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Representation Languages

In choosing a representation language for a propositional theory
there is a trade-off between “succinctness” and “tractability”.

Darwiche and Marquis (2002) systematically investigate a hierarchy of
representation languages that strike this balance in different ways.
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Figure: Inclusion relation on representation languages (Hasse diagram).
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Representation Languages

Negation Normal Forms (NNF) Boolean circuits having unbounded fanin
AND and OR gates with negations pushed to the input gates.

Decomposable NNFs (DNNF) NNFs where subcircuits leading into each AND
gate are defined on disjoint sets of variables.

Deterministic DNNFs (dDNNF) DNNFs where subcircuits leading into each
OR gate never simulataneously evaluate to 1.

Conjunctive Normal Forms (CNF) NNFs where. . .

Prime Implicate Forms (PI) CNFs where entailed clauses are already entailed
by a single clause in the CNF and no clause in the CNF is
entailed by another.

. . . . . .

size(C) is the number of arcs in the DAG underlying C (for C in NNF).
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Figure: A DNNF.
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Succinctness Relation

Let S,T ⊆ NNF.

Say that S is (polysize) compilable into T (or T is at least as succinct as S) if
there exists a polynomial p : N→ N such that
for all C ∈ S there exists D ∈ T equivalent to C such that

size(D) ≤ p(size(C)).

Write S T if S is compilable into T, and S 6 T otherwise.
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Succinctness Relation

The succinctness relation is presented in Darwiche and Marquis (2002).

It follows from previous results including

• Quine (1959),

• Chandra and Markowsky (1978),

• Bryant (1986),

• Wegener (1987),

• Gergov and Meinel (1994),

• Gogic, Kautz, Papdimitriou, and Selman (1995),

• Selman and Kautz (1996),

• Cadoli and Donini (1997), and

• Darwiche (1999).
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S 6→ T means S 6 T unless PH collapses.
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DNNF vs CNF

DNNF 6 CNF: x1 ⊕ · · · ⊕ xn has linear OBDD (and thus DNNF) size,
but at least 2n clauses in any CNF representation (Bryant).

CNF 6→ DNNF: If CNF DNNF,
then “clause entailment admits polysize compilation”,
then PH collapses (Selman and Kautz; Cadoli and Donini).
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CNF 6 DNNF |Weakly Exponential, 2nΩ(1)

Let CLIQUEn(x) be the monotone Boolean function sending its
(n

2

)
inputs to 1

iff the corresponding n-vertex graph contains a clique on k(n) = nΩ(1)

vertices.

The monotone circuit complexity of CLIQUEn is weakly exponential in n
(Alon and Boppana, 1987).

Let T be NTM deciding the clique problem in polytime.

Given T, construct for all n ≥ 1 a CNF Fn(x, y) of size polynomial in n
such that ∃yFn(x, y) computes CLIQUEn(x).

Let Dn(x, y) be a DNNF computing Fn(x, y).

There exists a monotone DNNF computing ∃yDn(x, y) ≡ CLIQUEn(x)
having size polynomial in Dn (Darwiche, 2001; Krieger, 2007).

Hence Dn(x, y) has size weakly exponential in n.
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CNF 6 DNNF | Strongly Exponential, 2Ω(n)

Theorem (B, Capelli, Mengel, Slivovsky)

There exist c > 0 and a class F of CNFs of increasing size
such that for all F ∈ F and all D ∈ DNNF equivalent to F,

size(D) ≥ 2c·size(F).
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Circuit Complexity

Consequences in circuit complexity.

FBDD Improve weakly exponential lower bounds on CNF to FBDD
compilation (Bollig and Wegener, 1998; Beame et al., 2014).

Multilinear Boolean Circuits Improve weakly exponential lower bounds
(Krieger, 2007).
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Knowledge Compilation

Consequences in knowledge compilation.

Corollary

S 6 T for all (S,T) ∈ {PI,CNF,NNF} × {dDNNF,DNNF}.

Proof.

F ⊆ PI. The statement follows as
PI ⊆ CNF ⊆ NNF and dDNNF ⊆ DNNF.
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Figure: Status (left), our contribution (center), status modulo our contribution (right).
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Graph CNFs

A graph CNF is a CNF of the form

cnf(G) =
∧

xy∈E

x ∨ y

where G = (V,E) is a graph.

zy

x wx

G = ({x, y,w, z}, {xw, yz})

cnf(G) = (x ∨ w) ∧ (y ∨ z)
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Graph CNFs

Let vc(G) denote the vertex covers of graph G.

