A KC Map of Valued Decision Diagrams
- application to product configuration -

Héléne Fargier! Pierre Marquis®
Alexandre Niveau® Nicolas Schmidt!:?

L IRIT-CNRS, Univ. Paul Sabatier, Toulouse, France
2 CRIL-CNRS, Univ. Artois, Lens, France

3 GREYC-CNRS, Univ. Caen, France

June 4, 2015

0/38

Outline

Configuration and Compilation

Valued Decision Diagrams

A Compilation Map for Real Valued Decision Diagrams

Experiments

0/38

Outline

Configuration and Compilation

0/38

Introductory example

e Problem of interactive product configuration: a car

e Configure :

the motor — solar or pedals

the color — blue or red

the size — family car or two-seater
the radio option — with or without

vV vy vVvyy

1/38

Introductory example

e Problem of interactive product configuration: a car

e Configure :

» the motor — solar or pedals

» the color — blue or red

» the size — family car or two-seater
» the radio option — with or without

e Constraints:

» pedal cars must be red
» solar panels do not fit on two-seaters
» family cars all have a radio

1/38

Basic Problem

e Configurable product — constraint satisfaction problem (CSP)

» Configuration parameter = a CSP variable (finite domain)
» Constraints

motor = pedals — color = red
motor = solar — size > twoseater

size = twoseater V radio = with

» each solution corresponds to an admissible configuration

2/38

Basic Problem

e Configurable product — constraint satisfaction problem (CSP)

» Configuration parameter = a CSP variable (finite domain)
» Constraints

motor = pedals — color = red
motor = solar — size > twoseater

size = twoseater V radio = with

» each solution corresponds to an admissible configuration
e Configuration process:

» The program presents, for each variable, values that lead to at
least one solution

» The user assigns a value to some variable

» Which are the values of the free variables that are not
consistent ?

2/38

Basic Problem

e Configurable product — constraint satisfaction problem (CSP)

» Configuration parameter = a CSP variable (finite domain)
» Constraints

motor = pedals — color = red
motor = solar — size > twoseater

size = twoseater V radio = with

» each solution corresponds to an admissible configuration
e Configuration process:

» The program presents, for each variable, values that lead to at
least one solution

» The user assigns a value to some variable

» Which are the values of the free variables that are not
consistent ?

e NP-complete problem ... but the user cannot wait too long after
each choice

2/38

A solution: knowledge compilation
e The CSP is a fixed part of the problem

— we can compile it into a suitable data structure, such as an OBDD
or a MDD:

Sol
e

e Assigning values to variables (conditioning) and checking
consistency are polynomial operations on MDDs/OBDDs

twoseater——— | |

oseater

— the user’s wait is reduced

3/38

Configuration and Compilation

Configuration is an "Historical" application of compilation techniques

Synthesis Trees [Weigel and Faltings, 1999]

Prime Implicates (?) [Sinz, 2002]

OBDDs, Ordered MDD [Amilhastre et al., 2002, Hadzic, 2004]
Cluster Trees [Pargamin, 2002]

By the way, several properties a not compulsory: "linerarity" of the
structure, determinism, ordering of the variables.

4/38

Choosing a compilation language

OBDD
DNNF

~___» d-DNNF

PROBLEM
— ™ CNF

N DNF

e Which language is the best for my application?
— use the compilation map [Darwiche and Marquis, 2002]

e Compares langages according to two criteria:

1. efficiency of operations
2. succinctness

5/38

Compilation map: operations

e All online manipulations amount to elementary queries and

transformations

(uonzeSau) H [[> o0 [>">">e e
('fstp papunoq) DgA [[>>>0 o[>
(uondunfsip) JA (S>> > e o[> e
(‘fuo> papunoq) gV [[> o[>0 o[>
(uondunfuod) HV [[>o[>e e|e >
(8103 318u1s) OIS ||>>> 0 >
(8un3s8i0y) O4||o (o e e[>o0
(8utuontpuod) @ [[>5>5 5>

mlaaa
("wnus ppow) gy [|o >0 >0
(3uno> spow) 15 |[o o|o >">lo o
(3uswreus) 35[0 o|o o ofo o
(?2usjeamnbs) P3|[o ofo~ >0 o
(323> 3uesydwir) p |[o oo >0 >
(‘3wjieaus asnep) 37 |[o >0 > o0
(Aupyier) WA [[o o]0 >0 >
(Kousisisuod) 0D (|0 >0 >0

