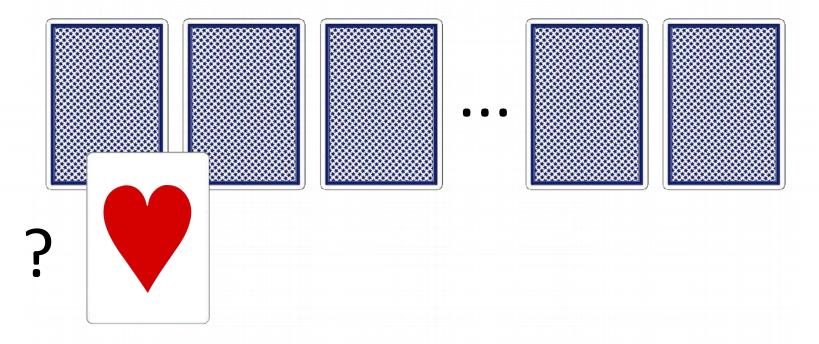
First-Order Knowledge Compilation for Probabilistic Reasoning

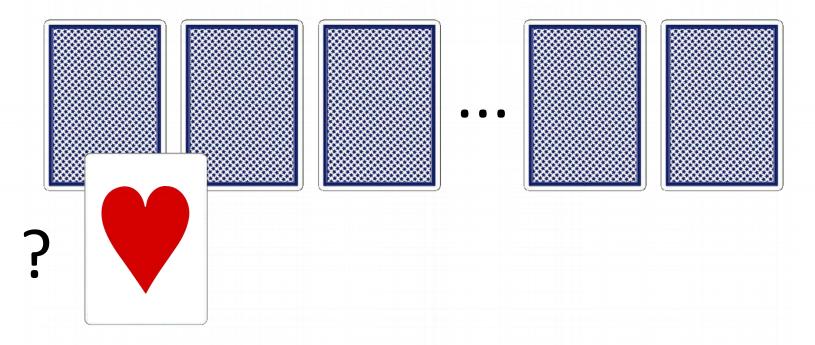
Guy Van den Broeck

based on joint work with Adnan Darwiche, Dan Suciu, and many others

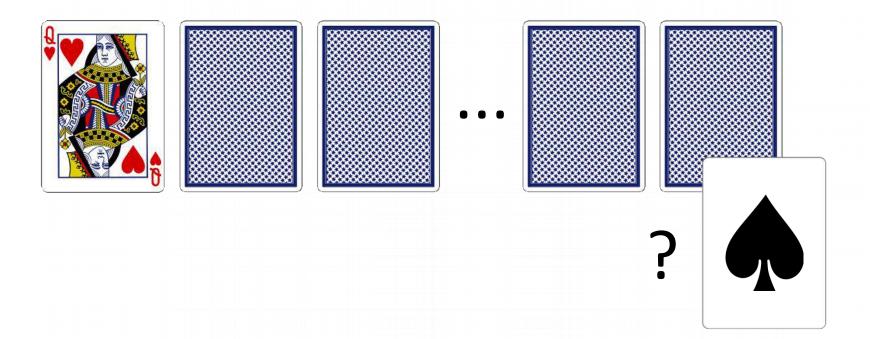
MOTIVATION 1



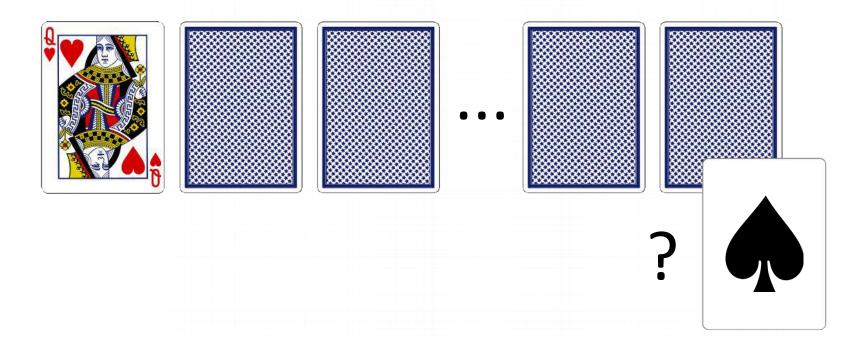
Probability that Card1 is Hearts?



Probability that Card1 is Hearts? 1/4



Probability that Card52 is Spades given that Card1 is QH?



Probability that Card52 is Spades given that Card1 is QH?

13/51

Let us automate this:

- 1. CNF encoding for deck of cards
- 2. Compile to tractable knowledge base (e.g., d-DNNF)
- 3. Condition on observations/questions

"Card1 is hearts"

4. Model counting

Let us automate this:

- 1. CNF encoding for deck of cards
- 2. Compile to tractable knowledge base (e.g., d-DNNF)
- 3. Condition on observations/questions

"Card1 is hearts"

4. Model counting

A typical BeyondNP pipeline!

Let us automate this:

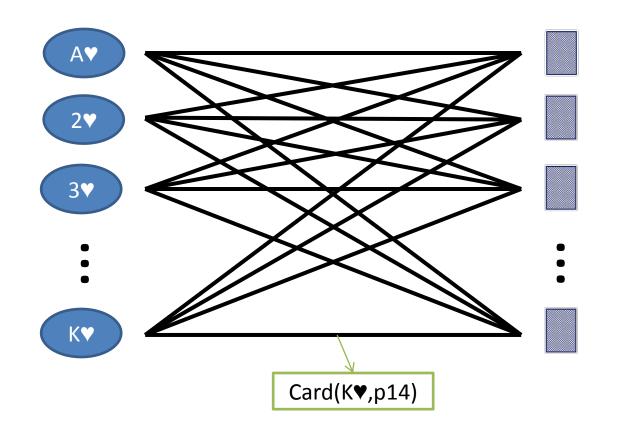
1. CNF encoding for deck of cards

Card(p1,c1) v Card(p1,c2) v ... Card(p1,c1) v Card(p2,c1) v ... \neg Card(p1,c1) v \neg Card(p1,c2) \neg Card(p1,c2) v \neg Card(p1,c3) ... \neg Card(p2,c1) v \neg Card(p2,c2)

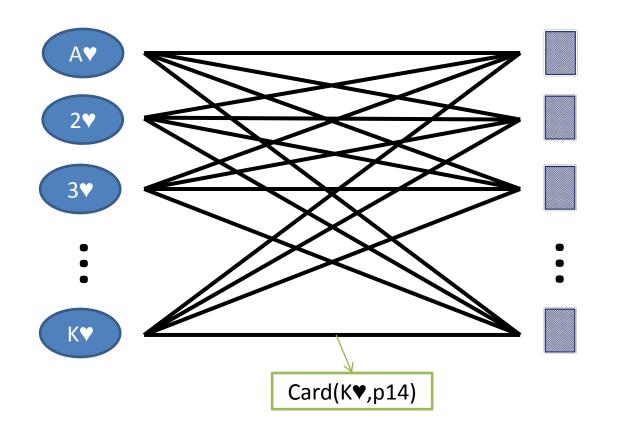
Let us automate this:

- 1. CNF encoding for deck of cards
- 2. Compile to tractable knowledge base (e.g., d-DNNF)
- 3. Condition on observations/questions *"Card1 is hearts"*
- 4. Model counting

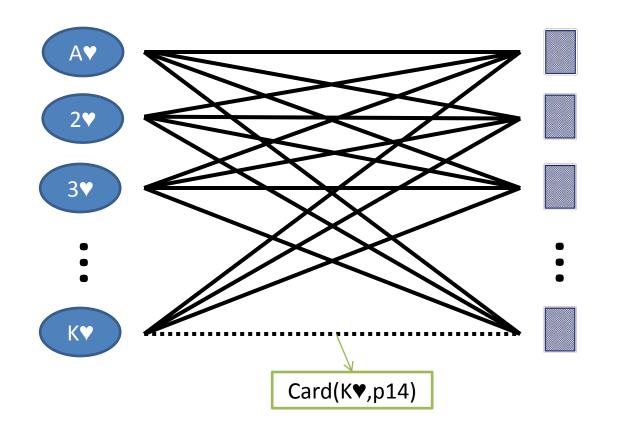
Which language to choose? Cards problem is easy: we want to be polynomial.



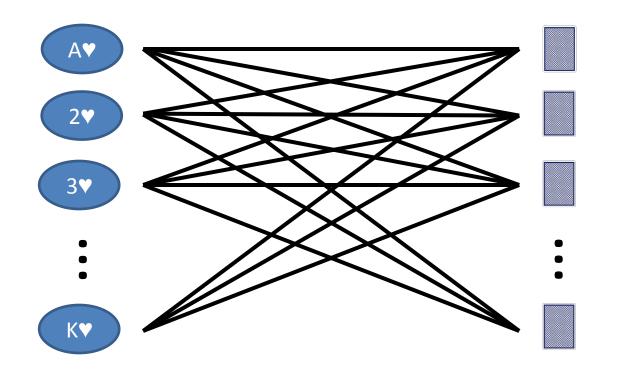
- 2. Compile to tractable knowledge base
- 3. Condition on observations/questions
- 4. Model counting



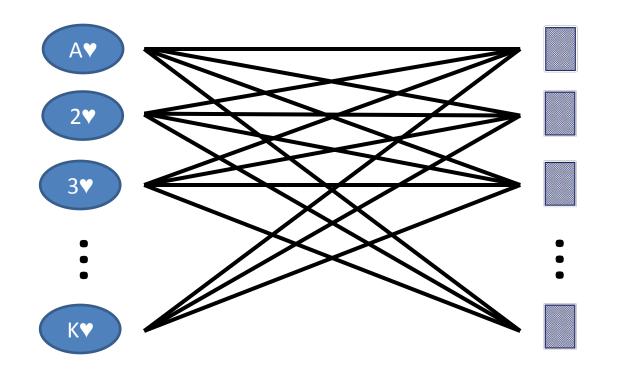
- 2. Compile to tractable knowledge base
- 3. Condition on observations/questions
- 4. Model counting



