• Path starting with a : value q + f × Vrec, with Vrec the value of the
rest of the path

SLDD: "Red, Solar": 4+ 1 = 5

AADD: "Red, Solar":

0+ 1.(1+ 1.(4+ 1.0)) = 5

• Normalization conditions → all paths to the leaf have value ∈ [0, 1];
extrema can be read on the root's o�set

12 / 38

AADDs: A�ne Agebraic DD [Sanner and McAllester, 2005]

• A variant of SLDD: aggregation by a combination of sum and
product

→ two factors on each arc a, an additive one and a multiplicative one
〈q, f 〉

• Path starting with a : value q + f × Vrec, with Vrec the value of the
rest of the path

SLDD: "Red, Solar": 4+ 1 = 5

AADD: "Red, Solar":

0+ 1.(1+ 1.(4+ 1.0)) = 5

• Normalization conditions → all paths to the leaf have value ∈ [0, 1];
extrema can be read on the root's o�set

12 / 38

AADDs: A�ne Agebraic DD [Sanner and McAllester, 2005]

• A variant of SLDD: aggregation by a combination of sum and
product

→ two factors on each arc a, an additive one and a multiplicative one
〈q, f 〉

• Path starting with a : value q + f × Vrec, with Vrec the value of the
rest of the path

SLDD: "Red, Solar": 4+ 1 = 5

AADD: "Red, Solar":

0+ 1.(1+ 1.(4+ 1.0)) = 5

• Normalization conditions → all paths to the leaf have value ∈ [0, 1];
extrema can be read on the root's o�set

12 / 38

AADDs: A�ne Agebraic DD [Sanner and McAllester, 2005]

• A variant of SLDD: aggregation by a combination of sum and
product

→ two factors on each arc a, an additive one and a multiplicative one
〈q, f 〉

• Path starting with a : value q + f × Vrec, with Vrec the value of the
rest of the path

SLDD: "Red, Solar": 4+ 1 = 5

AADD: "Red, Solar":

0+ 1.(1+ 1.(4+ 1.0)) = 5

• Normalization conditions → all paths to the leaf have value ∈ [0, 1];
extrema can be read on the root's o�set

12 / 38

AADDs: A�ne Agebraic DD [Sanner and McAllester, 2005]

• A variant of SLDD: aggregation by a combination of sum and
product

→ two factors on each arc a, an additive one and a multiplicative one
〈q, f 〉

• Path starting with a : value q + f × Vrec, with Vrec the value of the
rest of the path

SLDD: "Red, Solar": 4+ 1 = 5

AADD: "Red, Solar":

0+ 1.(1+ 1.(4+ 1.0)) = 5

• Normalization conditions → all paths to the leaf have value ∈ [0, 1];
extrema can be read on the root's o�set

12 / 38

Outline

Con�guration and Compilation

Valued Decision Diagrams

A Compilation Map for Real Valued Decision Diagrams

Experiments

12 / 38

The R+-VDDs languages

Recall that a L-representation α is a data structure that represent a
function f Lα (#—x)

• We ca have a AADD, VCSP or a ADD representation of function
f (x1, . . . , xn) = Σi=1,n2

i−1xi on {0, 1}n

• Two representations α and β are equivalent i� f Lα = f L
′

β

13 / 38

The R+-VDDs languages

• We restrict ourselves to languages ADD on R+, SLDD+, SLDD× and
AADD.

• All satisfy canonicity (upon normalization) : equivalent
sub-functions are isomorphic ; caching is e�cient.

• A hierarchy of languages : ADD v SLDD+, SLDD× v AADD

14 / 38

Map for R+-VDDs: Succinctness

L1 is at least as succinct as L2, denoted L1 ≤s L2, i� there exists a
polynomial p such that for every L2 representation α, there exists a L1
representation β which is equivalent to α and s.t. size(β) ≤ p(size(α)).

AADD

SLDD+

SLDD×

ADD

e.g. because the function f (x1, . . . , xn) = Σi=1,n2
i−1xi on {0, 1}n maps

to an exponential set of values and cannot be represented by a product .