Elg aa

polynomial

v

not polynomial, unless P = NP

not polynomial

o

6/38

Compilation map: operations

e All online manipulations amount to elementary queries and

transformations

(uonzeSau) H [[> o0 [>">">e e
('fstp papunoq) DgA [[>>>0 o[>
(uondunfsip) JA (S>> > e o[> e
(‘fuo> papunoq) gV [[> o[>0 o[>
(uondunfuod) HV [[>o[>e e|e >
(8103 318u1s) OIS ||>>> 0 >
(8un3s8i0y) O4||o (o e e[>o0
(8utuontpuod) @) >

mlaaa
("wnus ppow) gy [|o >0 >0
(3uno> spow) 15 |[o o|o >">lo o
(3uswreus) 35[0 o|o o ofo o
(?2usjeamnbs) P3|[o ofo~ >0 o
(323> 3uesydwir) p |[o oo >0 >
(‘3wjieaus asnep) 37 |[o >0 > o0
(Aupyier) WA [[o o]0 >0 >
(Koussisuod) 0D [|o o >>> o

Elg aa

polynomial

v

not polynomial, unless P = NP

not polynomial

o

6/38

Compilation map: operations

e All online manipulations amount to elementary queries and

transformations

(uonzeSau) H [[> o0 [>">">e e
('fstp papunoq) DgA [[>>>0 o[>
(uondunfsip) JA (S>> > e o[> e
(‘fuo> papunoq) gV [[> o[>0 o[>
(uondunfuod) HV [[>o[>e e|e >
(8103 318u1s) OIS ||>>> 0 >
(8un3s8i0y) O4||o (o e e[>o0
(8utuontpuod) @) >
mlaaa
("wnus ppow) gy [|o >0 >0
(3uno> spow) 15 |[o o|o >">lo o
(3uswreus) 35[0 o|o o ofo o
(?2usjeamnbs) P3|[o ofo~ >0 o
(323> 3uesydwir) p |[o oo >0 >
(‘3wjieaus asnep) 37 |[o >0 > o0
(Aupyier) WA [[o o]0 >0 >
(Koussisuod) 0D [|o o >>> o
IR
BEHAHEE

polynomial

v

not polynomial, unless P = NP

not polynomial

o

6/38

Compilation map: succinctness

e Succinctness relation (<;): orders languages

e L; <, Ly means “L; is at least as succinct as Ly"

[krow-c[v]]| [HORN-C[V]]

7/38

Compilation map: succinctness

e Succinctness relation (<;): orders languages

e L; <, Ly means “L; is at least as succinct as Ly"

7/38

The full configuration process

A more complex process:

e The program presents, for each variable, values that satisfy the
constraints (given the current choices), and discards the others

8/38

The full configuration process

A more complex process:

e The program presents, for each variable, values that satisfy the
constraints (given the current choices), and discards the others

e The user assigns a value to some variable, or removes a previous
assignment (without ny prescribed order)

8/38

The full configuration process

A more complex process:

e The program presents, for each variable, values that satisfy the
constraints (given the current choices), and discards the others

e The user assigns a value to some variable, or removes a previous
assignment (without ny prescribed order)

e The programm should provide explanations for invalid choices,
propose restorations, alternative values, etc

8/38

The full configuration process

A more complex process:

e The program presents, for each variable, values that satisfy the
constraints (given the current choices), and discards the others

e The user assigns a value to some variable, or removes a previous
assignment (without ny prescribed order)

e The programm should provide explanations for invalid choices,
propose restorations, alternative values, etc

e The program maintains the cost of cheapest car consistent with the
current choices

8/38

The full configuration process

A more complex process:

The program presents, for each variable, values that satisfy the
constraints (given the current choices), and discards the others

The user assigns a value to some variable, or removes a previous
assignment (without ny prescribed order)

The programm should provide explanations for invalid choices,
propose restorations, alternative values, etc

The program maintains the cost of cheapest car consistent with the
current choices

Upon deman, it present the minimal and maximal costs associated
to the remaining choices