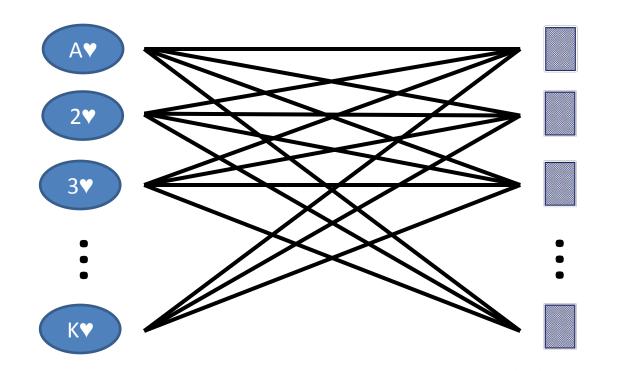
- 2. Compile to tractable knowledge base
- 3. Condition on observations/questions
- 4. Model counting



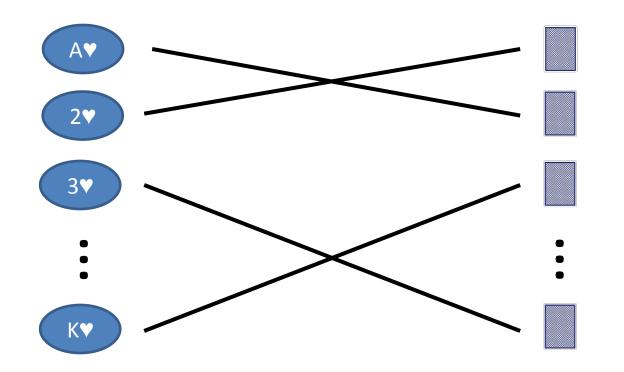
- 2. Compile to tractable knowledge base
- 3. Condition on observations/questions
- 4. Model counting



- 2. Compile to tractable knowledge base
- 3. Condition on observations/questions
- 4. Model counting



- 2. Compile to tractable knowledge base
- 3. Condition on observations/questions
- 4. Model counting: How many perfect matchings?

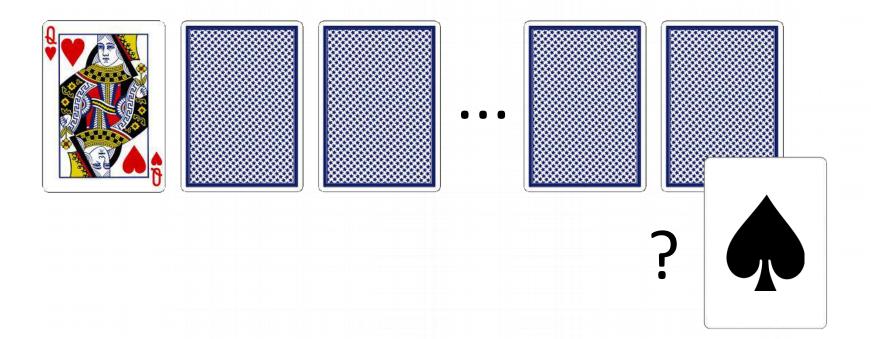


- 2. Compile to tractable knowledge base
- 3. Condition on observations/questions
- 4. Model counting: How many perfect matchings?

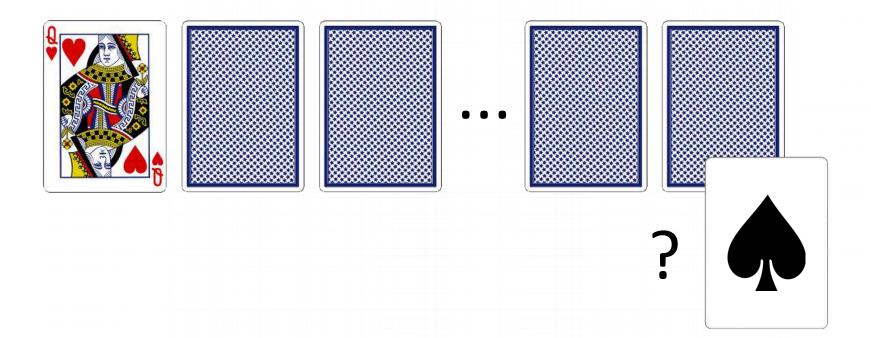
Observations

- Deck of cards = complete bigraph
- CD = removing edges in bigraph Encode any bigraph in cards problem
- CT = counting perfect matchings
- Problem is **#P-complete**!

No language with CD and CT can represent the cards problem compactly, unless P=NP.

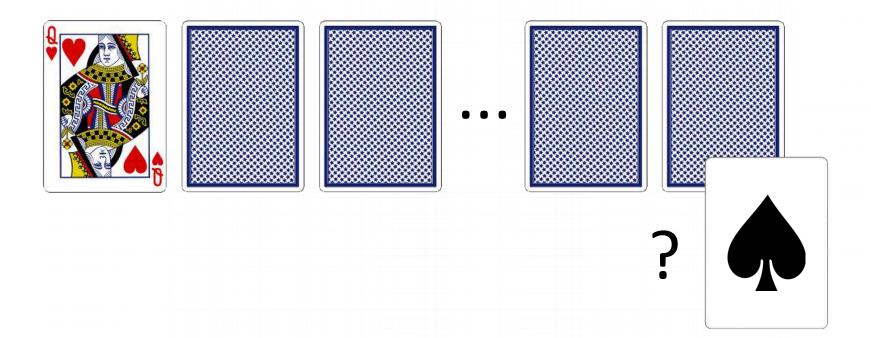


Probability that Card52 is Spades given that Card1 is QH?



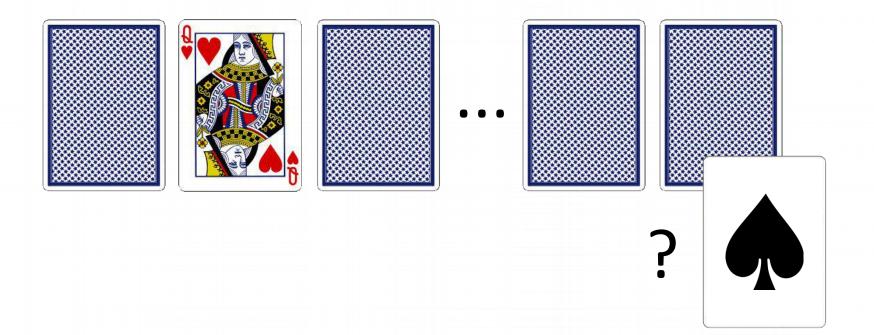
Probability that Card52 is Spades given that Card1 is QH?

13/51

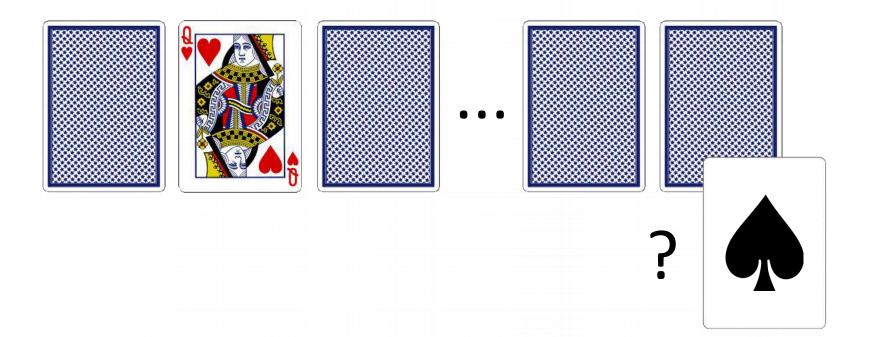


Probability that Card52 is Spades given that Card1 is QH?

13/51

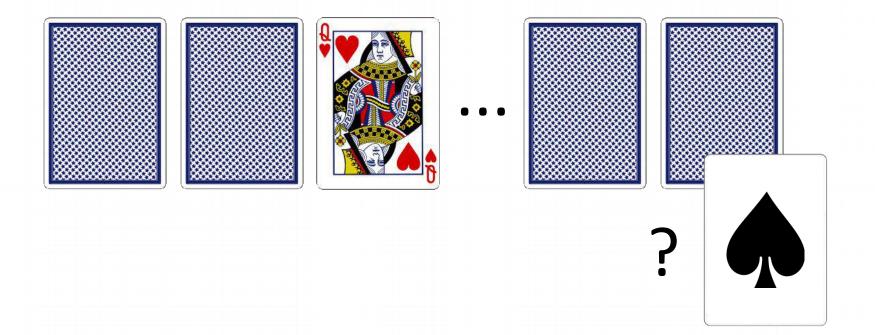


Probability that Card52 is Spades given that Card2 is QH?

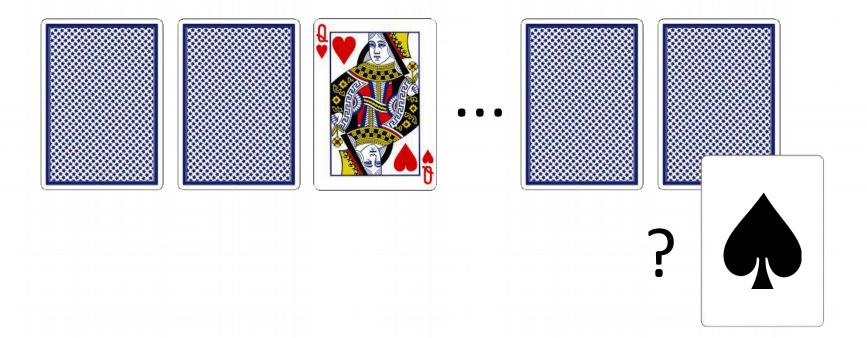


Probability that Card52 is Spades given that Card2 is QH?

