First-Order Knowledge Compilation for Probabilistic Reasoning

Guy Van den Broeck

based on joint work with Adnan Darwiche, Dan Suciu, and many others

MOTIVATION 1

A Simple Reasoning Problem

Probability that Card1 is Hearts?

A Simple Reasoning Problem

Probability that Card1 is Hearts?
1/4

A Simple Reasoning Problem

Probability that Card52 is Spades given that Card1 is QH?

A Simple Reasoning Problem

Probability that Card52 is Spades given that Card1 is QH?

13/51

Automated Reasoning

Let us automate this:

1. CNF encoding for deck of cards
2. Compile to tractable knowledge base (e.g., d-DNNF)
3. Condition on observations/questions
"Card1 is hearts"
4. Model counting

Automated Reasoning

Let us automate this:

1. CNF encoding for deck of cards
2. Compile to tractable knowledge base (e.g., d-DNNF)
3. Condition on observations/questions
"Card1 is hearts"
4. Model counting

A typical BeyondNP pipeline!

Automated Reasoning

Let us automate this:

1. CNF encoding for deck of cards

$$
\begin{gathered}
C \operatorname{Card}(p 1, c 1) \vee \operatorname{Card}(p 1, c 2) \vee \ldots \\
\operatorname{Card}(p 1, c 1) \vee \operatorname{Card}(p 2, c 1) \vee \ldots \\
\neg \operatorname{Card}(p 1, c 1) \vee \neg \operatorname{Card}(p 1, c 2) \\
\neg \operatorname{Card}(p 1, c 2) \vee \neg \operatorname{Card}(p 1, c 3) \\
\ldots \operatorname{Card}(p 2, c 1) \vee \neg \operatorname{Card}(p 2, c 2)
\end{gathered}
$$

Automated Reasoning

Let us automate this:

1. CNF encoding for deck of cards
2. Compile to tractable knowledge base (e.g., d-DNNF)
3. Condition on observations/questions
"Card1 is hearts"
4. Model counting

Which language to choose?
 Cards problem is easy: we want to be polynomial.

Deck of Cards Graphically

2. Compile to tractable knowledge base
3. Condition on observations/questions
4. Model counting

Deck of Cards Graphically

2. Compile to tractable knowledge base
3. Condition on observations/questions
4. Model counting

Deck of Cards Graphically

2. Compile to tractable knowledge base
3. Condition on observations/questions
4. Model counting

Deck of Cards Graphically

2. Compile to tractable knowledge base
3. Condition on observations/questions
4. Model counting

Deck of Cards Graphically

2. Compile to tractable knowledge base
3. Condition on observations/questions
4. Model counting

Deck of Cards Graphically

2. Compile to tractable knowledge base
3. Condition on observations/questions
4. Model counting: How many perfect matchings?

Deck of Cards Graphically

2. Compile to tractable knowledge base
3. Condition on observations/questions
4. Model counting: How many perfect matchings?

Observations

- Deck of cards = complete bigraph
- $C D=$ removing edges in bigraph Encode any bigraph in cards problem
- CT = counting perfect matchings
- Problem is \#P-complete!

No language with CD and CT can represent the cards problem compactly, unless $\mathrm{P}=\mathrm{NP}$.

What's Going On Here?

Probability that Card52 is Spades given that Card1 is QH?

What's Going On Here?

Probability that Card52 is Spades given that Card1 is QH?

What's Going On Here?

Probability that Card52 is Spades given that Card1 is QH?

What's Going On Here?

Probability that Card52 is Spades given that Card2 is QH?

What's Going On Here?

Probability that Card52 is Spades given that Card2 is QH?

13/51

What's Going On Here?

Probability that Card52 is Spades given that Card3 is QH?

What's Going On Here?

Probability that Card52 is Spades given that Card3 is QH?

Tractable Reasoning

What's going on here?
 Which property makes reasoning tractable?

Tractable Reasoning

What's going on here?

Which property makes reasoning tractable?

- High-level (first-order) reasoning
- Symmetry
- Exchangeability

\Rightarrow Lifted Inference

Let us automate this:

- Relational/FO model

$$
\begin{gathered}
\forall p, \exists \mathrm{c}, \operatorname{Card}(\mathrm{p}, \mathrm{c}) \\
\forall \mathrm{c}, \exists \mathrm{p}, \operatorname{Card}(\mathrm{p}, \mathrm{c}) \\
\forall \mathrm{p}, \forall \mathrm{c}, \forall \mathrm{c}^{\prime}, \operatorname{Card}(\mathrm{p}, \mathrm{c}) \wedge \operatorname{Card}\left(\mathrm{p}, \mathrm{c}^{\prime}\right) \Rightarrow \mathrm{c}=\mathrm{c}^{\prime}
\end{gathered}
$$