15 / 38

Map for R+-VDDs: Succinctness

L1 is at least as succinct as L2, denoted L1 ≤s L2, i� there exists a
polynomial p such that for every L2 representation α, there exists a L1
representation β which is equivalent to α and s.t. size(β) ≤ p(size(α)).

AADD

SLDD+

SLDD×

ADD

e.g. because the function f (x1, . . . , xn) = Σi=1,n2
i−1xi on {0, 1}n maps

to an exponential set of values and cannot be represented by a product .

15 / 38

Queries

A VDD α represent function fα(#—x) taking its values in an ordered
valuation scale V (here, V = R+)

• Equivalence query EQ similar to the Boolean case: indicating
whether ∀ #—x , f Lα (#—x) = f Lβ (#—x)
→ are these two catalogs the same?

• Sentential entailment SE: given a preorder � on V, indicating
whether ∀ #—x , f Lα (#—x) � f Lβ (#—x)
→ Is this e-shop always cheaper than this other one?

• A language L satis�es OPTmin if there exists a polynomial
algorithm mapping any formula α of L to the value min #—x f Lα (#—x).
→ what is the price of the cheapest cars ?

16 / 38

Queries

A VDD α represent function fα(#—x) taking its values in an ordered
valuation scale V (here, V = R+)

• Equivalence query EQ similar to the Boolean case: indicating
whether ∀ #—x , f Lα (#—x) = f Lβ (#—x)
→ are these two catalogs the same?

• Sentential entailment SE: given a preorder � on V, indicating
whether ∀ #—x , f Lα (#—x) � f Lβ (#—x)
→ Is this e-shop always cheaper than this other one?

• A language L satis�es OPTmin if there exists a polynomial
algorithm mapping any formula α of L to the value min #—x f Lα (#—x).
→ what is the price of the cheapest cars ?

16 / 38

Queries

A VDD α represent function fα(#—x) taking its values in an ordered
valuation scale V (here, V = R+)

• Equivalence query EQ similar to the Boolean case: indicating
whether ∀ #—x , f Lα (#—x) = f Lβ (#—x)
→ are these two catalogs the same?

• Sentential entailment SE: given a preorder � on V, indicating
whether ∀ #—x , f Lα (#—x) � f Lβ (#—x)
→ Is this e-shop always cheaper than this other one?

• A language L satis�es OPTmin if there exists a polynomial
algorithm mapping any formula α of L to the value min #—x f Lα (#—x).
→ what is the price of the cheapest cars ?

16 / 38

Queries on cuts

Many of the other queries are based on cuts

Let f be a V-valued function, � a preorder on V, and γ ∈ V; we de�ne
the following sets:

• CUT�γ(f) = { #—x | f (#—x) � γ }
→ cars cheaper than 10 000 euros

• CUT∼γ(f) = { #—x | f (#—x) ∼ γ }
→ cars costing exactly 10 000 euros

• CUTmin(f) = { #—x ∗ | ∀ #—x ,¬(f (#—x) ≺ f (#—x ∗)) }
→ the cheapest cars

17 / 38

Queries on cuts

Cut ≈ set of �models�

• CTmin: counting minimal elements for � (i.e., returning the
cardinal of CUTmin(f Lα))
→ how many cheapest con�gurations?

• Partial consistency CO∼γ : indicating whether ∃ #—x , f Lα (#—x) ∼ γ (i.e.,
whether CUT∼γ(f Lα) 6= ∅)
→ is there a car costing exactly 10 000 euros?

• MX�γ , ME�γ : exhibiting an #—x , enumerating all #—x such that
f Lα (#—x) � γ
→ which cars are cheaper than 10 000 euros?