13/51



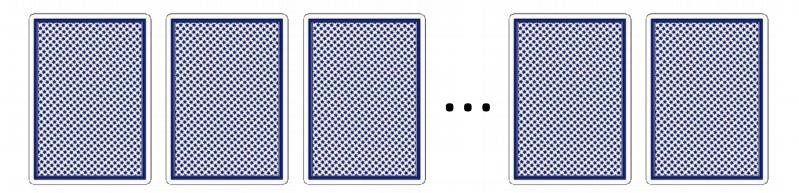
Probability that Card52 is Spades given that Card3 is QH?



Probability that Card52 is Spades given that Card3 is QH?

13/51

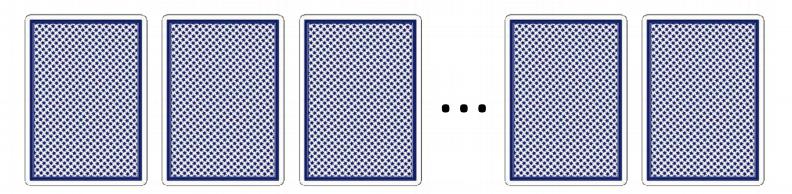
Tractable Reasoning



What's going on here? Which property makes reasoning tractable?

[Niepert, Van den Broeck; AAAI'14], [Van den Broeck; AAAI-KRR'15]

Tractable Reasoning

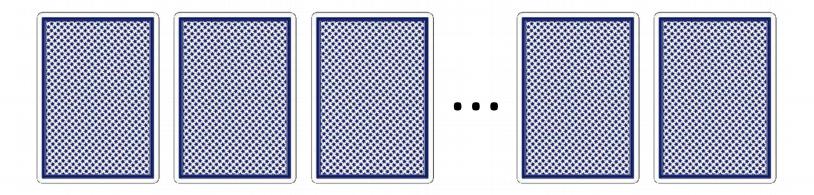


What's going on here? Which property makes reasoning tractable?

- High-level (first-order) reasoning
- Symmetry
- Exchangeability

⇒ Lifted Inference

[Niepert, Van den Broeck; AAAI'14], [Van den Broeck; AAAI-KRR'15]



Let us automate this:

– Relational/FO model

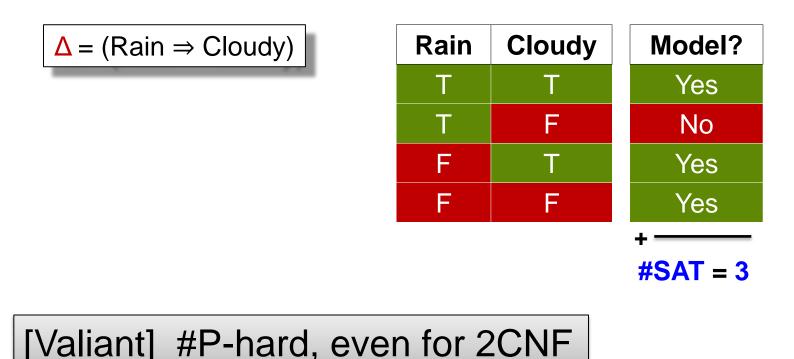
 $\begin{array}{l} \forall p, \ \exists c, \ Card(p,c) \\ \forall c, \ \exists p, \ Card(p,c) \\ \forall p, \ \forall c, \ \forall c', \ Card(p,c) \land \ Card(p,c') \Rightarrow c = c' \end{array}$

- First-Order Knowledge Compilation

MOTIVATION 2

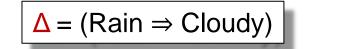
Model Counting

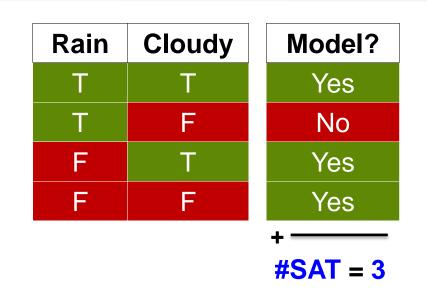
- Model = solution to a propositional logic formula Δ
- Model counting = #SAT



Weighted Model Counting

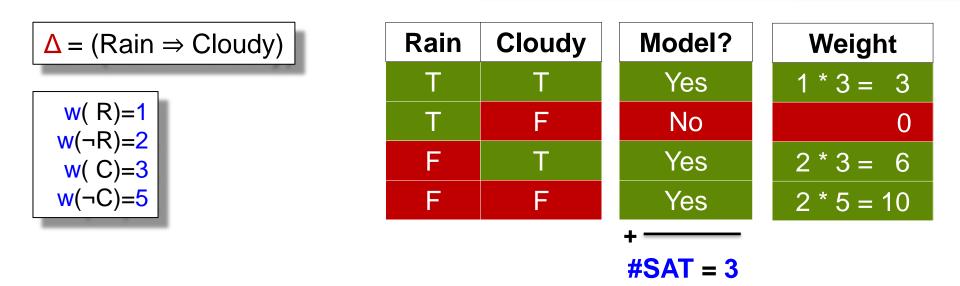
- Model = solution to a propositional logic formula Δ
- Model counting = #SAT





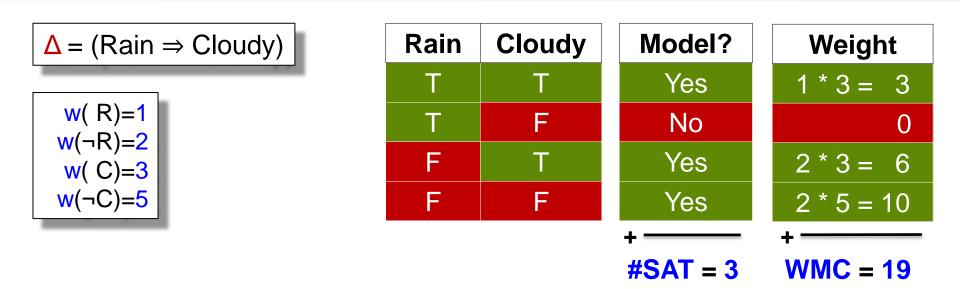
Weighted Model Counting

- Model = solution to a propositional logic formula Δ
- Model counting = #SAT
- Weighted model counting (WMC)
 - Weights for assignments to variables
 - Model weight is product of variable weights w(.)

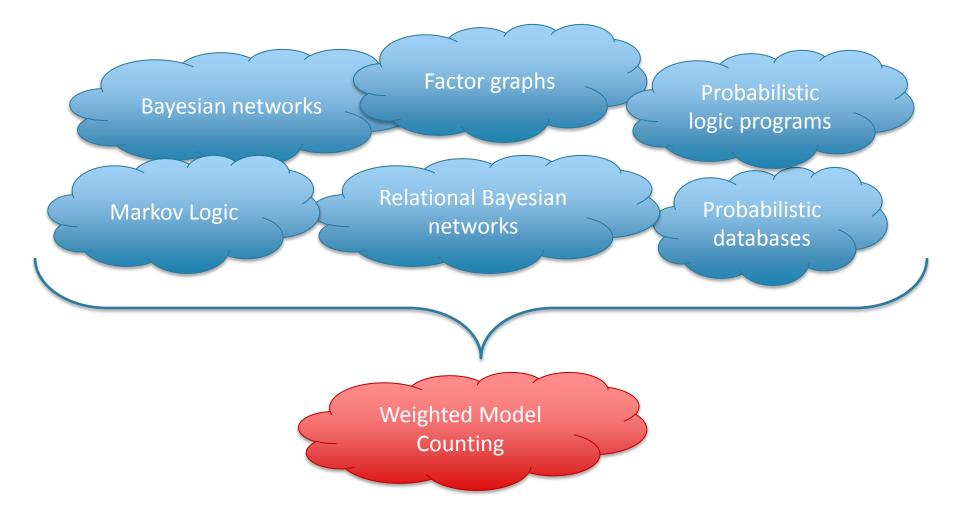


Weighted Model Counting

- Model = solution to a propositional logic formula Δ
- Model counting = #SAT
- Weighted model counting (WMC)
 - Weights for assignments to variables
 - Model weight is product of variable weights w(.)



Assembly language for probabilistic reasoning and learning



First-Order Model Counting

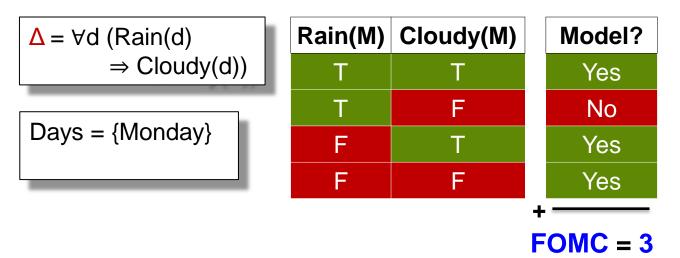
Model = solution to first-order logic formula Δ

