
Parameterized Compilability Revisited
Combining parameterized complexity and knowledge compilation

Ronald de Haan

(joint work with Simone Bova, Neha Lodha, and Stefan Szeider)

Setting

KB D

· · ·

...

yes/no q1? q2? qi?

for D:

q 3

q′ 7
...

Setting
Formally

Compilation problems are problems of pairs:

L ⊆ Σ∗ × Σ∗

offline online

Offline part: fixed knowledge base
Online part: differing queries

Graphically:

(D, q) ∈ L iff

KB D

q? yes

Knowledge Compilation
In a picture

KB D

computable
(no time bound) 1

poly-time

queries

KB D′

2 size: poly in |D|

q? yes q? yes

3

iff

Knowledge Compilation
Formally

L ⊆ Σ∗ × Σ∗ is (poly-size) compilable if there exists a computable
function c : Σ∗ → Σ∗ and a problem L′ ⊆ Σ∗ × Σ∗ such that:

1 L′ is poly-time decidable

2 |c(D)| ≤ poly(|D|)

3 (D, q) ∈ L if and only if (c(D), q) ∈ L′

Negative compilation results
In a picture

either: compiled
knowledge base too large

help!
disk full

or: no tractable query answering
...

Parameterized Compilation

Idea: be more generous for both requirements of compilation by
using a problem parameter that captures structure in the input.

Allow fpt-size compiled knowledge bases,

and allow fpt-time query answering.

KB D

parameter k

KB D′

poly in |D| f (k)

Parameterized Compilation (see Chen, 2005)

Formally

Problem:

L ⊆ Σ∗ × Σ∗

offline online

Parameterization:

κ : Σ∗ → N

offline instance parameter value

L is fpt-size compilable if there exists a computable function
c : Σ∗ → Σ∗, computable functions f , g : N→ N, and a problem
L′ ⊆ Σ∗ × Σ∗ with a parameterization κ′ : Σ∗ → N such that:

1 L′ is fpt-time decidable (w.r.t. κ′)

2 |c(D)| ≤ f (κ(D)) · poly(|D|)
3 (D, q) ∈ L if and only if (c(D), q) ∈ L′

4 κ′(c(D) ≤ g(κ(D))

Why this definition?

Why not just be more generous on the compilation size, and stick
to poly-time query answering?

Answer: poly-time and fpt-time query answering turn out to
coincide when allowing fpt-size compilations.

fpt-size compilation

poly-time online

fpt-size compilation

fpt-time online

=

More powerful parameterizations

For fixed-parameter tractability: the parameterization has access to
the entire input (and is assumed to be tractably computable).

D
q?

poly-time Nκ
In parameterized compilation: the parameterization has access only
to the offline part of the input. Lifting the time restrictions for
computing the parameter does not trivialize the problem, and
makes sense in the setting of compilation.

D

no time
bounds Nκ

As a result: we can allow more powerful parameters.

Clause Entailment (CE)

As an example, we consider the problem of clause entailment,
which is a core problem in knowledge compilation.

Offline instance: a CNF formula ϕ
Online instance: a clause δ

Question: ϕ |= δ?

Theorem (Selman & Kautz, 1996)

CE has no poly-size compilation, unless the PH collapses.

(See also Cadoli, Donini, Liberatore & Schaerf, 2002.)

Parameters for CE

itw incidence treewidth of ϕ

itweup itw after propagating entailed unit clauses

itwsf minimum itw over all equivalent “sub-CNFs”
(sub-CNFs are obtained by deleting clauses and/or literals)

itweq minimum itw over all equivalent CNF formulas

Dominance relation between these parameters
and computational cost of computing them:

itw <dom itweup <dom itwsf <dom itweq

easy hard (but computable)

Parameterized compilation for CE

These parameters lead to different complexity and compilability
behavior:

poly-size compilable fpt-time computable fpt-size compilable

itw NO YES YES

itweup NO NO YES

itwsf NO NO YES

itweq NO NO NO?

We can move to more powerful parameters (whose values are
smaller), in order to find the boundary of fpt-size compilability.

Parameter values in practice

More powerful parameters −→ smaller values in practice?

(Important question that needs further research.)

There are instances where itweup is smaller than itw:

Preliminary investigation (approximations)

File #vars #clauses itw itweup
3blocks 283 9690 35 22
4blocksb 410 24758 58 7
AProVE09-08 8564 28927 85 12
AProVE09-13 7606 26317 44 15
medium 116 953 52 7
satellite2 v01i.shuffled-4055 853 27249 191 31

Other parameters for CE

ev # of essential variables fpt-size compilable

sbup strong backdoor size to UP fpt-size compilable

sbpl strong backdoor size to PL not fpt-size compilable,
unless PH collapses

wgt assignment weight not fpt-size compilable,
unless W[1] ⊆ FPT/fpt

cls size of queries (clauses) not fpt-size compilable,
unless nu-few-NP ⊆ FPT/fpt

Conclusion

We considered fpt-size compilation with the aim of relativizing
negative incompilability results

As an example, we looked at parameterized variants of the
clause entailment problem

This approach opens the possibility for new parameters, and
new positive compilability results

This approach also introduces new theoretical questions

References

M. Cadoli, F.M. Donini, P. Liberatore, and M. Schaerf.
Preprocessing of Intractable Problems.
Information and Computation, 176(2):89–120, 2002.

H. Chen.
Parameterized Compilability.
Proceedings of IJCAI, 2005.

B. Selman and H.A. Kautz.
Knowledge Compilation and Theory Approximation.
Journal of the ACM, 43:193–224, 1996.