. . . and the other combinations

18 / 38

Map for queries

Query ADD SLDD+ SLDD× AADD VCSP+

EQ
√ √ √ √

?
SE

√ √ √
? ◦

OPTmin

√ √ √ √ ◦
MXmin / MEmin

√ √ √ √ ◦
CTmin

√ √ √ √ ◦
CO∼γ / MX∼γ / ME∼γ

√ ◦ ◦ ◦ ◦
CO�γ / MX�γ / ME�γ

√ √ √ √ ◦
CT∼γ / CT�γ

√ ◦ ◦ ◦ ◦

• ADD satis�es all queries

• SLDD+, SLDD×, and AADD behave the same on queries

• Queries on optimal cuts are easy

• Counting is hard on γ-cuts

• All queries on exact γ-cuts are hard (red. from subset sum)

19 / 38

Cut transformations

A language L satis�es a transformation if there exists a polynomial
algorithm performing it while staying in L

Given a L representation α of f , we want a L representation of a cut of f :

• CUTmin: compute a L representation of the set of cheapest cars

• CUT�γ : compute a L representing the set of cars are cheaper than
10 000 euros

• CUT∼γ : compute a L representing the set of cars costing exactly
10 000 euros

20 / 38

Cut transformations

On ADD, CUTmin,CUT�γ , CUT∼γ , etc. are trivial:

this is why ADD satis�es all queries related to cuts.

21 / 38

Cut-based transformations

Transformation ADD SLDD+ SLDD× AADD

CUTmin

√ √ √ √

CUT∼γ
√ • • •

CUT�γ
√ • • •

• Cutting to the optimum is easy, even on SLDD and AADD: after
normalizing, the minimal paths are those in which all arcs have
factor 0

• Cutting w.r.t. a threshold is not polynomial (it may require a
complete unfolding of the structure)

22 / 38

Conditioning and Combinations

Conditioning CD de�ned as in the Boolean case

The other transformations are parameterized by an associative and
commutative binary operator � on V

• �C: combining n formulas by � (i.e., building a formula in L

representing the function
⊙n

i=1 f
L

αi
)

I +C ×C: useful for bottom un compilation

• �BC: combining a bounded number of L representations

I ×BC
→ making a discount

I minBC
→ choosing in two catalogs

23 / 38

Map for transformations: combinations

Transformation ADD SLDD+ SLDD× AADD

minC / +C / ×C • • • •
minBC

√ • • •
+BC

√ √ • •
×BC √ • √ •

• ADD satis�es all bounded combinations
→ �apply� algorithm, similar to OBDDs

• SLDD+ satis�es the combination by +
SLDD× satis�es the combination by ×
→ the �apply� algorithm also works because the operators are

associative and commutative

24 / 38

Map for transformations: combinations

Transformation ADD SLDD+ SLDD× AADD

minC / +C / ×C • • • •
minBC

√ • • •
+BC

√ √ • •
×BC √ • √ •

• SLDD+ does not satisfy the combination by ×:
consider the function f (#—x) =

∑n−1

i=0 xi · 2i and
g(#—x) = 2n+1 − 1− f (#—x); linear SLDD+ representation, but f × g
has only exponential SLDD+ representations

• SLDD× does not satisfy the combination by +: similar proof

• AADD does not satisfy any bounded combination.

24 / 38

Transformations: variable elimination

• �Elim, elimination of variables Y w.r.t. � : building a formula in L

representing
⊙

#—y f Lα | #—y
→ e.g., forgetting = max-elimination

• �Marg, marginalization on a single variable w.r.t. �: eliminating
all variables but one
→ +-marginalization on a variable in Bayesian networks

25 / 38

Map for transformations: marginalization

Transformation ADD SLDD+ SLDD× AADD

minMarg
√ √ √ √

+Marg
√ √ √ √

×Marg
√

?
√

?

Marginalization is easy when the elimination of the last variable can be
done in linear time.

Works for +Marg on SLDD× and AADD basically because multiplication
distributes over addition
→ does not work for ×Marg on SLDD+ and AADD

26 / 38

Map for transformations: Variable Elimination

No language satis�es any elimination, even of a single variable, as long as
its domain is unbounded

Transformation ADD SLDD+ SLDD× AADD

minElim/ +Elim / ×Elim • • • •
SminElim / S+Elim / S×Elim • • • •
SBmaxElim / SBminElim

√ • • •
SB+Elim

√ √ • •
SB×Elim √ • √ •

S�Elim: eliminating a single variable

SB�Elim: eliminating a single bounded-domain variable

27 / 38

Summary

• Conditionning and Optimization satis�ed on AADD,SLDD+, SLDD×,
ADD

• minBC satis�ed on ADD only

• AADD "more succinct" than SLDD+, SLDD×, themselves "more
succinct" than ADD

• +BC ok on SLDD+ and ADD only

28 / 38

Outline

Con�guration and Compilation

Valued Decision Diagrams

A Compilation Map for Real Valued Decision Diagrams

Experiments

28 / 38

On the pratical succintness of valued decision diagrams

• Design of a bottom-up ordered SLDD+ SLDD× compiler.