 $\Delta = \forall d (Rain(d))$ $\Rightarrow Cloudy(d))$

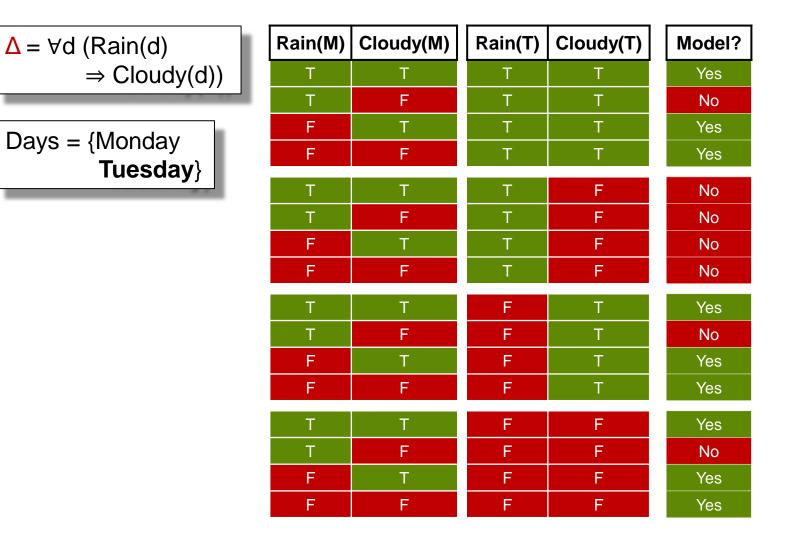
Days = {Monday}

First-Order Model Counting

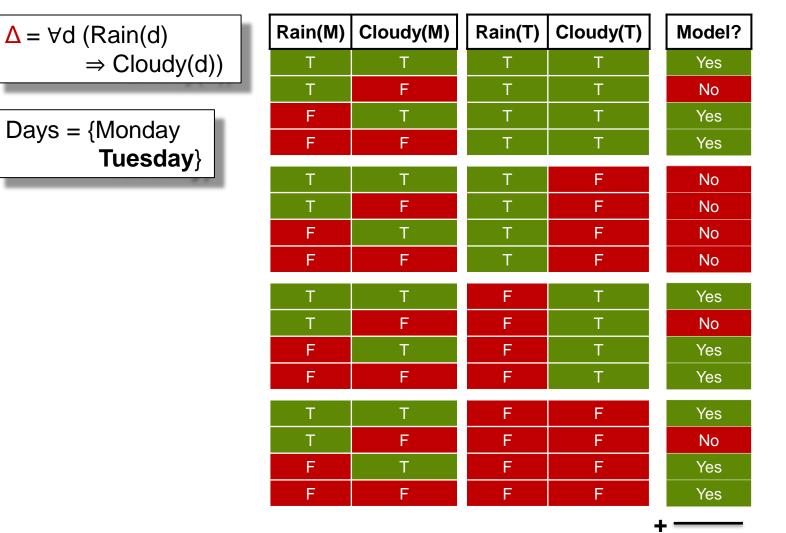
Model = solution to first-order logic formula Δ



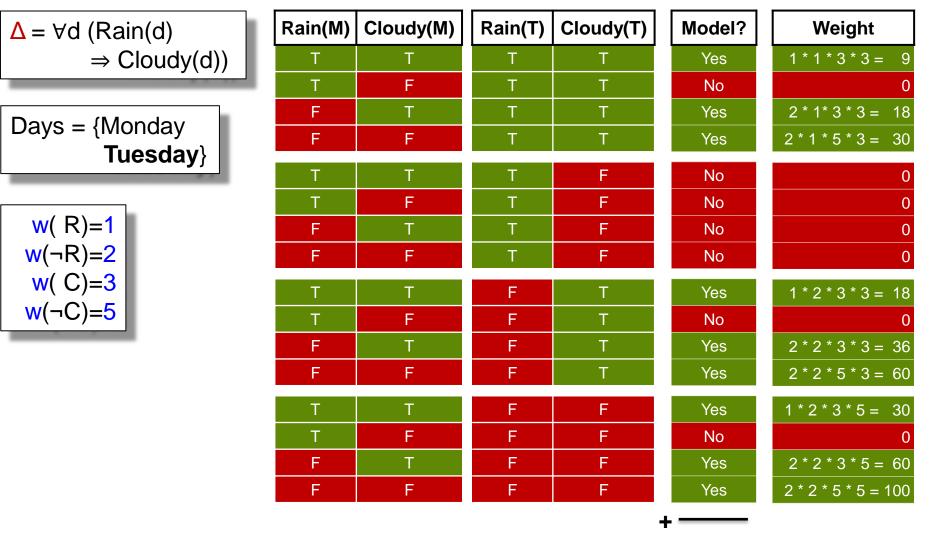
Model = solution to first-order logic formula Δ



Model = solution to first-order logic formula Δ

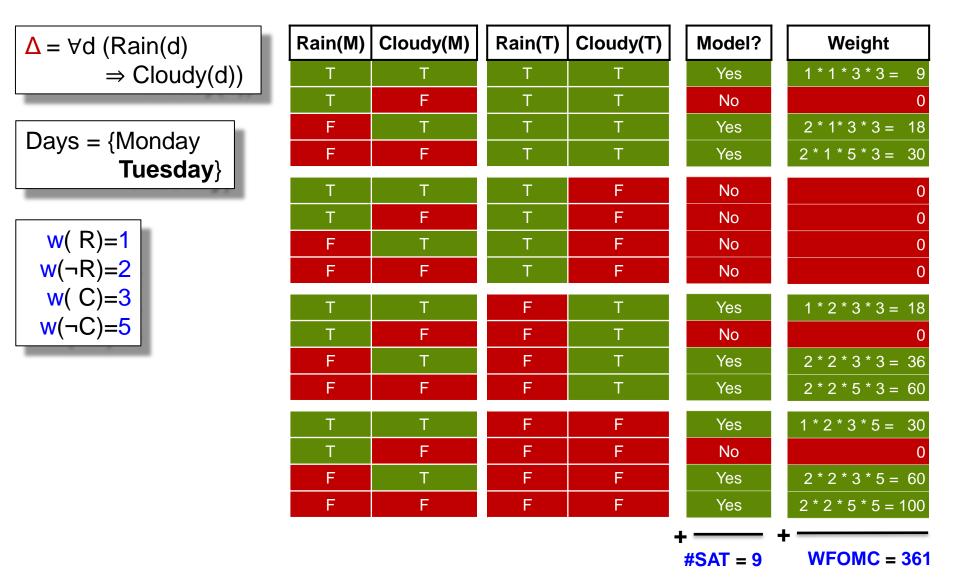


Model = solution to first-order logic formula Δ

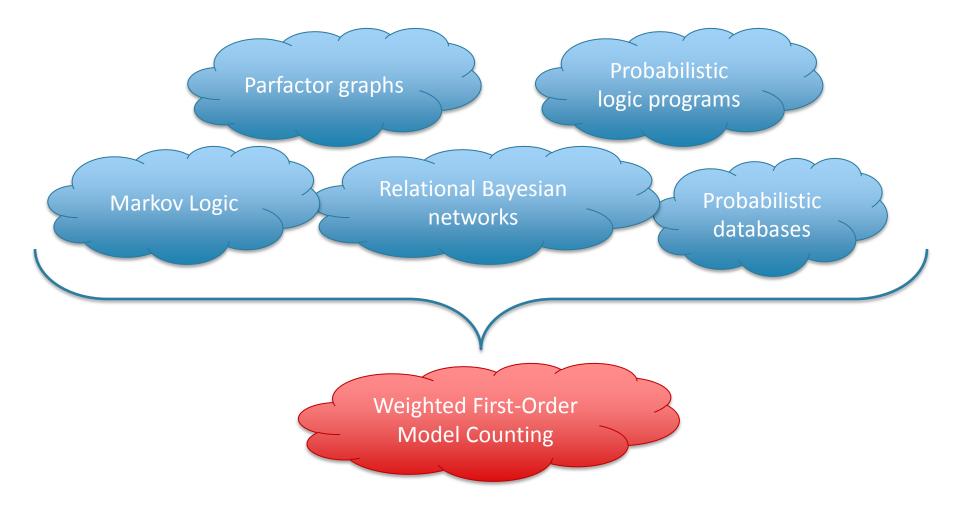


#SAT = 9

Model = solution to first-order logic formula Δ

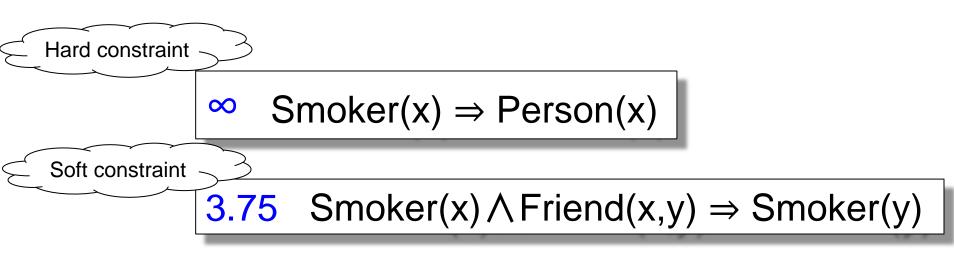


Assembly language for high-level probabilistic reasoning and learning



[VdB et al.; IJCAI'11, PhD'13, KR'14, UAI'14]

Statistical Relational Learning



- An MLN = set of constraints (w, $\Gamma(\mathbf{x})$)
- Weight of a world = product of w, for all rules (w, Γ(x)) and groundings Γ(a) that hold in the world

 $P_{MLN}(Q) = [sum of weights of worlds of Q] / Z$

Applications: large probabilistic KBs

FO NNF SYNTAX

First-Order Knowledge Compilation

- Input: Sentence in FOL
- Output: Representation tractable for some class of queries.
- In this work:
 - Function-free FOL
 - Model counting in NNF tradition
- Some pre-KC-map work:
 - FO Horn clauses
 - FO BDDs

Alphabet

- FOL
 - Predicates/relations: Friends
 - Object names: x, y, z
 - Object variables: X, Y, Z
 - Symbols classical FOL (\forall , \exists , \land , \lor , \neg ,...)
- Group logic
 - Group variables: X, Y, Z
 - Symbols from basic set theory
 (e.g., ∪, ∩, ∈, ⊆, {, }, complement).