8/38

The full configuration process

A more complex process:

The program presents, for each variable, values that satisfy the
constraints (given the current choices), and discards the others

The user assigns a value to some variable, or removes a previous
assignment (without ny prescribed order)

The programm should provide explanations for invalid choices,
propose restorations, alternative values, etc

The program maintains the cost of cheapest car consistent with the
current choices

Upon deman, it present the minimal and maximal costs associated
to the remaining choices

The programm shall recommend interesting values for the next
variable, given the current choices and selling histories

8/38

The full configuration process

A more complex process:

The program presents, for each variable, values that satisfy the
constraints (given the current choices), and discards the others

The user assigns a value to some variable, or removes a previous
assignment (without ny prescribed order)

The programm should provide explanations for invalid choices,
propose restorations, alternative values, etc

The program maintains the cost of cheapest car consistent with the
current choices

Upon deman, it present the minimal and maximal costs associated
to the remaining choices

The programm shall recommend interesting values for the next
variable, given the current choices and selling histories

Study non-Boolean compilation languages

8/38

Problematics

Many Al applications use functions with non-Boolean values

e cost or utility functions (e.g. in configuration problems)
e probability distributions (e.g. selling histories)

e weighted knowledge bases. . .

9/38

Problematics

Many Al applications use functions with non-Boolean values

e cost or utility functions (e.g. in configuration problems)
e probability distributions (e.g. selling histories)

e weighted knowledge bases. . .
Compilation into a suitable language

e Valued CSPs, GAl-nets, Bayesian networks, weighted bases: the
problem is expressed compactly, but optimization is hard

e Valued Decision Diagrams : ADD, SLDDs, AADDs (generalization
of OBDDs)

e More freedom in the structure: arithmetic circuits, probabilistic
sentential decision diagrams

9/38

Problematics

Many Al applications use functions with non-Boolean values

e cost or utility functions (e.g. in configuration problems)
e probability distributions (e.g. selling histories)

e weighted knowledge bases. . .
Compilation into a suitable language

e Valued CSPs, GAl-nets, Bayesian networks, weighted bases: the
problem is expressed compactly, but optimization is hard

e Valued Decision Diagrams : ADD, SLDDs, AADDs (generalization
of OBDDs)

e More freedom in the structure: arithmetic circuits, probabilistic
sentential decision diagrams

This talk: Valued Decision Diagrams : KC map + experiments

9/38

Outline

Valued Decision Diagrams

9/38

ADDs: algebraic decision diagrams [Bahar et al., 1993]

e Like OBDDs, but each leaf is a value from a set V

pedals solar

e Optimization is trivial, Conditionning and Marginalization on one
variable are easy

10/38

SLDDs: semiring-labeled decision diagrams [Wilson, 2005]

e Problem of ADDs: one leaf per value
e |dea: move values up on the arcs, so that they can be shared

e Value of a path = aggregation of encountered values

Example in configuration w.r.t. pricing
function: V = R*, aggregation by sum
— SLDD. language

Other possibility for V = R™:
aggregating by product

— SLDDx language — for probability
distributions

11/38

SLDDs: semiring-labeled decision diagrams [Wilson, 2005]

e Problem of ADDs: one leaf per value
e Idea: move values up on the arcs, so that they can be shared
e Value of a path = aggregation of encountered values

Example in configuration w.r.t. pricing
function: V = R*, aggregation by sum
— SLDD language

Other possibility for V = R™:
aggregating by product

— SLDDx language — for probability
distributions

11/38

SLDDs: semiring-labeled decision diagrams [Wilson, 2005]

e Problem of ADDs: one leaf per value
o |dea: move values up on the arcs, so that they can be shared

e Value of a path = aggregation of encountered values

Example in configuration w.r.t. pricing
function: V = R™, aggregation by sum Color
— SLDD. language

() 0
Other possibility for V = R™: Engine Engine Engine
aggregating by product
— SLDDx language — for probability 0 \z [1 1
distributions '\
V]

11/38

SLDDs: semiring-labeled decision diagrams [Wilson, 2005]

e Problem of ADDs: one leaf per value
o |dea: move values up on the arcs, so that they can be shared

e Value of a path = aggregation of encountered values

Example in configuration w.r.t. pricing
function: V = R, aggregation by sum Color
— SLDD. language

