A KC Map of Valued Decision Diagrams - application to product configuration -

Hélène Fargier¹ Pierre Marquis² Alexandre Niveau³ Nicolas Schmidt^{1,2}

¹ IRIT-CNRS, Univ. Paul Sabatier, Toulouse, France

² CRIL-CNRS, Univ. Artois, Lens, France

³ GREYC-CNRS, Univ. Caen, France

June 4, 2015

Configuration and Compilation

Valued Decision Diagrams

A Compilation Map for Real Valued Decision Diagrams

Experiments

Configuration and Compilation

Valued Decision Diagrams

A Compilation Map for Real Valued Decision Diagrams

Experiments

Introductory example

- Problem of interactive product configuration: a car
- Configure :
 - ▶ the motor solar or pedals
 - the color blue or red
 - the size family car or two-seater
 - the radio option with or without

Introductory example

• Problem of interactive product configuration: a car

- Configure :
 - ▶ the motor solar or pedals
 - the color blue or red
 - the size family car or two-seater
 - the radio option with or without
- Constraints:
 - pedal cars must be red
 - solar panels do not fit on two-seaters
 - family cars all have a radio

Basic Problem

- Configurable product \rightarrow constraint satisfaction problem (CSP)
 - Configuration parameter = a CSP variable (finite domain)
 - Constraints

 $\left\{ \begin{array}{ll} \textit{motor} = \textit{pedals} & \rightarrow & \textit{color} = \textit{red} \\ \textit{motor} = \textit{solar} & \rightarrow & \textit{size} > \textit{twoseater} \\ \textit{size} = \textit{twoseater} & \lor & \textit{radio} = \textit{with} \end{array} \right.$

each solution corresponds to an admissible configuration

Basic Problem

- Configurable product \rightarrow constraint satisfaction problem (CSP)
 - Configuration parameter = a CSP variable (finite domain)
 - Constraints

 $\left\{ \begin{array}{ll} \textit{motor} = \textit{pedals} & \rightarrow & \textit{color} = \textit{red} \\ \textit{motor} = \textit{solar} & \rightarrow & \textit{size} > \textit{twoseater} \\ \textit{size} = \textit{twoseater} & \lor & \textit{radio} = \textit{with} \end{array} \right.$

- each solution corresponds to an admissible configuration
- Configuration process:
 - The program presents, for each variable, values that lead to at least one solution
 - The user assigns a value to some variable
 - Which are the values of the free variables that are not consistent ?

Basic Problem

- Configurable product \rightarrow constraint satisfaction problem (CSP)
 - Configuration parameter = a CSP variable (finite domain)
 - Constraints

 $\left\{ \begin{array}{ll} \textit{motor} = \textit{pedals} & \rightarrow & \textit{color} = \textit{red} \\ \textit{motor} = \textit{solar} & \rightarrow & \textit{size} > \textit{twoseater} \\ \textit{size} = \textit{twoseater} & \lor & \textit{radio} = \textit{with} \end{array} \right.$

- each solution corresponds to an admissible configuration
- Configuration process:
 - The program presents, for each variable, values that lead to at least one solution
 - The user assigns a value to some variable
 - Which are the values of the free variables that are not consistent ?
- NP-complete problem ... but the user cannot wait too long after each choice

A solution: knowledge compilation

- The CSP is a fixed part of the problem
- $\rightarrow\,$ we can compile it into a suitable data structure, such as an OBDD or a MDD:

- Assigning values to variables (conditioning) and checking consistency are polynomial operations on MDDs/OBDDs
- ightarrow the user's wait is reduced

Configuration and Compilation

Configuration is an "Historical" application of compilation techniques

- Synthesis Trees [Weigel and Faltings, 1999]
- Prime Implicates (?) [Sinz, 2002]
- OBDDs, Ordered MDD [Amilhastre et al., 2002, Hadzic, 2004]
- Cluster Trees [Pargamin, 2002]
- ...

By the way, several properties a not compulsory: "linerarity" of the structure, determinism, ordering of the variables.

Choosing a compilation language

- Which language is the best for my application?
- \rightarrow use the compilation map [Darwiche and Marquis, 2002]
 - Compares langages according to two criteria:
 - 1. efficiency of operations
 - 2. succinctness

Compilation map: operations

• All online manipulations amount to elementary queries and transformations

L	CO (œnsistency)	VA (validity)	CE (clause entailmt.)	IM (implicant check)	EQ (equivalence)	SE (entailment)	CT (model count)	ME (model enum.)	L	CD (conditioning)	FO (forgetting) SFO (single forg.)	∧C (conjunction) ∧BC (bounded conj.)	VC (disjunction) VBC (bounded disj.)	⊣C (negation)
NNF	0	0	0	0	0	0	0	٥,	NNF		∘ √	$\sqrt{}$	$\sqrt{\sqrt{1}}$	\checkmark
DNNF	\checkmark	0		0	0	0	0	\checkmark	DNNF		$\sqrt{}$	0 0	$\sqrt{}$	0
BDD	0	0	0	0	0	0	0	0	BDD	\checkmark	∘ √	$\sqrt{}$	$\sqrt{}$	
FBDD				\checkmark	?	0		\checkmark	FBDD		• •	• •	• •	
OBDD	\checkmark	\checkmark		\checkmark	\checkmark	0	\checkmark	\checkmark	OBDD		• 🗸	• •	• •	
DNF	\checkmark	0		0	0	0	0		DNF	\checkmark	$\sqrt{}$	• 🗸	$\sqrt{}$	•
CNF	0	\checkmark	0	\checkmark	0	0	0	0	CNF	\checkmark	° √	$\sqrt{}$	• 🗸	•