Syntax

- Object terms: X, alice, bob
- Group terms : **X**, {alice, bob}, $\mathbf{X} \cup \mathbf{Y}$
- Atom: Friends(alice,X)
- Formulas:
 - $-(\alpha)$, $\neg \alpha$, $\alpha \lor \beta$, and $\alpha \land \beta$
 - $\forall X \in \mathbf{G}, \alpha \text{ and } \exists X \in \mathbf{G}, \alpha$
 - $\forall \mathbf{X} \subseteq \mathbf{G}, \alpha \text{ and } \exists \mathbf{X} \subseteq \mathbf{G}, \alpha$
- Group logic syntactic sugar:
 - P(G) is $\forall X \in G, P(X)$
 - $\overline{P}(\mathbf{G}) \text{ is } \forall X \in \mathbf{G}, \neg P(X)$

Examples:

 ∀X ∈ G, Y ∈ {alice, bob}, Enemies(X, Y)
 ⇒ ¬Friends(X, Y) ∧ ¬Friends(Y, X)

- ∀X ∈ G, Y ∈ G,
 Smokes(X) ∧ Friends(X, Y) ⇒ Smokes(Y)
- $\exists \mathbf{G} \subseteq \{\text{alice, bob}\}, \operatorname{Smokes}(\mathbf{G}) \land \overline{H}ealthy(\mathbf{G})$

Semantics

- Template language for propositional logic
- Grounding a sentence: $gr(\alpha)$
 - Replace \forall by \land
 - Replace ∃ by ∨
 - End result: ground sentence = propositional logic
- Grounding is polynomial in group sizes
 when no ∀X ⊆ G or ∃X ⊆ G

Important for polytime reduction to NNF circuits

Decomposability

• <u>Conjunction</u>: $\alpha(X, \mathbf{G}) \land \beta(X, \mathbf{G})$

For any substitution X=c and **G**=g, we have that $gr(\alpha(c,g)) \wedge gr(\beta(c,g))$ is decomposable

Meaning: α and β can never talk about the same ground atoms

• Quantifier: $\forall Y \in G, \alpha(Y)$

For any two $a,b \in G$, we have that $gr(\alpha(a)) \land gr(\alpha(b))$ is decomposable

Determinism

• <u>Disjunction</u>: $\alpha(X, G) \vee \beta(X, G)$

For any substitution X=c and **G**=g, we have that $gr(\alpha(c,g)) \lor gr(\beta(c,g))$ is deterministic

Meaning: $\alpha \land \beta$ is UNSAT

Quantifier: ∃Y ∈ G, α(Y)
 For any two a,b ∈ G, we have that gr(α(a)) ∨ gr(α(b)) is decomposable

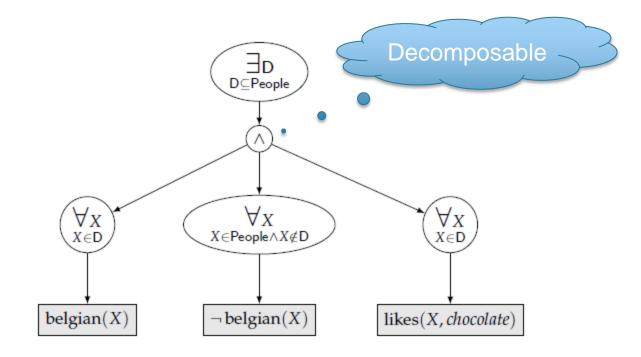
Group Quantifiers

- Decomposability: ∀X ⊆ G, α(X)
 For any two A,B ⊆ G, we have that gr(α(A)) ∨ gr(α(B)) is decomposable
- <u>Determinism</u>: ∃X ⊆ G, α(X)
 For any two A,B ⊆ G, we have that gr(α(A)) ∨ gr(α(B)) is deterministic

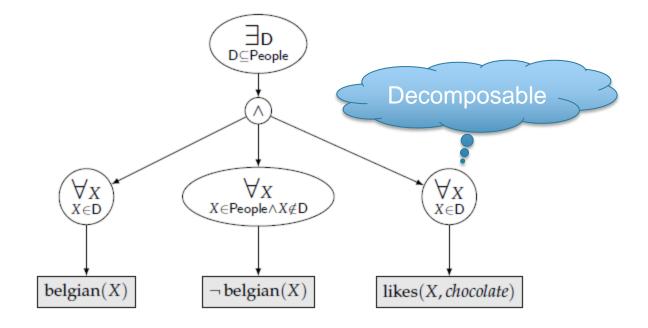
Automorphism

- Object permutation σ : D→ D is a one-to-one mapping from objects to objects.
- Permuting α using σ replaces o in α by $\sigma(o)$.
- Sentences α and β are p-equivalent iff α is equivalent to an object permutation of β.
 Smokes(alice) and Smokes(bob) are p-equivalent
- Group quantifiers: ∀X ⊆ G, α(X) or ∃X ⊆ G, α(X)
 Are *automorphic* iff for any two A,B ⊆ G s.t.
 |A|=|B|, gr(α(A)) and gr(α(B)) are p-equivalent

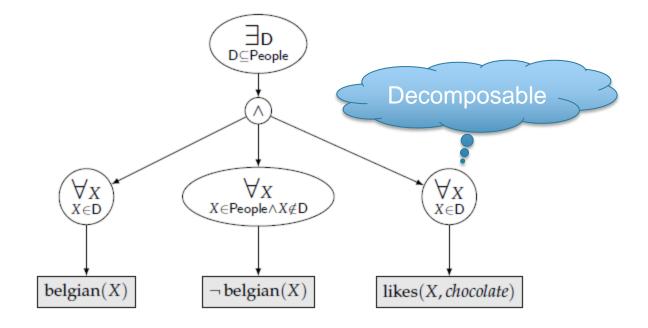
First-Order NNF



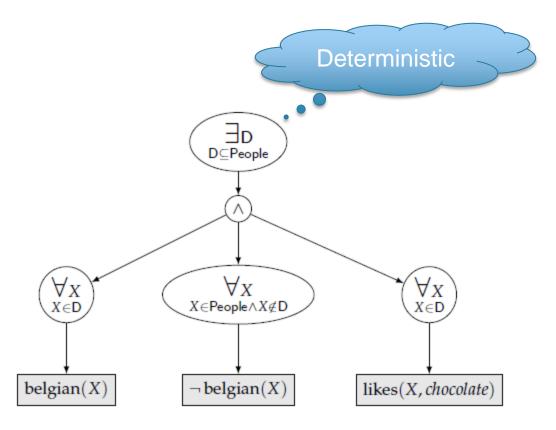
First-Order NNF



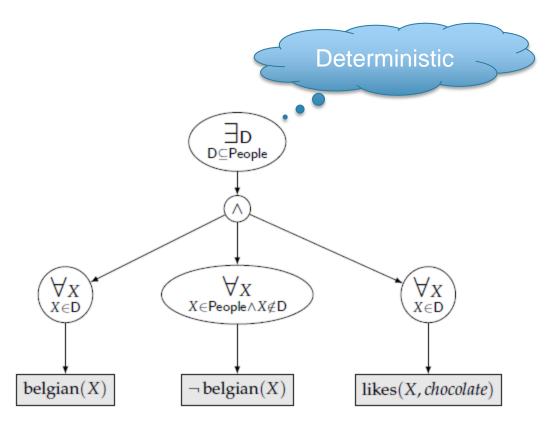
First-Order DNNF



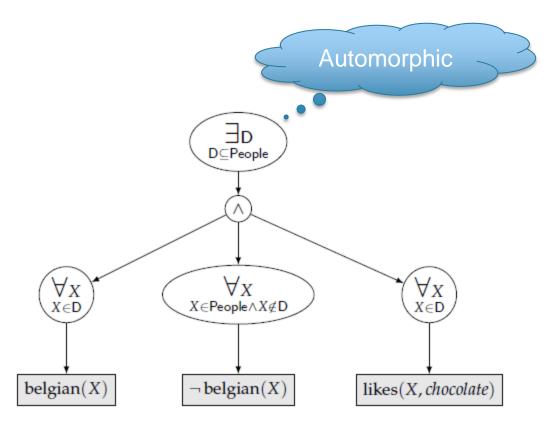
First-Order DNNF



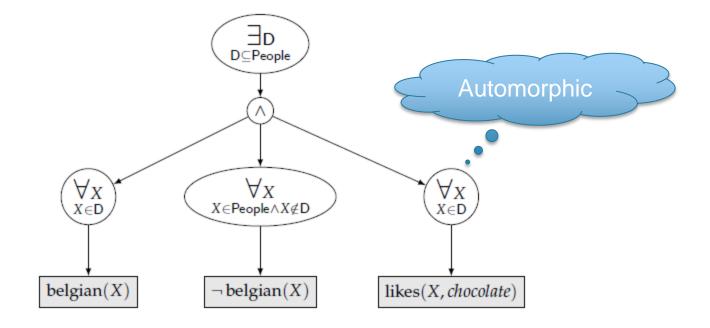
First-Order d-DNNF



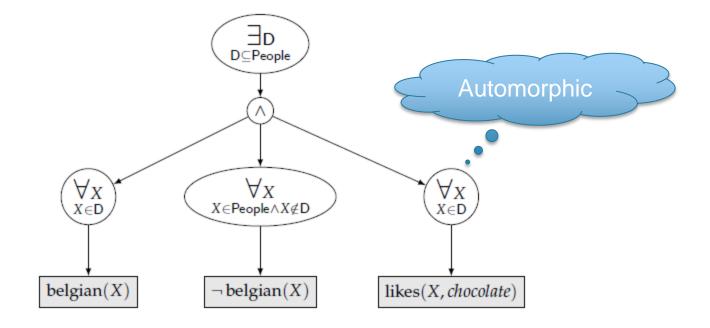
First-Order d-DNNF



First-Order d-DNNF



First-Order ad-DNNF



FO NNF Languages

- FO NNF: group logic circuits, negation only on atoms
- FO d-DNNF: determinism and decomposability Grounding generates a d-DNNF
- FO DNNF

Grounding generates a DNNF

• FO ad-DNNF: automorphic Powerful properties!