Then
mod(cnf(G)) = vc(G)

Then:

• cnf(G) is a monotone Boolean function.

• cnf(G) is nontrivial, if |E| ≥ 1.
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Nice DNNFs

A fanin 2, monotone, and constant free DNNF is said nice.

Lemma (Krieger)

Let D be a DNNF computing a nontrivial monotone Boolean function f .
There exists a nice DNNF D′ equivalent to D st

size(D′) ≤ 2 · size(D)

Proof (Sketch).

For monotonicity, replace each label of the form ¬x by the constant 1.

The size of a graph CNF on nice DNNFs is linear in its DNNF size.
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Nice DNNFs
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Figure: A nice DNNF (right) computing the vertex covers of a graph (left).
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Vertex Covers

Which fraction of vertex covers of a graph contain a fixed subset of vertices?

For G = (V,E) and I ⊆ V, write

vc(G, I) = {C ∈ vc(G) : I ⊆ C}

for the vertex covers of G containing I.

Theorem (Razgon; B, Capelli, Mengel, Slivovsky)

Let G = (V,E) be a degree d graph and let I ⊆ V. Then

|vc(G, I)| ≤ 2−f(d)|I||vc(G)|

where f (d) = log2(1 + 2−d) > 0.

If |I| is large (linear in |V|),
then vc(G, I) is very small (exponentially small in |V|).
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Vertex Covers

Let G = (V,E) be a graph.

A family I of subsets of V covers vc(G) if vc(G) =
⋃

I∈I vc(G, I).

Corollary

Let G = (V,E) be a degree d graph and let I cover vc(G). Then

|I| ≥ 2 f(d)·min{|I| : I∈I}

where f (d) = log2(1 + 2−d) > 0.

If I contains only large sets, then I is very large.
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Proof Strategy

Choose a d-bounded degree graph class G and c > 0 such that,
for every G = (V,E) ∈ G and every nice DNNF D computing vc(G)
we can find:

• S distinct gates in D

• a family I covering vc(G) such that
S ≥ |I| and each I ∈ I has size at least c|V|.

Conclude by the theory of vertex covers that

|gates(D)| ≥ S ≥ |I| ≥ 2 f(d)·c|V|

for f (d) > 0 as in the corollary.
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Figure: Certificates for the DNNF displayed in previous examples.

A certificate for a DNNF D is a DNNF T defined inductively on D as follows:

• output(T) = output(D).

• Let v be a ∧-gate of D with wires from gates v1 and v2.
If v is in T, then both v1 and v2 (and their wires to v) are in T.

• Let v be a ∨-gate of D with wires from gates v1 and v2.
If v is in T, then exactly one of v1 and v2 (and its wire to v) is in T.
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Gate Elimination

Let D be a DNNF st mod(D) ⊆ vc(G) and v be a gate in D.

Let Dv=0 be obtained by relabelling v by 0 in D (and propagating).

Dv=0 ≡ (
∨

T∈cert(T)

T)v=0

≡
∨

{T∈cert(D) : v 6∈T}

T ∨
∨

{T∈cert(D) : v∈T}

Tv=0

≡
∨

{T∈cert(D) : v 6∈T}

T

Call

AD,v = {z : z ∈ vars(T) for all T ∈ cert(D) such that v ∈ T} ⊆ V

the set of vertices agreed at v in D.
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AD,v = {z : z ∈ vars(T) for all T ∈ cert(D) such that v ∈ T} ⊆ V

the set of vertices agreed at v in D.
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Example
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y z
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∨

∧ ∧ ∧∧ ∧∧∧

Figure: Eliminating gate • in D gives D•=0.
By inspection cert(D•=0) = cert(D) \ {T ∈ cert(D) : • ∈ T}.

AD,• = {w}.
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Gate Elimination

Let G = (V,E) be a graph,
and D be a nice DNNF computing vc(G).

Let v1 . . . , vS be distinct gates in D,
and D0,D1,D2, . . . ,DS be DNNFs such that:

• D0 = D

• D1 = Dv1=0
0 , D2 = Dv2=0

1 , . . ., Di = Dvi=0
i−1

• DS ≡ 0

Let Ii ⊆ ADi−1,vi .

Then I = {Ii : i = 1, . . . , S} covers vc(G).

For the lower bound, we want |Ii| linear in |V|.
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DNNFs and Matchings

Let D be a nice DNNF such that mod(D) ⊆ vc(G).

Let v be a gate in D and Dv be the subcircuit of D rooted at v
(think of v as a candidate for elimination).