() 1
Other possibility for V = R™: engine engine engine
aggregating by product
— SLDDx language — for probability o \.2 o 0 /4
distributions .
0

11/38

SLDDs: semiring-labeled decision diagrams [Wilson, 2005]

e Problem of ADDs: one leaf per value
o |dea: move values up on the arcs, so that they can be shared

e Value of a path = aggregation of encountered values

Example in configuration w.r.t. pricing
function: V = R*, aggregation by sum
— SLDD. language

Other possibility for V = R™:
aggregating by product

— SLDDy language — for probability
distributions

11/38

AADDs: Affine Agebraic DD [Sanner and McAllester, 2005]

e A variant of SLDD: aggregation by a combination of sum and
product

— two factors on each arc a, an additive one and a multiplicative one
(g,f)

e Path starting with a : value g + f X Vjec, with V. the value of the
rest of the path

SLDD: "Red, Solar": 4 +1 =5

AADD: "Red, Solar":
0+1.(1+1.(4+1.0)=5

12/38

AADDs: Affine Agebraic DD [Sanner and McAllester, 2005]

e A variant of SLDD: aggregation by a combination of sum and
product

— two factors on each arc a, an additive one and a multiplicative one
(g,f)

e Path starting with a : value g + f X Vjec, with V. the value of the
rest of the path

SLDD: "Red, Solar": 4 +1 =5

AADD: "Red, Solar":
0+1.(141.(4410)=5

12/38

AADDs: Affine Agebraic DD [Sanner and McAllester, 2005]

e A variant of SLDD: aggregation by a combination of sum and
product

— two factors on each arc a, an additive one and a multiplicative one
(g,f)

e Path starting with a : value g + f X Vjec, with V. the value of the
rest of the path

SLDD: "Red, Solar": 4 +1 =5

AADD: "Red, Solar":
0+1.(1+1.(4+1.0)=5

12/38

AADDs: Affine Agebraic DD [Sanner and McAllester, 2005]

e A variant of SLDD: aggregation by a combination of sum and
product

— two factors on each arc a, an additive one and a multiplicative one
(g,f)

e Path starting with a : value g + f X Vjec, with V. the value of the
rest of the path

SLDD: "Red, Solar": 44+1=5

AADD: "Red, Solar":
0+1(14+1.(4+1.0))=5

12/38

AADDs: Affine Agebraic DD [Sanner and McAllester, 2005]

e A variant of SLDD: aggregation by a combination of sum and
product

— two factors on each arc a, an additive one and a multiplicative one
(g,f)

e Path starting with a : value g + f X Vjec, with V. the value of the
rest of the path

SLDD: "Red, Solar": 44+1=5

AADD: "Red, Solar":
0+1.(1+1.(44+10)=5

12/38

AADDs: Affine Agebraic DD [Sanner and McAllester, 2005]

e A variant of SLDD: aggregation by a combination of sum and
product

— two factors on each arc a, an additive one and a multiplicative one
(g,f)

e Path starting with a : value g + f X Vjec, with V. the value of the
rest of the path

SLDD: "Red, Solar": 4 +1 =5 1/5.4/5>
AADD: "Red, Solar":

0+1.(14+1.(441.0)=5 @

12/38

AADDs: Affine Agebraic DD [Sanner and McAllester, 2005]

e A variant of SLDD: aggregation by a combination of sum and
product

— two factors on each arc a, an additive one and a multiplicative one
(g,f)

e Path starting with a : value g + f X Vjec, with V. the value of the
rest of the path

n n. —
SLDD: "Red, Solar": 4 +1 =5 A5, A5
AADD: "Red, Solar":

0+1.(14+1.(441.0)=5 @

e Normalization conditions — all paths to the leaf have value € [0, 1];

extrema can be read on the root's offset 12/38

Outline

A Compilation Map for Real Valued Decision Diagrams

12/38

The R™-VDDs languages

Recall that a L-representation « is a data structure that represent a
function £L(X)

e We ca have a AADD, VCSP or a ADD representation of function
f(xt,- %) = Zi=1..2""1x; on {0,1}"

o Two representations a and 3 are equivalent iff - = fﬁL,

13/38

The R™-VDDs languages

e We restrict ourselves to languages ADD on IR™, SLDD,, SLDDy and
AADD.

o All satisfy canonicity (upon normalization) : equivalent
sub-functions are isomorphic ; caching is efficient.

e A hierarchy of languages : ADD T SLDD,,SLDD, T AADD

14/38

Map for R™-VDDs: Succinctness

Ly is at least as succinct as Lo, denoted L1 <s L», iff there exists a

polynomial p such that for every L, representation «, there exists a L;
representation 3 which is equivalent to a and s.t. size(3) < p(size(a)).