FO NNF TRACTABILITY

Symmetric WFOMC

Def. A weighted vocabulary is (R, w), where

 $-\mathbf{R} = (\mathbf{R}_1, \mathbf{R}_2, ..., \mathbf{R}_k) = \text{relational vocabulary}$ $-\mathbf{w} = (\mathbf{w}_1, \mathbf{w}_2, ..., \mathbf{w}_k) = \text{weights}$

- Fix an FO formula Q, domain of size n
- The weight of a ground tuple t in R_i is w_i

Complexity of FOMC / WFOMC(Q, n)? Data/domain complexity: fixed Q, input n / and w

Symmetric WFOMC on FO ad-DNNF

 $U(\alpha) = \begin{cases} 0 & \text{when } \alpha = \text{false} \\ 1 & \text{when } \alpha = \text{true} \\ 0.5 & \text{when } \alpha \text{ is a literal} \\ U(\ell_1) \times \cdots \times U(\ell_n) & \text{when } \alpha = \ell_1 \wedge \cdots \wedge \ell_n \\ U(\ell_1) + \cdots + U(\ell_n) & \text{when } \alpha = \ell_1 \vee \cdots \vee \ell_n \\ \prod_{i=1}^n U(\beta\{X/x_i\}) & \text{when } \alpha = \forall X \in \tau, \beta \text{ and } x_1, \dots, x_n \text{ are the objects in } \tau. \\ \sum_{i=1}^n U(\beta\{X/x_i\}) & \text{when } \alpha = \exists X \in \tau, \beta \text{ and } x_1, \dots, x_n \text{ are the objects in } \tau. \\ \prod_{i=0}^{|\tau|} U(\beta\{X/x_i\}) & \text{when } \alpha = \forall X \subseteq \tau, \beta, \text{ and } x_i \text{ is any subset of } \tau \text{ such that } |\mathbf{x}_i| = i. \\ \sum_{i=0}^{|\tau|} (|\tau|) \cdot U(\beta\{\mathbf{X}/\mathbf{x}_i\}) & \text{when } \alpha = \exists \mathbf{X} \subseteq \tau, \beta, \text{ and } \mathbf{x}_i \text{ is any subset of } \tau \text{ such that } |\mathbf{x}_i| = i. \end{cases}$

Complexity polynomial in domain size! Polynomial in NNF size for bounded depth.

FO-Model Counting: $w(R) = w(\neg R) = 1$ FO ad-DNNF sentences

FO-Model Counting: $w(R) = w(\neg R) = 1$ FO ad-DNNF sentences

4. $\Delta = (\text{Stress}(\text{Alice}) \Rightarrow \text{Smokes}(\text{Alice}))$

Domain = {Alice}

FO-Model Counting: $w(R) = w(\neg R) = 1$ FO ad-DNNF sentences

4. $\Delta = (\text{Stress}(\text{Alice}) \Rightarrow \text{Smokes}(\text{Alice}))$

Domain = {Alice}

 \rightarrow 3 models

FO-Model Counting: $w(R) = w(\neg R) = 1$ FO ad-DNNF sentences

4.
$$\Delta = (\text{Stress}(\text{Alice}) \Rightarrow \text{Smokes}(\text{Alice}))$$

 \rightarrow 3 models

3. $\Delta = \forall x, (Stress(x) \Rightarrow Smokes(x))$

Domain = {n people}

Domain = {Alice}

FO-Model Counting: $w(R) = w(\neg R) = 1$ FO ad-DNNF sentences

4.
$$\Delta = (\text{Stress}(\text{Alice}) \Rightarrow \text{Smokes}(\text{Alice}))$$

 \rightarrow 3 models

3. $\Delta = \forall x, (Stress(x) \Rightarrow Smokes(x))$

 \rightarrow 3ⁿ models

Domain = {Alice}

Domain = {n people}

3.
$$\Delta = \forall x, (Stress(x) \Rightarrow Smokes(x))$$

 \rightarrow 3ⁿ models

Domain = {n people}

3.
$$\Delta = \forall x, (Stress(x) \Rightarrow Smokes(x))$$

 \rightarrow 3ⁿ models

2. $\Delta = \forall y$, (ParentOf(y) \land Female \Rightarrow MotherOf(y))

Domain = {n people}

D = {n people}

3.
$$\Delta = \forall x, (Stress(x) \Rightarrow Smokes(x))$$

 \rightarrow 3ⁿ models

2. $\Delta = \forall y$, (ParentOf(y) \land Female \Rightarrow MotherOf(y))

D = {n people}

Domain = {n people}

If Female = true? $\Delta = \forall y$, (ParentOf(y) \Rightarrow MotherOf(y)) $\rightarrow 3^{n}$ models

3.
$$\Delta = \forall x, (Stress(x) \Rightarrow Smokes(x))$$

 \rightarrow 3ⁿ models

2. $\Delta = \forall y$, (ParentOf(y) \land Female \Rightarrow MotherOf(y))

D = {n people}

Domain = {n people}

If Female = true? $\Delta = \forall y$, (ParentOf(y) \Rightarrow MotherOf(y)) $\Rightarrow 3^{n}$ models

If Female = false? Δ = true

 \rightarrow 4ⁿ models

3.
$$\Delta = \forall x, (Stress(x) \Rightarrow Smokes(x))$$

 \rightarrow 3ⁿ models

2. $\Delta = \forall y$, (ParentOf(y) \land Female \Rightarrow MotherOf(y))

D = {n people}

If Female = true? $\Delta = \forall y$, (ParentOf(y) \Rightarrow MotherOf(y)) $\Rightarrow 3^{n}$ models If Female = false? $\Delta = true$ $\Rightarrow 4^{n}$ models

 \rightarrow 3ⁿ + 4ⁿ models

Domain = {n people}

3.
$$\Delta = \forall x, (Stress(x) \Rightarrow Smokes(x))$$

$$\rightarrow 3^{n} \text{ models}$$
2.
$$\Delta = \forall y, (ParentOf(y) \land Female \Rightarrow MotherOf(y))$$

$$D = \{n \text{ people}\}$$
If Female = true?
$$\Delta = \forall y, (ParentOf(y) \Rightarrow MotherOf(y))$$

$$\Rightarrow 3^{n} \text{ models}$$
If Female = false?
$$\Delta = true$$

$$\Rightarrow 4^{n} \text{ models}$$

$$\Rightarrow 3^{n} + 4^{n} \text{ models}$$
1.
$$\Delta = \forall x, \forall y, (ParentOf(x,y) \land Female(x) \Rightarrow MotherOf(x,y))$$

$$D = \{n \text{ people}\}$$

3.
$$\Delta = \forall x, (Stress(x) \Rightarrow Smokes(x))$$

$$\rightarrow 3^{n} \text{ models}$$
2.
$$\Delta = \forall y, (ParentOf(y) \land Female \Rightarrow MotherOf(y))$$

$$D = \{n \text{ people}\}$$
If Female = true?
$$\Delta = \forall y, (ParentOf(y) \Rightarrow MotherOf(y))$$

$$\Rightarrow 3^{n} \text{ models}$$
If Female = false?
$$\Delta = true$$

$$\Rightarrow 4^{n} \text{ models}$$

$$3^{n} + 4^{n} \text{ models}$$
1.
$$\Delta = \forall x, \forall y, (ParentOf(x,y) \land Female(x) \Rightarrow MotherOf(x,y))$$

$$D = \{n \text{ people}\}$$

$$\Rightarrow (3^{n} + 4^{n})^{n} \text{ models}$$

 $\Delta = \forall x , y \in \mathbf{D}, (Smokes(x) \land Friends(x,y) \Rightarrow Smokes(y))$

Domain = {n people}

- Not decomposable!
- Rewrite as FO ad-DNNF:

 $\exists \mathbf{G} \subseteq \mathbf{D}, \, \mathsf{Smokes}(\,\,\mathbf{G}\,) \, \land \, \, \overline{\mathsf{Smokes}}(\,\,\overline{\mathbf{G}}\,) \, \land \, \, \overline{\mathsf{Friends}}(\,\,\mathbf{G}\,, \,\, \overline{\mathbf{G}}\,)$

- Not possible to ground to d-DNNF!
- How to do tractable CT?

 $\sum_{i=0}^{|\tau|} {|\tau| \choose i} \cdot U(\beta\{\mathbf{X}/\mathbf{x}_i\}) \quad \text{when } \alpha = \exists \mathbf{X} \subseteq \tau, \beta, \text{ and } \mathbf{x}_i \text{ is any subset of } \tau \text{ such that } |\mathbf{x}_i| = i$

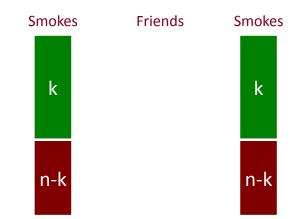
 $\exists \mathbf{G} \subseteq \mathbf{D}, \operatorname{Smokes}(\mathbf{G}) \land \overline{\operatorname{Smokes}}(\overline{\mathbf{G}}) \land \overline{\operatorname{Friends}}(\mathbf{G}, \overline{\mathbf{G}})$

 $\exists \mathbf{G} \subseteq \mathbf{D}, \, \text{Smokes}(\,\mathbf{G}\,) \land \, \overline{\text{Smokes}}(\,\overline{\mathbf{G}}\,) \land \, \overline{\text{Friends}}(\,\mathbf{G}\,, \, \overline{\mathbf{G}}\,)$

• If we know **G** precisely: who smokes, and there are *k* smokers?

Database:

...

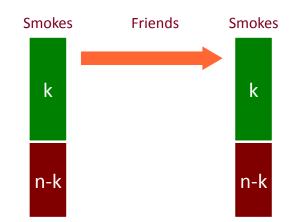


 $\exists \mathbf{G} \subseteq \mathbf{D}, \, \text{Smokes}(\,\mathbf{G}\,) \land \, \overline{\text{Smokes}}(\,\overline{\mathbf{G}}\,) \land \, \overline{\text{Friends}}(\,\mathbf{G}\,, \, \overline{\mathbf{G}}\,)$

• If we know **G** precisely: who smokes, and there are *k* smokers?

Database:

...

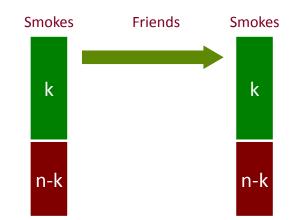


 $\exists \mathbf{G} \subseteq \mathbf{D}, \, \text{Smokes}(\,\mathbf{G}\,) \land \, \overline{\text{Smokes}}(\,\overline{\mathbf{G}}\,) \land \, \overline{\text{Friends}}(\,\mathbf{G}\,, \, \overline{\mathbf{G}}\,)$

• If we know **G** precisely: who smokes, and there are *k* smokers?