I Input: VCSP instance (XML format) or Bayesian Nets (XML
format).

I Output: an equivalent SLDD+ / SLDD×,

• Test of a large set of variable ordering heuristics.

• Design of toolbox of transformation procedures (that are basically
normalization procedures)

I SLDD+ (resp. SLDD×) to ADD
I ADD to SLDD+, SLDD×
I SLDD+ (resp. SLDD×) to AADD

29 / 38

Benchmark tested

Two families of benchmarks.

• VCSP instances encoding car con�gurations problems with pricing
functions

I Small: #variables=139; max. domain size=16;
#constraints=176 (including 29 soft constraints)

I Medium: #variables=148; max. domain size=20;
#constraints=268 (including 94 soft constraints)

I Big: #variables=268; max. domain size=324;
#constraints=2157 (including 1825 soft constraints)

• Bayesian networks: Cancer, Asia, Car-starts, Alarm,

Hailfinder25

30 / 38

Heuristics

MCF Band-Width MCS Force

Instance nodes cpu nodes cpu nodes cpu nodes cpu

VCSP
7→SLDD+

Small 3 100 1,2s 4 349 1,0s 2 344 1,0s 3 415 1,2s
Medium 5 660 1,5s 11 700 1,6s 6 242 1,4s 13 603 1,5s
Big m-o - 326 884 112s 196 098 71s m-o -

Bayes
7→SLDD×
Asia 35 0,06s 29 0,06s 23 0,06s 25 0,06s
Car-starts 60 0,1s 40 0,09s 40 0,09s 41 0,09s
Alarm m-o - 5 843 0,8s 1 301 0.5 7 054 1,0s
Hail m-o - m-o - 15 333 1,3s 139 172 114s
�nder25

MCS = Maximum Cardinality Search heuristic
[Tarjan and Yannakakis, 1984] in reverse order

31 / 38

Pratical Succinctness

SLDD+ ADD SLDD× AADD

Instance nodes temps nodes nodes nodes

Small 1 744 0,9s 28 971 19 930 1 744

Medium 3 238 1,3s 463 383 354 122 3 156

Big 73 702 34s m-o m-o 73 702

Rés. bay. SLDD× ADD SLDD+ AADD

Instance nodes temps nodes nodes nodes

Asia 23 0, 07s 415 216 23

Car-starts 40 0, 1s 42 741 19 632 40

Alarm 1 301 0, 5s m-o m-o 1 301

Hail�nder25 15 333 1,8s m-o m-o 15 331

• AADD, SLDD+, SLDD× < ADD;

• AADD < SLDD+, SLDD× but not so much :

I AADD and SLDD+ comparable on additive pricing functions,
I AADD and SLDD× comparable on bayesian nets (multiplicative)

32 / 38

On line use : CD + marginalization on each variable

VCSP SLDD+ AADD ratio

Small 222µs 281µs 1,27

Medium 487µs 578µs 1,19

Big 22,1ms 39,9ms 1,81

Bayes SLDD× AADD ratio

Asia 29,0µs 32,3µs 1,11

Car-starts 61,5µs 75,6µs 1,23

Alarm 259µs 292µs 1,13

Hail�nder25 7,68ms 9,16ms 1,19

SLDD is more e�cient: less number manipulations (AADD makes many
unsuccessful attempts of saving space), less rounding errors

33 / 38

On line use : CD + marginalization on each variable

Figure: Average and maximal time (ms) for conditionning +
marginalization on the big car con�guration instance.

34 / 38

On line use : full con�guration process (without prices)

Figure: Average time (ms) for conditionning + marginalization on the big
car con�guration instance.