- $\sqrt{-polynomial}$
- $\circ \quad \text{not polynomial, unless } \mathsf{P} = \mathsf{N}\mathsf{P}$
- not polynomial

Compilation map: operations

• All online manipulations amount to elementary queries and transformations

L	CO (consistency)	VA (validity)	CE (clause entailmt.)	IM (implicant check)	EQ (equivalence)	SE (entailment)	CT (model count)	ME (model enum.)	L	CD (conditioning)	FO (forgetting) SFO (single forg.)	∧C (conjunction) ∧BC (bounded conj.)	VC (disjunction) VBC (bounded disj.)	⊣C (negation)
NNF	0	0	0	0	0	0	0	0	NNF		∘ √	$\sqrt{}$	$\sqrt{}$	
DNNF	$$	0		0	0	0	0		DNNF		$\sqrt{}$	0 0	$ \sqrt{} $	0
BDD	0	0	0	0	0	0	0	0	BDD	\checkmark	∘ √	$\sqrt{}$	$\sqrt{}$	
FBDD	√			\checkmark	?	0			FBDD		• •	• 0	• •	$ \sqrt{ }$
OBDD	\checkmark			\checkmark		0	\checkmark		OBDD		• 🗸	• •	• •	$ \sqrt{ }$
DNF	\checkmark	0		0	0	0	0		DNF	\checkmark	$\sqrt{}$	• 🗸	$\sqrt{}$	•
CNF	0	\checkmark	0	\checkmark	0	0	0	0	CNF	\checkmark	0 √	$\sqrt{}$	• 🗸	•

- $\sqrt{}$ polynomial
- $\circ \quad \text{not polynomial, unless } \mathsf{P} = \mathsf{N}\mathsf{P}$
- not polynomial

Compilation map: operations

• All online manipulations amount to elementary queries and transformations

L	CO (consistency)	VA (validity)	CE (clause entailmt.)	IM (implicant check)	EQ (equivalence)	SE (entailment)	CT (model count)	ME (model enum.)	L	CD (conditioning)	FO (forgetting) SFO (single forg.)	∧C (conjunction) ∧BC (bounded conj.)	VC (disjunction) VBC (bounded disj.)	⊣C (negation)
NNF	0	0	0	0	0	0	0	0	NNF		∘ √	$\sqrt{}$	$\sqrt{}$	
DNNF		0		0	0	0	0		DNNF	\checkmark	$\sqrt{}$	0 0	$ \sqrt{} $	0
BDD	0	0	0	0	0	0	0	0	BDD	\checkmark	0 √	$\sqrt{}$	$\sqrt{}$	
FBDD	√				?	0			FBDD	\checkmark	• •	• •	• •	$ \sqrt{ }$
OBDD	\checkmark				\checkmark	0	\checkmark		OBDD	\checkmark	• 🗸	• •	• •	$ \sqrt{ }$
DNF	\checkmark	0	\checkmark	0	0	0	0		DNF	\checkmark	$\sqrt{}$	• 🗸	$\sqrt{}$	•
CNF	0		0	\checkmark	0	0	0	0	CNF	\checkmark	• √	$\sqrt{}$	• 🗸	•

- $\sqrt{}$ polynomial
- $\circ \quad \text{not polynomial, unless } \mathsf{P} = \mathsf{N}\mathsf{P}$
- not polynomial

Compilation map: succinctness

- Succinctness relation (\leq_s) : orders languages
- $L_1 \leq_s L_2$ means " L_1 is at least as succinct as L_2 "

Compilation map: succinctness

- Succinctness relation (\leq_s) : orders languages
- $L_1 \leq_s L_2$ means " L_1 is at least as succinct as L_2 "

A more complex process:

• The program presents, for each variable, values that satisfy the constraints (given the current choices), and discards the others

- The program presents, for each variable, values that satisfy the constraints (given the current choices), and discards the others
- The user assigns a value to some variable, or *removes a previous* assignment (without ny prescribed order)

- The program presents, for each variable, values that satisfy the constraints (given the current choices), and discards the others
- The user assigns a value to some variable, or *removes a previous* assignment (without ny prescribed order)
- The programm should provide *explanations* for invalid choices, propose *restorations*, *alternative values*, etc

- The program presents, for each variable, values that satisfy the constraints (given the current choices), and discards the others
- The user assigns a value to some variable, or *removes a previous* assignment (without ny prescribed order)
- The programm should provide *explanations* for invalid choices, propose *restorations*, *alternative values*, etc
- The program maintains the cost of cheapest car consistent with the current choices