15 /38

Map for R™-VDDs: Succinctness

Ly is at least as succinct as Lo, denoted L1 <s L», iff there exists a

polynomial p such that for every L, representation «, there exists a L;

representation 3 which is equivalent to a and s.t. size(3) < p(size(a)).

e.g. because the function f(xi,...,x,) = £;=1,2""1x; on {0,1}" maps

to an exponential set of values and cannot be represented by a product .

15 /38

Queries

A VDD « represent function f,(X) taking its values in an ordered
valuation scale V (here, V = R™)

e Equivalence query EQ similar to the Boolean case: indicating

whether VX, f3(X) = f3(X)
— are these two catalogs the same?

16 /38

Queries

A VDD « represent function f,(X) taking its values in an ordered
valuation scale V (here, V = R™)

e Equivalence query EQ similar to the Boolean case: indicating
whether VX, f3(X) = f3(X)
— are these two catalogs the same?

e Sentential entailment SE: given a preorder < on V), indicating
whether VX, f3(X) = f3(X)
— s thls e-shop always cheaper than this other one?

16 /38

Queries

A VDD « represent function f,(X) taking its values in an ordered
valuation scale V (here, V = R™)

e Equivalence query EQ similar to the Boolean case: indicating
whether VX, f3(X) = f3(X)
— are these two catalogs the same?
e Sentential entailment SE: given a preorder < on V), indicating

whether VX, f3(X) = f3(X)
— s thls e-shop always cheaper than this other one?

e A language L satisfies OPT;, if there exists a polynomial
algorithm mapping any formula « of L to the value miny fX(X).
— what is the price of the cheapest cars ?

16 /38

Queries on cuts

Many of the other queries are based on cuts

Let f be a V-valued function, < a preorder on V, and v € V; we define
the following sets:

o CUTH(f)={X|Ff(X)=~}
— cars cheaper than 10000 euros

o CUT(A)={X[f(X)~7}
— cars costing exactly 10000 euros

o CUT™"(f)={X*|VX,~(f(X) < f(X*))}
— the cheapest cars

17/38

Queries on cuts

Cut =~ set of “models”

® CTpin: counting minimal elements for < (i.e., returning the
cardinal of CUT™"(f}))
— how many cheapest configurations?

e Partial consistency CO.,: indicating whether 3X, fX(X) ~ v (i.e.,
whether CUT™ (L) # @)
— is there a car costing exactly 10000 euros?

e MX<,, ME<,: exhibiting an X, enumerating all X such that
f(X) =
— which cars are cheaper than 10000 euros?

... and the other combinations

18 /38

Map for queries

] Query | ADD SLDD, SLDD, AADD VCSP.
EQ
SE
OI:’Tmin
Ilemin / IVIEmin
CTmin
CO., / MX., / ME_,
CO, / MX<, / MEx,
CT.,/CT~,

0 <ol << < <L
0 <ol << < <L
0 < ol << Vel

LR

O O 0|0 Oof|O|O

ADD satisfies all queries

SLDD,, SLDD,, and AADD behave the same on queries
e Queries on optimal cuts are easy

e Counting is hard on ~-cuts

All queries on exact -cuts are hard (red. from SUBSET suM)

19/38

Cut transformations

A language L satisfies a transformation if there exists a polynomial
algorithm performing it while staying in L

Given a L representation « of f, we want a L representation of a cut of f:

e CUT.in: compute a L representation of the set of cheapest cars

e CUT<,: compute a L representing the set of cars are cheaper than
10000 euros

e CUT.,: compute a L representing the set of cars costing exactly
10000 euros

20/38

Cut transformations

On ADD, CUTnin CUT<,,, CUT.,, etc. are trivial:

this is why ADD satisfies all queries related to cuts.