35 / 38

Conclusion and perspectives
Done:

• Premisses of a KC map of non-Boolean functions (here :
R+-valued functions)

• SLDD : implementation of a compiler + a toolbox (SALADD)

• Very e�cient on our con�guration problems

• Experimental results may contrast with theoretical ones on some
instances (SLDD+ vs. AADD)

I Do not necessarily "recompile" on line : fusion of isomorphic
nodes, determinism are not compulsory

To Do / Further Research

• Complete the KC map: Arithmetic circuits, V-AOMDD, Sentential
Networks (ideally an Algebraic map)

• Application of AADD to problems that need their full power

• Learning preferences : SLDD× , Bayesian nets, SDDs

36 / 38

Conclusion and perspectives
Done:

• Premisses of a KC map of non-Boolean functions (here :
R+-valued functions)

• SLDD : implementation of a compiler + a toolbox (SALADD)

• Very e�cient on our con�guration problems

• Experimental results may contrast with theoretical ones on some
instances (SLDD+ vs. AADD)

I Do not necessarily "recompile" on line : fusion of isomorphic
nodes, determinism are not compulsory

To Do / Further Research

• Complete the KC map: Arithmetic circuits, V-AOMDD, Sentential
Networks (ideally an Algebraic map)

• Application of AADD to problems that need their full power

• Learning preferences : SLDD× , Bayesian nets, SDDs

36 / 38

Conclusion and perspectives
Done:

• Premisses of a KC map of non-Boolean functions (here :
R+-valued functions)

• SLDD : implementation of a compiler + a toolbox (SALADD)

• Very e�cient on our con�guration problems

• Experimental results may contrast with theoretical ones on some
instances (SLDD+ vs. AADD)

I Do not necessarily "recompile" on line : fusion of isomorphic
nodes, determinism are not compulsory

To Do / Further Research

• Complete the KC map: Arithmetic circuits, V-AOMDD, Sentential
Networks (ideally an Algebraic map)

• Application of AADD to problems that need their full power

• Learning preferences : SLDD× , Bayesian nets, SDDs

36 / 38

Conclusion and perspectives
Done:

• Premisses of a KC map of non-Boolean functions (here :
R+-valued functions)

• SLDD : implementation of a compiler + a toolbox (SALADD)

• Very e�cient on our con�guration problems

• Experimental results may contrast with theoretical ones on some
instances (SLDD+ vs. AADD)

I Do not necessarily "recompile" on line : fusion of isomorphic
nodes, determinism are not compulsory

To Do / Further Research

• Complete the KC map: Arithmetic circuits, V-AOMDD, Sentential
Networks (ideally an Algebraic map)

• Application of AADD to problems that need their full power

• Learning preferences : SLDD× , Bayesian nets, SDDs

36 / 38

Conclusion and perspectives
Done:

• Premisses of a KC map of non-Boolean functions (here :
R+-valued functions)

• SLDD : implementation of a compiler + a toolbox (SALADD)

• Very e�cient on our con�guration problems

• Experimental results may contrast with theoretical ones on some
instances (SLDD+ vs. AADD)

I Do not necessarily "recompile" on line : fusion of isomorphic
nodes, determinism are not compulsory

To Do / Further Research

• Complete the KC map: Arithmetic circuits, V-AOMDD, Sentential
Networks (ideally an Algebraic map)

• Application of AADD to problems that need their full power

• Learning preferences : SLDD× , Bayesian nets, SDDs

36 / 38

Conclusion and perspectives
Done:

• Premisses of a KC map of non-Boolean functions (here :
R+-valued functions)

• SLDD : implementation of a compiler + a toolbox (SALADD)

• Very e�cient on our con�guration problems

• Experimental results may contrast with theoretical ones on some
instances (SLDD+ vs. AADD)

I Do not necessarily "recompile" on line : fusion of isomorphic
nodes, determinism are not compulsory

To Do / Further Research

• Complete the KC map: Arithmetic circuits, V-AOMDD, Sentential
Networks (ideally an Algebraic map)

• Application of AADD to problems that need their full power

• Learning preferences : SLDD× , Bayesian nets, SDDs

36 / 38

Conclusion and perspectives
Done:

• Premisses of a KC map of non-Boolean functions (here :
R+-valued functions)