- The program presents, for each variable, values that satisfy the constraints (given the current choices), and discards the others
- The user assigns a value to some variable, or *removes a previous* assignment (without ny prescribed order)
- The programm should provide *explanations* for invalid choices, propose *restorations*, *alternative values*, etc
- The program maintains the cost of cheapest car consistent with the current choices
- Upon deman, it present the minimal and maximal costs associated to the remaining choices

- The program presents, for each variable, values that satisfy the constraints (given the current choices), and discards the others
- The user assigns a value to some variable, or *removes a previous* assignment (without ny prescribed order)
- The programm should provide *explanations* for invalid choices, propose *restorations*, *alternative values*, etc
- The program maintains the cost of cheapest car consistent with the current choices
- Upon deman, it present the minimal and maximal costs associated to the remaining choices
- The programm shall recommend interesting values for the next variable, given the current choices and selling histories

A more complex process:

- The program presents, for each variable, values that satisfy the constraints (given the current choices), and discards the others
- The user assigns a value to some variable, or *removes a previous* assignment (without ny prescribed order)
- The programm should provide *explanations* for invalid choices, propose *restorations*, *alternative values*, etc
- The program maintains the cost of cheapest car consistent with the current choices
- Upon deman, it present the minimal and maximal costs associated to the remaining choices
- The programm shall recommend interesting values for the next variable, given the current choices and selling histories

Study non-Boolean compilation languages

Problematics

Many Al applications use functions with non-Boolean values

- cost or utility functions (e.g. in configuration problems)
- probability distributions (e.g. selling histories)
- weighted knowledge bases...

Problematics

Many Al applications use functions with non-Boolean values

- cost or utility functions (e.g. in configuration problems)
- probability distributions (e.g. selling histories)
- weighted knowledge bases...

Compilation into a suitable language

- Valued CSPs, GAI-nets, Bayesian networks, weighted bases: the problem is expressed compactly, but optimization is hard
- Valued Decision Diagrams : ADD, SLDDs, AADDs (generalization of OBDDs)
- More freedom in the structure: arithmetic circuits, probabilistic sentential decision diagrams

Problematics

Many Al applications use functions with non-Boolean values

- cost or utility functions (e.g. in configuration problems)
- probability distributions (e.g. selling histories)
- weighted knowledge bases...

Compilation into a suitable language

- Valued CSPs, GAI-nets, Bayesian networks, weighted bases: the problem is expressed compactly, but optimization is hard
- Valued Decision Diagrams : ADD, SLDDs, AADDs (generalization of OBDDs)
- More freedom in the structure: arithmetic circuits, probabilistic sentential decision diagrams

This talk: Valued Decision Diagrams : KC map + experiments

Configuration and Compilation

Valued Decision Diagrams

A Compilation Map for Real Valued Decision Diagrams

Experiments

ADDs: algebraic decision diagrams [Bahar et al., 1993]

• Like OBDDs, but each leaf is a value from a set ${\cal V}$

• Optimization is trivial, Conditionning and Marginalization on one variable are easy

- Problem of ADDs: one leaf per value
- Idea: move values up on the arcs, so that they can be shared
- Value of a path = aggregation of encountered values

Example in configuration w.r.t. pricing function: $\mathcal{V} = \mathbb{R}^+$, aggregation by sum \rightarrow SLDD₊ language

```
\begin{array}{l} \mbox{Other possibility for $\mathcal{V}=\mathbb{R}^+$:}\\ \mbox{aggregating by product}\\ \rightarrow \mbox{SLDD}_\times \mbox{ language} \rightarrow \mbox{for probability}\\ \mbox{distributions} \end{array}
```


- Problem of ADDs: one leaf per value
- Idea: move values up on the arcs, so that they can be shared
- Value of a path = aggregation of encountered values

Example in configuration w.r.t. pricing function: $\mathcal{V} = \mathbb{R}^+$, aggregation by sum \rightarrow SLDD₊ language

```
Other possibility for \mathcal{V} = \mathbb{R}^+:
aggregating by product
\rightarrow SLDD<sub>×</sub> language \rightarrow for probability
distributions
```


- Problem of ADDs: one leaf per value
- Idea: move values up on the arcs, so that they can be shared
- Value of a path = aggregation of encountered values

 $\begin{array}{l} \mbox{Example in configuration w.r.t. pricing} \\ \mbox{function: } \mathcal{V} = \mathbb{R}^+ \mbox{, aggregation by sum} \\ \rightarrow \mbox{SLDD}_+ \mbox{ language} \end{array}$

```
\begin{array}{l} \mbox{Other possibility for $\mathcal{V}=\mathbb{R}^+$:}\\ \mbox{aggregating by product}\\ \rightarrow \mbox{SLDD}_\times \mbox{ language} \rightarrow \mbox{for probability}\\ \mbox{distributions} \end{array}
```


- Problem of ADDs: one leaf per value
- Idea: move values up on the arcs, so that they can be shared
- Value of a path = aggregation of encountered values