21/38

Cut-based transformations

’ Transformation \ ADD SLDD, SLDD, AADD \

CUT min \/ \/ \/ \/
CUT., Vv ° ° .
CuUT<, vV ° . °

e Cutting to the optimum is easy, even on SLDD and AADD: after
normalizing, the minimal paths are those in which all arcs have
factor 0

e Cutting w.r.t. a threshold is not polynomial (it may require a
complete unfolding of the structure)

22/38

Conditioning and Combinations

Conditioning CD defined as in the Boolean case

The other transformations are parameterized by an associative and
commutative binary operator ® on V

e OC: combining n formulas by ® (i.e., building a formula in L
representing the function O;_; 1)

» +C xC: useful for bottom un compilation

e OBC: combining a bounded number of L representations

» xBC
— making a discount
» minBC
— choosing in two catalogs

23/38

Map for transformations: combinations

Transformation ADD SLDD; SLDD, AADD
minC / +C / xC
minBC v . . °
+BC \/ Vv ° .
xBC Vv . vV .

e ADD satisfies all bounded combinations
— “apply” algorithm, similar to OBDDs

e SLDD, satisfies the combination by +
SLDDy satisfies the combination by x
— the “apply” algorithm also works because the operators are
associative and commutative

24 /38

Map for transformations: combinations

Transformation ADD SLDD, SLDD, AADD
minC / +C / xC ° ° °
minBC v ° ° .
+BC \/ \/ ° .
xBC Vv . vV .

e SLDD, does not satisfy the combination by x:
consider the function f(X) = 3.7 x; - 2/ and

g(X) =21 —1 — f(X); linear SLDD, representation, but f x g
has only exponential SLDD, representations

e SLDDy does not satisfy the combination by +: similar proof

e AADD does not satisfy any bounded combination.

24 /38

Transformations: variable elimination

e OElim, elimination of variables Y w.r.t. ® : building a formula in L
representing O fy |y
— e.g., forgetting = max-elimination

e ©OMarg, marginalization on a single variable w.r.t. ®: eliminating
all variables but one
— +-marginalization on a variable in Bayesian networks

25 /38

Map for transformations: marginalization

’ Transformation \ ADD SLDD, SLDD, AADD \

minMarg Vv Vv Vv Vv
+Marg Vv Vv i i
xMarg v ? v ?

Marginalization is easy when the elimination of the last variable can be

done in linear time.
Works for +Marg on SLDD, and AADD basically because multiplication

distributes over addition
— does not work for x Marg on SLDD, and AADD

26 /38

Map for transformations: Variable Elimination

No language satisfies any elimination, even of a single variable, as long as

its domain is unbounded

Transformation ADD SLDD, SLDDy. AADD
minElim/ +Elim / xElim . . o o
SminElim / S+Elim / SxElim | e . . .
SBmaxElim / SBminElim N . . .
SB-+Elim Vv vV ° .
SBxElim Vv . Vv o

SGElim: eliminating a single variable

SBQ®EIlim: eliminating a single bounded-domain variable

27 /38

Summary

e Conditionning and Optimization satisfied on AADD,SLDD,, SLDD,
ADD

e minBC satisfied on ADD only

e AADD "more succinct" than SLDD,, SLDD,, themselves "more
succinct" than ADD

e +BC ok on SLDD; and ADD only

28 /38

Outline

Experiments

28 /38

On the pratical succintness of valued decision diagrams

e Design of a bottom-up ordered SLDD. SLDDy compiler.