Database:

...

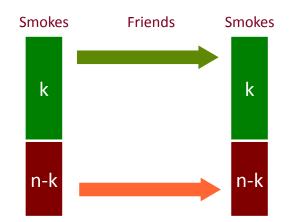


 $\exists \mathbf{G} \subseteq \mathbf{D}, \, \text{Smokes}(\,\mathbf{G}\,) \land \, \overline{\text{Smokes}}(\,\overline{\mathbf{G}}\,) \land \, \overline{\text{Friends}}(\,\mathbf{G}\,, \, \overline{\mathbf{G}}\,)$

• If we know **G** precisely: who smokes, and there are *k* smokers?

Database:

...

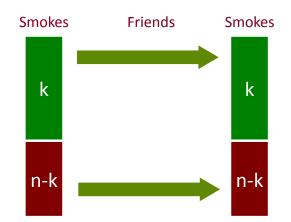


 $\exists \mathbf{G} \subseteq \mathbf{D}, \operatorname{Smokes}(\mathbf{G}) \land \overline{\operatorname{Smokes}}(\overline{\mathbf{G}}) \land \overline{\operatorname{Friends}}(\mathbf{G}, \overline{\mathbf{G}})$

• If we know **G** precisely: who smokes, and there are *k* smokers?

Database:

...

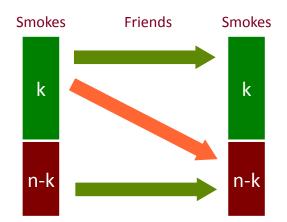


 $\exists \mathbf{G} \subseteq \mathbf{D}, \, \text{Smokes}(\,\mathbf{G}\,) \land \, \overline{\text{Smokes}}(\,\overline{\mathbf{G}}\,) \land \, \overline{\text{Friends}}(\,\mathbf{G}\,, \, \overline{\mathbf{G}}\,)$

• If we know **G** precisely: who smokes, and there are *k* smokers?

Database:

...

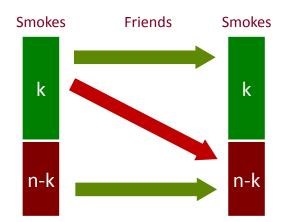


 $\exists \mathbf{G} \subseteq \mathbf{D}, \, \text{Smokes}(\,\mathbf{G}\,) \land \, \overline{\text{Smokes}}(\,\overline{\mathbf{G}}\,) \land \, \overline{\text{Friends}}(\,\mathbf{G}\,, \, \overline{\mathbf{G}}\,)$

• If we know **G** precisely: who smokes, and there are *k* smokers?

Database:

...

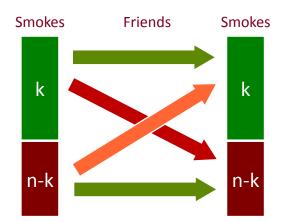


 $\exists \mathbf{G} \subseteq \mathbf{D}, \, \text{Smokes}(\,\mathbf{G}\,) \land \, \overline{\text{Smokes}}(\,\overline{\mathbf{G}}\,) \land \, \overline{\text{Friends}}(\,\mathbf{G}\,, \, \overline{\mathbf{G}}\,)$

• If we know **G** precisely: who smokes, and there are *k* smokers?

Database:

...

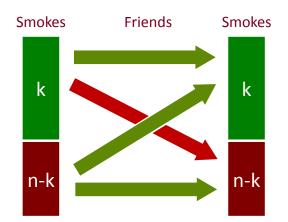


 $\exists \mathbf{G} \subseteq \mathbf{D}, \, \text{Smokes}(\,\mathbf{G}\,) \land \, \overline{\text{Smokes}}(\,\overline{\mathbf{G}}\,) \land \, \overline{\text{Friends}}(\,\mathbf{G}\,, \, \overline{\mathbf{G}}\,)$

• If we know **G** precisely: who smokes, and there are *k* smokers?

Database:

...

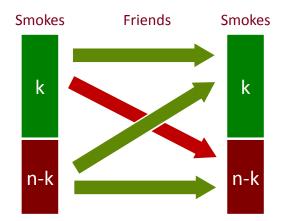


 $\exists \mathbf{G} \subseteq \mathbf{D}, \, \text{Smokes}(\,\mathbf{G}\,) \land \, \overline{\text{Smokes}}(\,\overline{\mathbf{G}}\,) \land \, \overline{\text{Friends}}(\,\mathbf{G}\,, \, \overline{\mathbf{G}}\,)$

• If we know **G** precisely: who smokes, and there are *k* smokers?

Database:

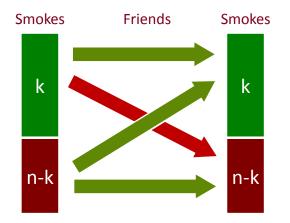
$$\rightarrow 2^{n^2 - k(n-k)}$$
 models



 $\exists \mathbf{G} \subseteq \mathbf{D}, \operatorname{Smokes}(\mathbf{G}) \land \overline{\operatorname{Smokes}}(\overline{\mathbf{G}}) \land \overline{\operatorname{Friends}}(\mathbf{G}, \overline{\mathbf{G}})$

• If we know **G** precisely: who smokes, and there are *k* smokers?

Database: Smokes(Alice) = 1 Smokes(Bob) = 0 Smokes(Charlie) = 0 Smokes(Dave) = 1 Smokes(Eve) = 0 ... → $2^{n^2 - k(n-k)}$ models

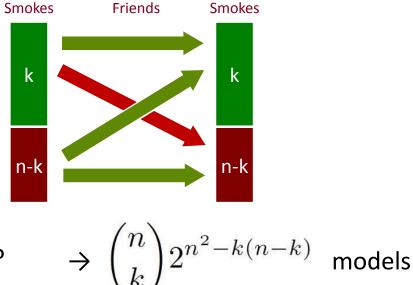


• If we know that there are *k* smokers?

 $\exists \mathbf{G} \subseteq \mathbf{D}, \operatorname{Smokes}(\mathbf{G}) \land \overline{\operatorname{Smokes}}(\overline{\mathbf{G}}) \land \overline{\operatorname{Friends}}(\mathbf{G}, \overline{\mathbf{G}})$

• If we know **G** precisely: who smokes, and there are *k* smokers?

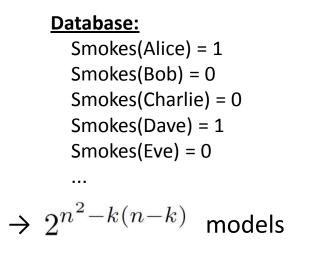
Database: Smokes(Alice) = 1 Smokes(Bob) = 0 Smokes(Charlie) = 0 Smokes(Dave) = 1 Smokes(Eve) = 0 ... → $2^{n^2 - k(n-k)}$ models

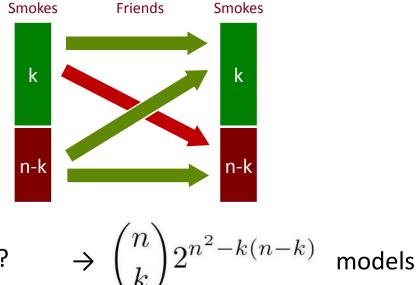


• If we know that there are *k* smokers?

 $\exists \mathbf{G} \subseteq \mathbf{D}, \, \text{Smokes}(\,\mathbf{G}\,) \land \, \overline{\text{Smokes}}(\,\overline{\mathbf{G}}\,) \land \, \overline{\text{Friends}}(\,\mathbf{G}\,, \, \overline{\mathbf{G}}\,)$

• If we know **G** precisely: who smokes, and there are *k* smokers?



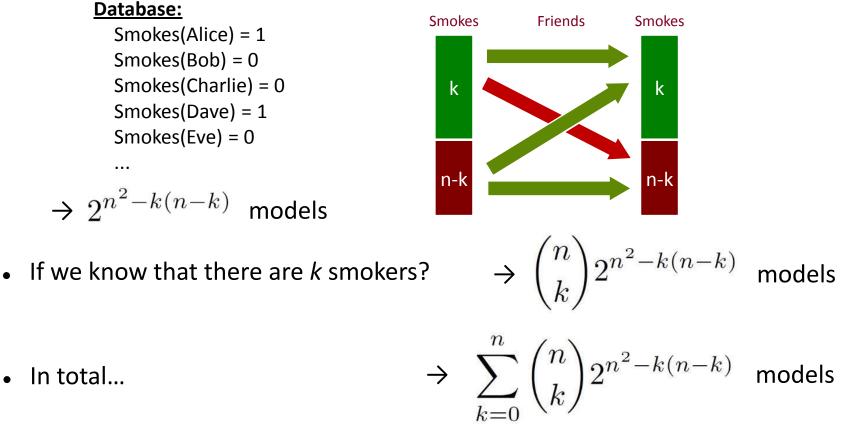


• If we know that there are *k* smokers?

• In total...

 $\exists \mathbf{G} \subseteq \mathbf{D}, \operatorname{Smokes}(\mathbf{G}) \land \operatorname{Smokes}(\mathbf{G}) \land \operatorname{Friends}(\mathbf{G}, \mathbf{G})$

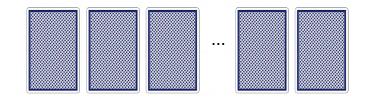
• If we know **G** precisely: who smokes, and there are k smokers?



In total...