Example in configuration w.r.t. pricing function: $\mathcal{V}=\mathbb{R}^+$, aggregation by sum \rightarrow SLDD_+ language

 $\begin{array}{l} \mbox{Other possibility for $\mathcal{V}=\mathbb{R}^+$:}\\ \mbox{aggregating by product}\\ \rightarrow \mbox{SLDD}_\times \mbox{ language} \rightarrow \mbox{for probability}\\ \mbox{distributions} \end{array}$

- Problem of ADDs: one leaf per value
- Idea: move values up on the arcs, so that they can be shared
- Value of a path = aggregation of encountered values

 $\begin{array}{l} \mbox{Example in configuration w.r.t. pricing} \\ \mbox{function: } \mathcal{V} = \mathbb{R}^+ \mbox{, aggregation by sum} \\ \rightarrow \mbox{SLDD}_+ \mbox{ language} \end{array}$

 $\begin{array}{l} \mbox{Other possibility for $\mathcal{V}=\mathbb{R}^+$:}\\ \mbox{aggregating by product}\\ \rightarrow \mbox{SLDD}_\times \mbox{ language} \rightarrow \mbox{for probability}\\ \mbox{distributions} \end{array}$

AADDs: Affine Agebraic DD [Sanner and McAllester, 2005]

- A variant of SLDD: aggregation by a combination of sum and product
- ightarrow two factors on each arc a, an additive one and a multiplicative one $\langle q,f
 angle$
 - Path starting with a : value $q + f imes V_{
 m rec}$, with $V_{
 m rec}$ the value of the rest of the path

```
SLDD: "Red, Solar": 4 + 1 = 5
AADD: "Red, Solar": 0 + 1.(1 + 1.(4 + 1.0)) = 5
```


AADDs: Affine Agebraic DD [Sanner and McAllester, 2005]

- A variant of SLDD: aggregation by a combination of sum and product
- ightarrow two factors on each arc a, an additive one and a multiplicative one $\langle q,f
 angle$
 - Path starting with a : value $q + f imes V_{
 m rec}$, with $V_{
 m rec}$ the value of the rest of the path

```
SLDD: "Red, Solar": 4 + 1 = 5
AADD: "Red, Solar": 0 + 1.(1 + 1.(4 + 1.0)) = 5
```


AADDs: Affine Agebraic DD [Sanner and McAllester, 2005]

- A variant of SLDD: aggregation by a combination of sum and product
- ightarrow two factors on each arc a, an additive one and a multiplicative one $\langle q,f
 angle$
 - Path starting with a : value $q + f imes V_{
 m rec}$, with $V_{
 m rec}$ the value of the rest of the path

SLDD: "Red, Solar": 4 + 1 = 5AADD: "Red, Solar": 0 + 1.(1 + 1.(4 + 1.0)) = 5

- A variant of SLDD: aggregation by a combination of sum and product
- ightarrow two factors on each arc a, an additive one and a multiplicative one $\langle q,f
 angle$
 - Path starting with a : value $q + f imes V_{
 m rec}$, with $V_{
 m rec}$ the value of the rest of the path

SLDD: "Red, Solar": 4 + 1 = 5AADD: "Red, Solar": 0 + 1.(1 + 1.(4 + 1.0)) = 5

- A variant of SLDD: aggregation by a combination of sum and product
- ightarrow two factors on each arc a, an additive one and a multiplicative one $\langle q,f
 angle$
 - Path starting with a : value $q + f imes V_{
 m rec}$, with $V_{
 m rec}$ the value of the rest of the path

SLDD: "Red, Solar": 4 + 1 = 5AADD: "Red, Solar": 0 + 1.(1 + 1.(4 + 1.0)) = 5

- A variant of SLDD: aggregation by a combination of sum and product
- ightarrow two factors on each arc a, an additive one and a multiplicative one $\langle q,f
 angle$
 - Path starting with a : value $q + f imes V_{
 m rec}$, with $V_{
 m rec}$ the value of the rest of the path

```
SLDD: "Red, Solar": 4 + 1 = 5
AADD: "Red, Solar":
0 + 1.(1 + 1.(4 + 1.0)) = 5
```


- A variant of SLDD: aggregation by a combination of sum and product
- ightarrow two factors on each arc a, an additive one and a multiplicative one $\langle q,f
 angle$
 - Path starting with a : value $q + f imes V_{
 m rec}$, with $V_{
 m rec}$ the value of the rest of the path

SLDD: "Red, Solar": 4 + 1 = 5AADD: "Red, Solar": 0 + 1.(1 + 1.(4 + 1.0)) = 5

 Normalization conditions → all paths to the leaf have value ∈ [0,1]; extrema can be read on the root's offset

n

Configuration and Compilation

Valued Decision Diagrams

A Compilation Map for Real Valued Decision Diagrams

Experiments

The \mathbb{R}^+ -VDDs languages

Recall that a L-representation α is a data structure that represent a function $f_{\alpha}^{L}(\vec{x})$

- We can have a AADD, VCSP or a ADD representation of function $f(x_1, \ldots, x_n) = \sum_{i=1,n} 2^{i-1} x_i$ on $\{0, 1\}^n$
- Two representations α and β are equivalent iff $f_{\alpha}^{L} = f_{\beta}^{L'}$