» Input: VCSP instance (XML format) or Bayesian Nets (XML
format).
» Output: an equivalent SLDD, / SLDD,

e Test of a large set of variable ordering heuristics.

e Design of toolbox of transformation procedures (that are basically
normalization procedures)

» SLDD, (resp. SLDD,) to ADD
» ADD to SLDD., SLDDy
> SLDD, (resp. SLDD,) to AADD

20/38

Benchmark tested

Two families of benchmarks.

e VCSP instances encoding car configurations problems with pricing
functions

» Small: #variables=139; max. domain size=16;
#constraints=176 (including 29 soft constraints)

» Medium: #variables=148; max. domain size=20;
#constraints=268 (including 94 soft constraints)

» Big: #variables=268; max. domain size=324;
#constraints=2157 (including 1825 soft constraints)

e Bayesian networks: Cancer, Asia, Car-starts, Alarm,
Hailfinder25

30/38

Heuristics

MCF Band-Width MCS Force
Instance nodes [cpu nodes [cpu nodes [cpu nodes [cpu
VCSP
—SLDD_
Small 3 100 1,2s 4 349 1,0s 2 344 1,0s 3415 1,2s
Medium 5 660 1,5s 11 700 1,6s 6 242 1,4s 13 603 1,5s
Big m-o - 326 884 112s 196 098 71s m-o -
Bayes
—SLDD
Asia 35 0,06s 29 0,06s 23 0,06s 25 0,06s
Car-starts 60 0,1s 40 0,09s 40 0,09s 41 0,09s
Alarm m-o - 5 843 0,8s 1 301 0.5 7 054 1,0s
Hail m-o - m-o - 15 333 1,3s 139 172 114s
finder25

MCS = Maximum Cardinality Search heuristic
[Tarjan and Yannakakis, 1984] in reverse order

31/38

Pratical Succinctness

SLDD; ADD SLDD, | AADD
Instance nodes | temps nodes nodes nodes
Small 1744 0,9s 28 971 19 930 1744
Medium 3238 1,3s | 463383 | 354 122 | 3156
Big 73 702 34s m-o m-o 73 702
Rés. bay. SLDDy ADD SLDD,; | AADD
Instance nodes | temps nodes nodes nodes
Asia 23 0,07s 415 216 23
Car-starts 40 0,1s 42 741 19 632 40
Alarm 1301 0,5s m-o m-o 1301
Hailfinder25 | 15 333 1,8s m-o m-o 15 331

e AADD, SLDD.,SLDD < ADD;
e AADD < SLDD.,SLDDyx but not so much :

» AADD and SLDD, comparable on additive pricing functions,
» AADD and SLDD, comparable on bayesian nets (multiplicative)

32/38

On line use : CD + marginalization on each variable

VCSP SLDD. | AADD || ratio
Small 222us 281us 1,27
Medium 48Tus 578us 1,19
Big 22,1ms | 39,9ms || 1,81
Bayes SLDDyx | AADD || ratio
Asia 29,0pus | 32,3us || 1,11
Car-starts 61,5us | 75,6us || 1,23
Alarm 259us 292us 1,13
Hailfinder25 | 7,68ms | 9,16ms || 1,19

SLDD is more efficient: less number manipulations (AADD makes many
unsuccessful attempts of saving space), less rounding errors

33/38

On line use : CD + marginalization on each variable

Figure: Average and maximal time (ms) for conditionning +
marginalization on the big car configuration instance.

max
18 — AVE.
16
14
12
cpu 10
(ms) 8
6
4
2 -\
0

1 5 9 13 17 21 256 29 33 37 41 45 49 53 57 61 65 69

assignment step

34/38

On line use : full configuration process (without prices)

Figure: Average time (ms) for conditionning + marginalization on the big

car configuration instance.

10000

1000

100

tirne|ms|

10

o1

14 7101316192225 2831 34374043 4640 52 5558 61 64 67
Assigment stegp

35/38

Conclusion and perspectives
Done:

e Premisses of a KC map of non-Boolean functions (here :
R*-valued functions)

36 /38

Conclusion and perspectives
Done:

e Premisses of a KC map of non-Boolean functions (here :
R*-valued functions)

e SLDD : implementation of a compiler + a toolbox (SALADD)

36 /38

Conclusion and perspectives
Done:

e Premisses of a KC map of non-Boolean functions (here :
R*-valued functions)

e SLDD : implementation of a compiler + a toolbox (SALADD)

e Very efficient on our configuration problems

36 /38

Conclusion and perspectives
Done:

e Premisses of a KC map of non-Boolean functions (here :
R*-valued functions)

e SLDD : implementation of a compiler + a toolbox (SALADD)
e Very efficient on our configuration problems

e Experimental results may contrast with theoretical ones on some
instances (SLDD, vs. AADD)