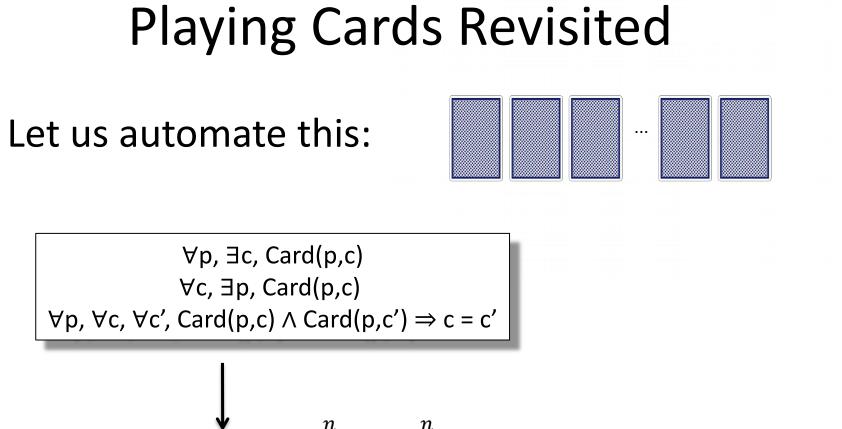
Playing Cards Revisited

Let us automate this:



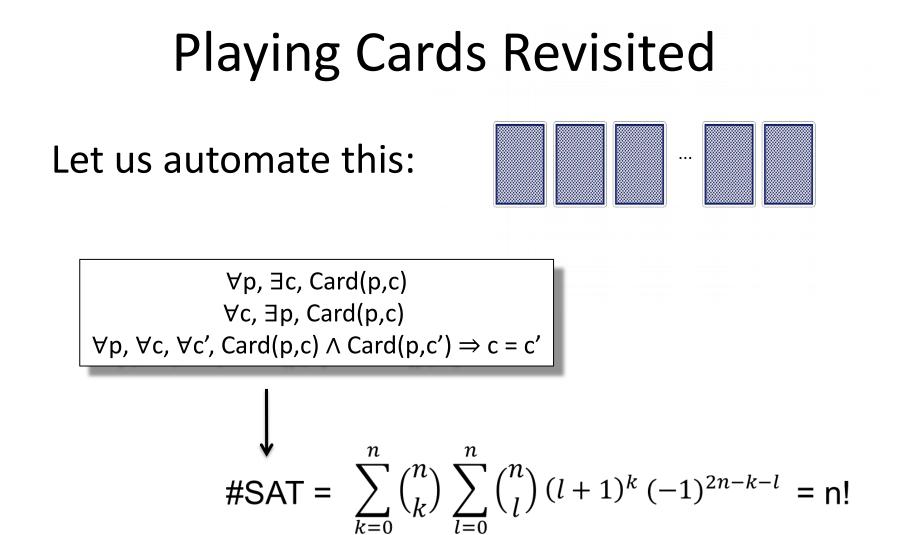
 $\begin{array}{l} \forall p, \exists c, Card(p,c) \\ \forall c, \exists p, Card(p,c) \\ \forall p, \forall c, \forall c', Card(p,c) \land Card(p,c') \Rightarrow c = c' \end{array}$

[Van den Broeck.; AAAI-KR'15]



#SAT =
$$\sum_{k=0}^{n} {n \choose k} \sum_{l=0}^{n} {n \choose l} (l+1)^{k} (-1)^{2n-k-l} = n!$$

[Van den Broeck.; AAAI-KR'15]



Computed in time polynomial in n

[Van den Broeck.; AAAI-KR'15]

FO COMPILATION

Compilation Rules

- Lots of preprocessing
- Shannon decomposition/Boole's expansion
- Detect propositional decomposability
- FO Shannon decomposition:

$\exists \mathbf{X} \subseteq \tau, P(\mathbf{X}) \wedge \overline{P}(\overline{\mathbf{X}}) \wedge \beta$

Simplify β (remove atoms subsumed by P(X)) Always deterministic! Ensure automorphic \exists

• Detect FO decomposability

FO NNF EXPRESSIVENESS

Main Positive Result: FO²

- $FO^2 = FO$ restricted to two variables
- "The graph has a path of length 10": $\exists x \exists y (R(x,y) \land \exists x (R(y,x) \land \exists y (R(x,y) \land ...)))$
- Theorem: Compilation algorithm to FO ad-DNNF is complete for FO²
- Model counting for FO² in PTIME domain complexity

Main Negative Results

Domain complexity:

- There exists an FO formula Q s.t. symmetric FOMC(Q, n) is #P₁ hard
- There exists Q in FO³ s.t. FOMC(Q, n) is #P₁ hard
- There exists a conjunctive query Q s.t. symmetric WFOMC(Q, n) is #P₁ hard
- There exists a positive clause Q w.o. '=' s.t. symmetric WFOMC(Q, n) is #P₁ hard

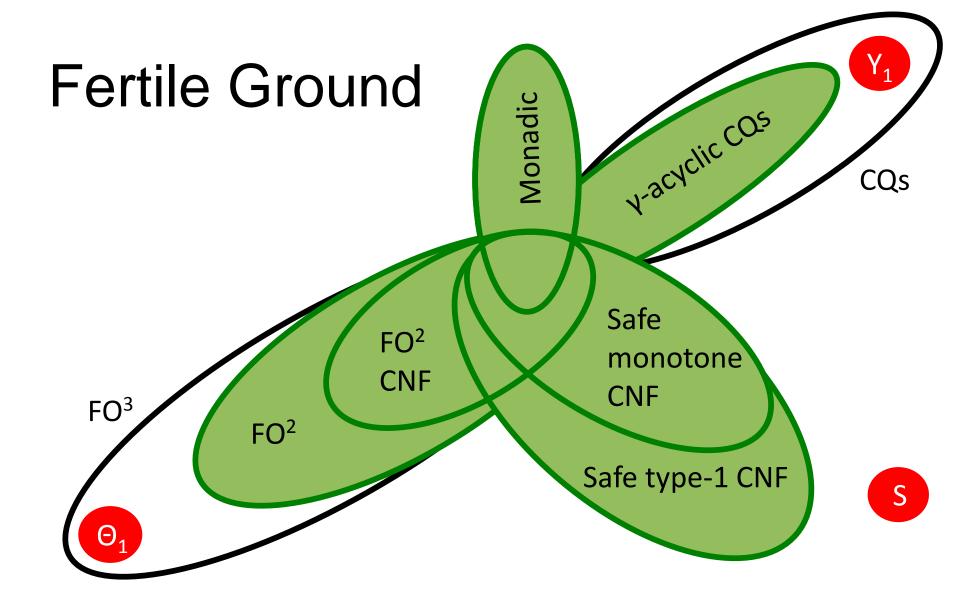
Therefore, no FO ad-DNNF can exist ⊗

Proof

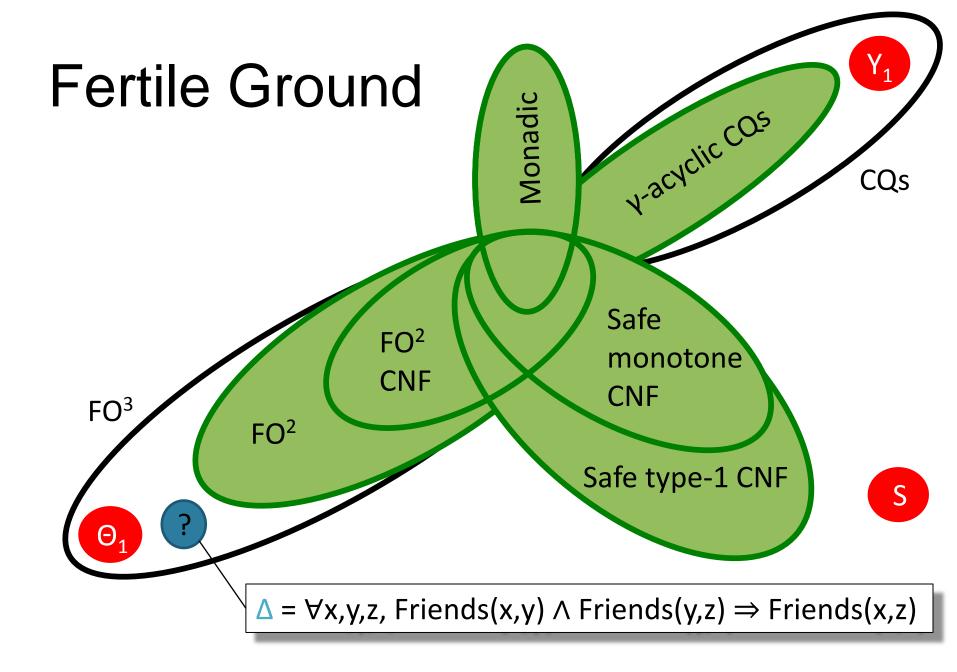
Theorem. There exists an FO³ sentence Q s.t. FOMC(Q,n) is $\#P_1$ -hard

Proof

- Step 1. Construct a Turing Machine U s.t.
 U is in #P₁ and runs in linear time in n
 U computes a #P₁ –hard function
- Step 2. Construct an FO³ sentence Q s.t.
 FOMC(Q,n) / n! = U(n)



[VdB; NIPS'11], [VdB et al.; KR'14], [Gribkoff, VdB, Suciu; UAI'15], [Beame, VdB, Gribkoff, Suciu; PODS'15], etc.



[VdB; NIPS'11], [VdB et al.; KR'14], [Gribkoff, VdB, Suciu; UAI'15], [Beame, VdB, Gribkoff, Suciu; PODS'15], etc.

Other Queries and Transformations

- What if all ground atoms have different weights? Asymmetric WFOMC
- FO d-DNNF complete for all monotone FO CNFs that support efficient CT
- No clausal entailment
- No conditioning

Conclusions

- Very powerful already!
- We need to solve this!

THANKS

References

- <u>Cards Example:</u> Guy Van den Broeck. Towards High-Level Probabilistic Reasoning with Lifted Inference, In Proceedings of KRR, 2015.
- <u>First-Order Knowledge Compilation:</u> *Guy Van den Broeck. Lifted Inference and Learning in Statistical Relational Models, PhD thesis, KU Leuven, 2013.*
- <u>Expressiveness:</u> Paul Beame, Guy Van den Broeck, Eric Gribkoff, Dan Suciu. Symmetric Weighted First-Order Model Counting, In Proceedings of PODS, 2015.