The \mathbb{R}^+ -VDDs languages

- We restrict ourselves to languages ADD on $\mathbb{R}^+,$ $\mathtt{SLDD}_+,$ \mathtt{SLDD}_\times and AADD.
- All satisfy canonicity (upon normalization) : equivalent sub-functions are isomorphic ; caching is efficient.
- A hierarchy of languages : $ADD \sqsubseteq SLDD_+, SLDD_{\times} \sqsubseteq AADD$

Map for \mathbb{R}^+ -VDDs: Succinctness

 L_1 is at least as succinct as L_2 , denoted $\mathcal{L}_1 \leq_s \mathcal{L}_2$, iff there exists a polynomial p such that for every L_2 representation α , there exists a L_1 representation β which is equivalent to α and s.t. $size(\beta) \leq p(size(\alpha))$.

Map for \mathbb{R}^+ -VDDs: Succinctness

 L_1 is at least as succinct as L_2 , denoted $\mathcal{L}_1 \leq_s \mathcal{L}_2$, iff there exists a polynomial p such that for every L_2 representation α , there exists a L_1 representation β which is equivalent to α and s.t. $size(\beta) \leq p(size(\alpha))$.

e.g. because the function $f(x_1, \ldots, x_n) = \sum_{i=1,n} 2^{i-1} x_i$ on $\{0, 1\}^n$ maps to an exponential set of values and cannot be represented by a product.

Queries

A VDD α represent function $f_{\alpha}(\vec{x})$ taking its values in an ordered valuation scale \mathcal{V} (here, $\mathcal{V} = \mathbb{R}^+$)

• Equivalence query **EQ** similar to the Boolean case: indicating whether $\forall \vec{x}, f^{\text{L}}_{\alpha}(\vec{x}) = f^{\text{L}}_{\beta}(\vec{x})$

ightarrow are these two catalogs the same?

Queries

A VDD α represent function $f_{\alpha}(\vec{x})$ taking its values in an ordered valuation scale \mathcal{V} (here, $\mathcal{V} = \mathbb{R}^+$)

• Equivalence query EQ similar to the Boolean case: indicating whether $\forall \vec{x}, f^{\rm L}_{\alpha}(\vec{x}) = f^{\rm L}_{\beta}(\vec{x})$

ightarrow are these two catalogs the same?

• Sentential entailment **SE**: given a preorder \leq on \mathcal{V} , indicating whether $\forall \vec{x}, f_{\alpha}^{L}(\vec{x}) \succeq f_{\beta}^{L}(\vec{x})$

 \rightarrow Is this e-shop always cheaper than this other one?

Queries

A VDD α represent function $f_{\alpha}(\vec{x})$ taking its values in an ordered valuation scale \mathcal{V} (here, $\mathcal{V} = \mathbb{R}^+$)

• Equivalence query **EQ** similar to the Boolean case: indicating whether $\forall \vec{x}, f_{\alpha}^{L}(\vec{x}) = f_{\beta}^{L}(\vec{x})$

ightarrow are these two catalogs the same?

• Sentential entailment **SE**: given a preorder \leq on \mathcal{V} , indicating whether $\forall \vec{x}, f_{\alpha}^{L}(\vec{x}) \geq f_{\beta}^{L}(\vec{x})$

ightarrow ls this e-shop always cheaper than this other one?

• A language L satisfies OPT_{min} if there exists a polynomial algorithm mapping any formula α of L to the value $\min_{\vec{x}} f_{\alpha}^{L}(\vec{x})$. \rightarrow what is the price of the cheapest cars ?

Queries on cuts

Many of the other queries are based on cuts

Let f be a \mathcal{V} -valued function, \leq a preorder on \mathcal{V} , and $\gamma \in \mathcal{V}$; we define the following sets:

- $CUT^{\leq \gamma}(f) = \{ \vec{x} \mid f(\vec{x}) \leq \gamma \}$ \rightarrow cars cheaper than 10 000 euros
- $CUT^{\sim\gamma}(f) = \{ \vec{x} \mid f(\vec{x}) \sim \gamma \}$ \rightarrow cars costing exactly 10000 euros
- $CUT^{\min}(f) = \{ \vec{x}^* \mid \forall \vec{x}, \neg(f(\vec{x}) \prec f(\vec{x}^*)) \}$ \rightarrow the cheapest cars

Queries on cuts

Cut \approx set of "models"

- CT_{min}: counting minimal elements for ≤ (i.e., returning the cardinal of CUT^{min}(f^L_α)) → how many cheapest configurations?
- Partial consistency CO_{~γ}: indicating whether ∃x, f^L_α(x) ~ γ (i.e., whether CUT^{~γ}(f^L_α) ≠ Ø)
 → is there a car costing exactly 10 000 euros?
- $\mathbf{MX}_{\leq \gamma}$, $\mathbf{ME}_{\leq \gamma}$: exhibiting an \vec{x} , enumerating all \vec{x} such that $f_{\alpha}^{\mathrm{L}}(\vec{x}) \leq \gamma$ \rightarrow which cars are cheaper than 10 000 euros?
- ... and the other combinations