Let M = {x1y1, . . . , xnyn} be a matching in G
with {x1, . . . , xn} ⊆ vars(Dv) and {y1, . . . , yn} ⊆ vars(D) \ vars(Dv).

v

w

∨

zy

x w ∧∧x

x

y z

∨

Figure: Graph G (left) has edge xw “across” gate v in its DNNF D (right).



MOTIVATION CONTRIBUTION PROOF

DNNFs and Matchings

Let D be a nice DNNF such that mod(D) ⊆ vc(G).

Let v be a gate in D and Dv be the subcircuit of D rooted at v
(think of v as a candidate for elimination).

Let M = {x1y1, . . . , xnyn} be a matching in G
with {x1, . . . , xn} ⊆ vars(Dv) and {y1, . . . , yn} ⊆ vars(D) \ vars(Dv).

v

w

∨

zy

x w ∧∧x

x

y z

∨

Figure: Graph G (left) has edge xw “across” gate v in its DNNF D (right).



MOTIVATION CONTRIBUTION PROOF

DNNFs and Matchings

Let D be a nice DNNF such that mod(D) ⊆ vc(G).

Let v be a gate in D and Dv be the subcircuit of D rooted at v
(think of v as a candidate for elimination).

Let M = {x1y1, . . . , xnyn} be a matching in G
with {x1, . . . , xn} ⊆ vars(Dv) and {y1, . . . , yn} ⊆ vars(D) \ vars(Dv).

v

w

∨

zy

x w ∧∧x

x

y z

∨

Figure: Graph G (left) has edge xw “across” gate v in its DNNF D (right).



MOTIVATION CONTRIBUTION PROOF

DNNFs and Matchings

Let D be a nice DNNF such that mod(D) ⊆ vc(G).

Let v be a gate in D and Dv be the subcircuit of D rooted at v
(think of v as a candidate for elimination).

Let M = {x1y1, . . . , xnyn} be a matching in G
with {x1, . . . , xn} ⊆ vars(Dv) and {y1, . . . , yn} ⊆ vars(D) \ vars(Dv).

v

w

∨

zy

x w ∧∧x

x

y z

∨

Figure: Graph G (left) has edge xw “across” gate v in its DNNF D (right).



MOTIVATION CONTRIBUTION PROOF

DNNFs and Matchings
M = {x1y1, . . . , xnyn}matching in G “across” gate v in D.

Claim
For all i = 1, . . . , n, at least one of the following two statements holds:

(1) xi ∈ vars(T) for all T ∈ cert(D) such that v ∈ T.

(2) yi ∈ vars(T) for all T ∈ cert(D) such that v ∈ T.

v v

w

∨

w

∨

∧∧

x

y z

∨

∧∧

x

y z

∨

IM = {xi : i ∈ [n] such that (1) holds} ∪ {yi : i ∈ [n] such that (2) holds} ⊆ AD,v.

|IM| ≥ |M| by the claim.
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Expander Graphs

A graph G = (V,E) is an (e, d)-expander (0 < e, d ≥ 3) if:

• G has degree d.

• For all I ⊆ V st |I| ≤ |V|/2,
|NI| ≥ e|I|

where NI is the neighbourhood of I in G.

Theorem (Pinsker, 1973)

For every d ≥ 3 there exist e > 0 and a family {Gi}i∈N of graphs of increasing size
such that each Gi is an (e, d)-expander.
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Expander Graphs

Lemma
Let G = (V,E) be a (e, d)-expander and D be a nice DNNF st mod(D) ⊆ vc(G).
There exists v ∈ D and I ⊆ AD,v such that |I| is linear in |V|.

Proof (Idea).

• |C| ≥ |V|/(d + 1) for all C ∈ vc(G).

• Find (greedily) v ∈ D st |V|/(d + 1) ≤ |vars(Dv)| ≤ |V|/2.

• |Nvars(Dv)| ≥ e|vars(Dv)| = Ω(|V|).

• Find matching M in G of size Ω(|V|)
between vars(Dv) and Nvars(Dv) ⊆ vars(D) \ vars(Dv).

• I = IM ⊆ AD,v.

• |I| ≥ |M| = Ω(|V|).
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Proof Sketch

Let G = (V,E) be a (e, d)-expander and D a nice DNNF computing vc(G).

Find v1 ∈ D and I1 ⊆ AD,v1 such that |I1| is linear in |V|.

Eliminate v1 to obtain D1 = Dv1=0.

Iterate, unless D1 ≡ 0 . . .

I = {I1, I2, . . .} covers vc(G).

|I| is exponentially large in |V|.

Hence D as well.
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Thank you for your attention!
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