» Do not necessarily "recompile" on line : fusion of isomorphic
nodes, determinism are not compulsory

36 /38

Conclusion and perspectives
Done:

e Premisses of a KC map of non-Boolean functions (here :
R*-valued functions)

e SLDD : implementation of a compiler + a toolbox (SALADD)
e Very efficient on our configuration problems

e Experimental results may contrast with theoretical ones on some
instances (SLDD, vs. AADD)

» Do not necessarily "recompile" on line : fusion of isomorphic
nodes, determinism are not compulsory

To Do / Further Research

e Complete the KC map: Arithmetic circuits, V-AOMDD, Sentential
Networks (ideally an Algebraic map)

36 /38

Conclusion and perspectives
Done:

e Premisses of a KC map of non-Boolean functions (here :
R*-valued functions)

e SLDD : implementation of a compiler + a toolbox (SALADD)
e Very efficient on our configuration problems

e Experimental results may contrast with theoretical ones on some
instances (SLDD, vs. AADD)

» Do not necessarily "recompile" on line : fusion of isomorphic
nodes, determinism are not compulsory

To Do / Further Research

e Complete the KC map: Arithmetic circuits, V-AOMDD, Sentential
Networks (ideally an Algebraic map)

e Application of AADD to problems that need their full power

36 /38

Conclusion and perspectives
Done:

e Premisses of a KC map of non-Boolean functions (here :
R*-valued functions)

e SLDD : implementation of a compiler + a toolbox (SALADD)
e Very efficient on our configuration problems

e Experimental results may contrast with theoretical ones on some
instances (SLDD, vs. AADD)

» Do not necessarily "recompile" on line : fusion of isomorphic
nodes, determinism are not compulsory

To Do / Further Research

e Complete the KC map: Arithmetic circuits, V-AOMDD, Sentential
Networks (ideally an Algebraic map)

e Application of AADD to problems that need their full power

e Learning preferences : SLDD , Bayesian nets, SDDs

36/38

Conclusion and perspectives
Done:

e Premisses of a KC map of non-Boolean functions (here :
R*-valued functions)

e SLDD : implementation of a compiler + a toolbox (SALADD)
e Very efficient on our configuration problems

e Experimental results may contrast with theoretical ones on some
instances (SLDD, vs. AADD)

» Do not necessarily "recompile" on line : fusion of isomorphic
nodes, determinism are not compulsory

To Do / Further Research

e Complete the KC map: Arithmetic circuits, V-AOMDD, Sentential
Networks (ideally an Algebraic map)

e Application of AADD to problems that need their full power

e Learning preferences : SLDD , Bayesian nets, SDDs

36 /38

Bibliography
@ Amilhastre, J., Fargier, H., and Marquis, P. (2002).

Consistency restoration and explanations in dynamic CSPs: Application to configuration.
Artificial Intelligence, 135(1-2):199-234.

@ Bahar, R. |, Frohm, E. A., Gaona, C. M., Hachtel, G. D., Macii, E., Pardo, A., and Somenzi, F.
(1993).
Algebraic decision diagrams and their applications.
In Proceedings of ICCAD'93, pages 188-191.

@ Darwiche, A. and Marquis, P. (2002).
A knowledge compilation map.
Journal of Artificial Intelligence Research (JAIR), 17:229-264.
@ Fargier, H., Marquis, P., and Schmidt, N. (2013).
Semiring labelled decision diagrams, revisited: Canonicity and spatial efficiency issues.
In Proceedings of IJCAI'13.
@ Fargier, H., Niveau, A., Marquis, P., and Schmidt, N. (2014).

A knowledge compilation map for ordered real-valued decision diagrams.
In Proceedings of AAAI'2014.

Accepté pour publication.

@ Hadzic, T. (2004).
A bdd-based approach to interactive configuration.
In Proceedings of CP'04, page 797.

@ Kisa, D., den Broeck, G. V., Choi, A., and Darwiche, A. (2014).

Probabilistic sentential decision diagrams. 37/38

Bibliography

[Fargier et al., 2014, Fargier et al., 2013] [Kisa et al., 2014]

38/38

	Configuration and Compilation
	Valued Decision Diagrams
	A Compilation Map for Real Valued Decision Diagrams
	Experiments