Map for queries

Query	ADD	\mathtt{SLDD}_+	\texttt{SLDD}_{\times}	AADD	\mathtt{VCSP}_+
EQ					?
SE				?	0
OPT _{min}					0
MX _{min} / ME _{min}	\checkmark				0
	\checkmark				0
$CO_{\sim\gamma}$ / $MX_{\sim\gamma}$ / $ME_{\sim\gamma}$	\checkmark	0	0	0	0
$ \mathbf{CO}_{\preceq \gamma} / \mathbf{MX}_{\preceq \gamma} / \mathbf{ME}_{\preceq \gamma} $					0
$CT_{\sim\gamma} \ / \ CT_{\preceq\gamma}$	\checkmark	0	0	0	0

- ADD satisfies all queries
- $SLDD_+$, $SLDD_{\times}$, and AADD behave the same on queries
- Queries on optimal cuts are easy
- Counting is hard on γ-cuts
- All queries on exact γ-cuts are hard (red. from SUBSET SUM)

A language L satisfies a transformation if there exists a polynomial algorithm performing it while staying in L

Given a L representation α of f, we want a L representation of a cut of f:

- **CUT**_{min}: compute a *L* representation of the set of cheapest cars
- $\mathbf{CUT}_{\preceq \gamma}$: compute a L representing the set of cars are cheaper than 10 000 euros
- $\mathbf{CUT}_{\sim\gamma}$: compute a L representing the set of cars costing exactly 10 000 euros

Cut transformations

On ADD, $CUT_{min}, CUT_{\preceq \gamma}, CUT_{\sim \gamma}$, etc. are trivial:

this is why ADD satisfies all queries related to cuts.

Cut-based transformations

Transformation	ADD	\mathtt{SLDD}_+	\texttt{SLDD}_{\times}	AADD
$CUT_{\sim\gamma}$		٠	•	•
$ $ CUT $_{\preceq \gamma}$	\checkmark	•	•	٠

- Cutting to the optimum is easy, even on SLDD and AADD: after normalizing, the minimal paths are those in which all arcs have factor 0
- Cutting w.r.t. a threshold is not polynomial (it may require a complete unfolding of the structure)

Conditioning and Combinations

Conditioning **CD** defined as in the Boolean case

The other transformations are parameterized by an associative and commutative binary operator \odot on ${\cal V}$

• $\odot \mathbf{C}$: combining *n* formulas by \odot (i.e., building a formula in L representing the function $\bigcirc_{i=1}^{n} f_{\alpha_i}^{\mathrm{L}}$)

• +C \times C: useful for bottom un compilation

• • **BC**: combining a bounded number of *L* representations

► ×BC

 \rightarrow making a discount

▶ minBC

 \rightarrow choosing in two catalogs

Map for transformations: combinations

Transformation	ADD	\mathtt{SLDD}_+	$\mathtt{SLDD}_{ imes}$	AADD
minC / +C / \times C	•	٠	٠	•
minBC	\checkmark	•	•	•
+BC	\checkmark		•	•
×BC		•	\checkmark	•

- ADD satisfies all bounded combinations \rightarrow "apply" algorithm, similar to OBDDs
- SLDD₊ satisfies the combination by + SLDD_× satisfies the combination by × → the "apply" algorithm also works because the operators are associative and commutative

Map for transformations: combinations

Transformation	ADD	\mathtt{SLDD}_+	$\texttt{SLDD}_{ imes}$	AADD
minC / +C / \times C	•	•	٠	•
minBC		•	•	•
+BC			•	•
×BC		•	\checkmark	•

- SLDD₊ does not satisfy the combination by \times : consider the function $f(\vec{x}) = \sum_{i=0}^{n-1} x_i \cdot 2^i$ and $g(\vec{x}) = 2^{n+1} - 1 - f(\vec{x})$; linear SLDD₊ representation, but $f \times g$ has only exponential SLDD₊ representations
- $SLDD_{\times}$ does not satisfy the combination by +: similar proof
- AADD does not satisfy any bounded combination.

Transformations: variable elimination

- \odot Elim, elimination of variables Y w.r.t. \odot : building a formula in L representing $\bigcirc_{\overrightarrow{y}} f^{L}_{\alpha}|_{\overrightarrow{y}}$ \rightarrow e.g., forgetting = max-elimination
- ⊙Marg, marginalization on a single variable w.r.t. ⊙: eliminating all variables but one

ightarrow +-marginalization on a variable in Bayesian networks

Map for transformations: marginalization

Transformation	ADD	\mathtt{SLDD}_+	\texttt{SLDD}_{\times}	AADD
minMarg +Marg ×Marg		$\sqrt{\frac{\sqrt{2}}{2}}$		√ √ ?

Marginalization is easy when the elimination of the last variable can be done in linear time.