• SLDD : implementation of a compiler + a toolbox (SALADD)

• Very e�cient on our con�guration problems

• Experimental results may contrast with theoretical ones on some
instances (SLDD+ vs. AADD)

I Do not necessarily "recompile" on line : fusion of isomorphic
nodes, determinism are not compulsory

To Do / Further Research

• Complete the KC map: Arithmetic circuits, V-AOMDD, Sentential
Networks (ideally an Algebraic map)

• Application of AADD to problems that need their full power

• Learning preferences : SLDD× , Bayesian nets, SDDs

36 / 38

Conclusion and perspectives
Done:

• Premisses of a KC map of non-Boolean functions (here :
R+-valued functions)

• SLDD : implementation of a compiler + a toolbox (SALADD)

• Very e�cient on our con�guration problems

• Experimental results may contrast with theoretical ones on some
instances (SLDD+ vs. AADD)

I Do not necessarily "recompile" on line : fusion of isomorphic
nodes, determinism are not compulsory

To Do / Further Research

• Complete the KC map: Arithmetic circuits, V-AOMDD, Sentential
Networks (ideally an Algebraic map)

• Application of AADD to problems that need their full power

• Learning preferences : SLDD× , Bayesian nets, SDDs

36 / 38

Bibliography
Amilhastre, J., Fargier, H., and Marquis, P. (2002).

Consistency restoration and explanations in dynamic CSPs: Application to con�guration.

Arti�cial Intelligence, 135(1�2):199�234.

Bahar, R. I., Frohm, E. A., Gaona, C. M., Hachtel, G. D., Macii, E., Pardo, A., and Somenzi, F.

(1993).

Algebraic decision diagrams and their applications.

In Proceedings of ICCAD'93, pages 188�191.

Darwiche, A. and Marquis, P. (2002).

A knowledge compilation map.

Journal of Arti�cial Intelligence Research (JAIR), 17:229�264.

Fargier, H., Marquis, P., and Schmidt, N. (2013).

Semiring labelled decision diagrams, revisited: Canonicity and spatial e�ciency issues.

In Proceedings of IJCAI'13.

Fargier, H., Niveau, A., Marquis, P., and Schmidt, N. (2014).

A knowledge compilation map for ordered real-valued decision diagrams.

In Proceedings of AAAI'2014.

Accepté pour publication.

Hadzic, T. (2004).

A bdd-based approach to interactive con�guration.

In Proceedings of CP'04, page 797.

Kisa, D., den Broeck, G. V., Choi, A., and Darwiche, A. (2014).

Probabilistic sentential decision diagrams.

In Principles of Knowledge Representation and Reasoning: Proceedings of the Fourteenth
International Conference, KR 2014, Vienna, Austria, July 20-24, 2014.

Pargamin, B. (2002).

Vehicle sales con�guration: the cluster tree approach.

In ECAI 2002 Con�guration Workshop, pages 35�40.

Sanner, S. and McAllester, D. A. (2005).

A�ne algebraic decision diagrams (AADDs) and their application to structured probabilistic
inference.

In Proceedings of IJCAI'05, pages 1384�1390.

Sinz, C. (2002).

Knowledge compilation for product con�guration.

In Con�guration Workshop Proceedings, 15th European Conference on Arti�cial Intelligence
(ECAI-2002), pages 23�26, Lyon, France.

Tarjan, R. E. and Yannakakis, M. (1984).

Simple linear-time algorithms to test chordality of graphs, test acyclicity of hypergraphs, and
selectively reduce acyclic hypergraphs.

SIAM J. Comput., 13(3):566�579.

Weigel, R. and Faltings, B. (1999).

Compiling constraint satisfaction problems.

Artif. Intell., 115(2):257�287.

Wilson, N. (2005).

Decision diagrams for the computation of semiring valuations.

In Proceedings of IJCAI'05, pages 331�336.

37 / 38

Bibliography

[Fargier et al., 2014, Fargier et al., 2013] [Kisa et al., 2014]

38 / 38

	Configuration and Compilation
	Valued Decision Diagrams
	A Compilation Map for Real Valued Decision Diagrams
	Experiments