Works for +Marg on \mathtt{SLDD}_{\times} and AADD basically because multiplication distributes over addition

 \rightarrow does not work for $\times \textbf{Marg}$ on \texttt{SLDD}_+ and <code>AADD</code>

Map for transformations: Variable Elimination

No language satisfies any elimination, even of a single variable, as long as its domain is unbounded

Transformation		\mathtt{SLDD}_+	$\texttt{SLDD}_{ imes}$	AADD
minElim/ +Elim / ×Elim	•	•	•	•
SminElim / S+Elim / S×Elim	•	•	•	•
SBmaxElim / SBminElim		•	•	•
SB+Elim			•	•
SB×Elim		•	\checkmark	•

 $S \odot Elim$: eliminating a single variable

 $\textbf{SB}{\odot}\textbf{Elim}: \text{ eliminating a single bounded-domain variable}$

Summary

- Conditionning and Optimization satisfied on $\texttt{AADD},\texttt{SLDD}_+,\,\texttt{SLDD}_\times,\,\texttt{ADD}$
- min**BC** satisfied on ADD only
- AADD "more succinct" than $\text{SLDD}_+,\,\text{SLDD}_\times,\,\text{themselves}$ "more succinct" than ADD
- $\bullet \ + BC$ ok on \mathtt{SLDD}_+ and ADD only

Configuration and Compilation

Valued Decision Diagrams

A Compilation Map for Real Valued Decision Diagrams

Experiments

On the pratical succintness of valued decision diagrams

- Design of a bottom-up ordered $SLDD_+$ $SLDD_\times$ compiler.
 - Input: VCSP instance (XML format) or Bayesian Nets (XML format).
 - Output: an equivalent SLDD₊ / SLDD_×,
- Test of a large set of variable ordering heuristics.
- Design of toolbox of transformation procedures (that are basically normalization procedures)
 - SLDD $_+$ (resp. SLDD $_{\times}$) to ADD
 - ADD to $SLDD_+$, $SLDD_{\times}$
 - $SLDD_+$ (resp. $SLDD_{\times}$) to AADD

Benchmark tested

Two families of benchmarks.

- VCSP instances encoding car configurations problems with pricing functions
 - Small: #variables=139; max. domain size=16; #constraints=176 (including 29 soft constraints)
 - Medium: #variables=148; max. domain size=20; #constraints=268 (including 94 soft constraints)
 - Big: #variables=268; max. domain size=324; #constraints=2157 (including 1825 soft constraints)
- Bayesian networks: Cancer, Asia, Car-starts, Alarm, Hailfinder25

Heuristics

	M	CF	Band-V	Vidth	MC	S	Fore	ce .
Instance	nodes	cpu	nodes	cpu	nodes	cpu	nodes	cpu
VCSP								
\mapsto SLDD ₊								
Small	3 100	1,2s	4 349	1,0s	2 344	1,0s	3 4 1 5	1,2s
Medium	5 660	1,5s	11 700	1,6s	6 242	1,4s	13 603	1,5s
Big	m-o	-	326 884	112s	196 098	71s	m-o	-
Bayes								
\mapsto SLDD $_{\times}$								
Asia	35	0,06s	29	0,06s	23	0,06s	25	0,06s
Car-starts	60	0,1s	40	0,09s	40	0,09s	41	0,09s
Alarm	m-o	-	5 843	0,8s	1 301	0.5	7 0 5 4	1,0s
Hail	m-o	-	m-o	-	15 333	1,3s	139 172	114s
finder 25								

MCS = Maximum Cardinality Search heuristic [Tarjan and Yannakakis, 1984] in reverse order

Pratical Succinctness

	SLDD ₊		ADD	$SLDD_{\times}$	AADD
Instance	nodes	temps	nodes	nodes	nodes
Small	1 744	0,9s	28 971	19 930	1744
Medium	3 238	1,3s	463 383	354 122	3 156
Big	73 702	34s	m-o	m-o	73 702
Rés. bay.	SLDD×		ADD	$SLDD_+$	AADD
Instance	nodes	temps	nodes	nodes	nodes
Asia	23	0,07 <i>s</i>	415	216	23
Car-starts	40	0,1 <i>s</i>	42 741	19 632	40
Alarm	1 301	0,5 <i>s</i>	m-o	m-o	1 301
Hailfinder25	15 333	1,8s	m-o	m-o	15 331

- $AADD, SLDD_+, SLDD_{\times} < ADD;$
- $AADD < SLDD_+, SLDD_{\times}$ but not so much :
 - ► AADD and SLDD₊ comparable on additive pricing functions,
 - ► AADD and SLDD_× comparable on bayesian nets (multiplicative)

On line use : CD + marginalization on each variable

VCSP	SLDD+	AADD	ratio
Small	$222 \mu s$	281µs	1,27
Medium	487 <i>µ</i> s	578µs	1,19
Big	22,1ms	39,9ms	1,81
Bayes	$SLDD_{\times}$	AADD	ratio
Asia	29,0 μ s	32,3µs	1,11
Car-starts	$61,5\mu s$	75,6µs	1,23
Alarm	$259 \mu s$	292µs	1,13
Hailfinder25	7,68ms	9,16ms	1,19

SLDD is more efficient: less number manipulations (AADD makes many unsuccessful attempts of saving space), less rounding errors

On line use : CD + marginalization on each variable

Figure: Average and maximal time (ms) for conditionning + marginalization on the **big** car configuration instance.

On line use : full configuration process (without prices)

Figure: Average time (ms) for conditionning + marginalization on the **big** car configuration instance.

Conclusion and perspectives

Done:

• Premisses of a KC map of non-Boolean functions (here : *R*⁺-valued functions)

Conclusion and perspectives

Done:

- Premisses of a KC map of non-Boolean functions (here : *R*⁺-valued functions)
- SLDD : implementation of a compiler + a toolbox (SALADD)

Conclusion and perspectives

Done:

- Premisses of a KC map of non-Boolean functions (here : *R*⁺-valued functions)
- SLDD : implementation of a compiler + a toolbox (SALADD)
- Very efficient on our configuration problems
Done:

- Premisses of a KC map of non-Boolean functions (here : *R*⁺-valued functions)
- SLDD : implementation of a compiler + a toolbox (SALADD)
- Very efficient on our configuration problems
- Experimental results may contrast with theoretical ones on some instances (SLDD₊ vs. AADD)
 - Do not necessarily "recompile" on line : fusion of isomorphic nodes, determinism are not compulsory

Done:

- Premisses of a KC map of non-Boolean functions (here : *R*⁺-valued functions)
- SLDD : implementation of a compiler + a toolbox (SALADD)
- Very efficient on our configuration problems
- Experimental results may contrast with theoretical ones on some instances (SLDD₊ vs. AADD)
 - Do not necessarily "recompile" on line : fusion of isomorphic nodes, determinism are not compulsory
- To Do / Further Research
 - Complete the KC map: Arithmetic circuits, V-AOMDD, Sentential Networks (ideally an *Algebraic* map)

Done:

- Premisses of a KC map of non-Boolean functions (here : *R*⁺-valued functions)
- SLDD : implementation of a compiler + a toolbox (SALADD)
- Very efficient on our configuration problems
- Experimental results may contrast with theoretical ones on some instances (SLDD₊ vs. AADD)
 - Do not necessarily "recompile" on line : fusion of isomorphic nodes, determinism are not compulsory

To Do / Further Research

- Complete the KC map: Arithmetic circuits, V-AOMDD, Sentential Networks (ideally an *Algebraic* map)
- Application of AADD to problems that need their full power

Done:

- Premisses of a KC map of non-Boolean functions (here : *R*⁺-valued functions)
- SLDD : implementation of a compiler + a toolbox (SALADD)
- Very efficient on our configuration problems
- Experimental results may contrast with theoretical ones on some instances (SLDD₊ vs. AADD)
 - Do not necessarily "recompile" on line : fusion of isomorphic nodes, determinism are not compulsory

To Do / Further Research

- Complete the KC map: Arithmetic circuits, V-AOMDD, Sentential Networks (ideally an *Algebraic* map)
- Application of AADD to problems that need their full power
- Learning preferences : $SLDD_{\times}$, Bayesian nets, SDDs

Done:

- Premisses of a KC map of non-Boolean functions (here : *R*⁺-valued functions)
- SLDD : implementation of a compiler + a toolbox (SALADD)
- Very efficient on our configuration problems
- Experimental results may contrast with theoretical ones on some instances (SLDD₊ vs. AADD)
 - Do not necessarily "recompile" on line : fusion of isomorphic nodes, determinism are not compulsory

To Do / Further Research

- Complete the KC map: Arithmetic circuits, V-AOMDD, Sentential Networks (ideally an *Algebraic* map)
- Application of AADD to problems that need their full power
- Learning preferences : $SLDD_{\times}$, Bayesian nets, SDDs

Bibliography

Amilhastre, J., Fargier, H., and Marquis, P. (2002).

Consistency restoration and explanations in dynamic CSPs: Application to configuration. Artificial Intelligence, 135(1-2):199-234.

Bahar, R. I., Frohm, E. A., Gaona, C. M., Hachtel, G. D., Macii, E., Pardo, A., and Somenzi, F. (1993).

Algebraic decision diagrams and their applications.

In Proceedings of ICCAD '93, pages 188-191.

Darwiche, A. and Marquis, P. (2002).

A knowledge compilation map.

Journal of Artificial Intelligence Research (JAIR), 17:229-264.

Fargier, H., Marquis, P., and Schmidt, N. (2013).

Semiring labelled decision diagrams, revisited: Canonicity and spatial efficiency issues. In Proceedings of IJCAI'13.

Fargier, H., Niveau, A., Marquis, P., and Schmidt, N. (2014).

A knowledge compilation map for ordered real-valued decision diagrams. In *Proceedings of AAAI*/2014. Accepté pour publication.

Hadzic, T. (2004).

A bdd-based approach to interactive configuration.

In Proceedings of CP'04, page 797.

Kisa, D., den Broeck, G. V., Choi, A., and Darwiche, A. (2014).

Probabilistic sentential decision diagrams.

Bibliography

[Fargier et al., 2014, Fargier et al., 2013] [Kisa et al., 2014]