- First-Order Knowledge Compilation

MOTIVATION 2

Model Counting

- Model $=$ solution to a propositional logic formula Δ
- Model counting = \#SAT

[Valiant] \#P-hard, even for 2CNF

Weighted Model Counting

- Model = solution to a propositional logic formula Δ
- Model counting = \#SAT
$\Delta=($ Rain \Rightarrow Cloudy $)$

Rain	Cloudy	Model?
T	T	Yes
T	F	No
F	T	Yes
F	F	Yes
		+\#SAT $=\mathbf{3}$

Weighted Model Counting

- Model = solution to a propositional logic formula Δ
- Model counting = \#SAT
- Weighted model counting (WMC)
- Weights for assignments to variables
- Model weight is product of variable weights $w($.

$$
\begin{aligned}
& \Delta=(\text { Rain } \Rightarrow \text { Cloudy }) \\
& \hline w(R)=1 \\
& w(\neg R)=2 \\
& w(C)=3 \\
& w(\neg C)=5
\end{aligned}
$$

Rain	Cloudy
T	T
T	F
F	T
F	F

Model?
Yes
No
Yes
Yes
+ \#SAT $=\mathbf{3}$

Weighted Model Counting

- Model = solution to a propositional logic formula Δ
- Model counting = \#SAT
- Weighted model counting (WMC)
- Weights for assignments to variables
- Model weight is product of variable weights $w($.

$$
\begin{aligned}
& \Delta=(\text { Rain } \Rightarrow \text { Cloudy }) \\
& \begin{array}{c}
w(R)=1 \\
w(\neg R)=2 \\
w(C)=3 \\
w(\neg C)=5
\end{array}
\end{aligned}
$$

Weight
$1 * 3=3$
$2 * 3=$
$2 * 5=10$
$+\cdots$
WMC $=19$

Assembly language for

 probabilistic reasoning and learning

First-Order Model Counting

Model $=$ solution to first-order logic formula Δ

```
\Delta= \foralld (Rain(d)
    => Cloudy(d))
```

Days $=\{$ Monday $\}$

First-Order Model Counting

Model = solution to first-order logic formula Δ

FOMC = 3

Weighted First-Order Model Counting

Model = solution to first-order logic formula Δ

$\Delta=\forall d$
$($ Rain (d)
$\Rightarrow \operatorname{Cloudy}(\mathrm{d}))$

Days $=\{$ Monday Tuesday\}

Rain(M)	Cloudy(M)
T	T
T	F
F	T
F	F

Rain(T)	Cloudy(T)
T	T
T	T
T	T
T	T

Model?
Yes
No
Yes
Yes

T	T
T	F
F	T
F	F

T	F
T	F
T	F
T	F

No
No
No
No

T	T
T	F
F	T
F	F

F	T
F	T
F	T
F	T

Yes
No
Yes
Yes

T	T
T	F
F	T
F	F

F	F
F	F
F	F
F	F

Yes
No
Yes
Yes

Weighted First-Order Model Counting

Model = solution to first-order logic formula Δ

$\Delta=\forall d$
$($ Rain (d)
$\Rightarrow \operatorname{Cloudy}(\mathrm{d}))$

$$
\begin{aligned}
\text { Days }= & \{\text { Monday } \\
& \text { Tuesday }\}
\end{aligned}
$$

Rain(M)	Cloudy(M)
T	T
T	F
F	T
F	F

| Rain(T) | Cloudy(T) | Model? |
| :---: | :---: | :---: | :---: |
| T | T | Yes |
| T | T | No |
| T | T | Yes |
| T | T | Yes |

T	T
T	F
F	T
F	F

T	F
T	F
T	F
T	F

No
No
No
No

T	T
T	F
F	T
F	F

F	T
F	T
F	T
F	T

Yes
No
Yes
Yes

T	T
T	F
F	T
F	F

F	F
F	F
F	F
F	F

Yes
No
Yes
Yes

Weighted First-Order Model Counting

Model = solution to first-order logic formula Δ

$\Delta=\forall d$
$($ Rain (d)
$\Rightarrow \operatorname{Cloudy}(\mathrm{d}))$

Days $=\{$ Monday	F	T
	F	F

$\operatorname{Rain}(\mathrm{T})$	$\mathbf{C l o u d y}(\mathbf{T})$
T	T
T	T
T	T
T	T

Model?
Yes
No
Yes
Yes

Weight	
$1 * 1 * 3 * 3=$	9
$2 * 1 * 3 * 3=$	18
$2 * 1 * 5 * 3=$	30

T	T
T	F
F	T
F	F

T	F
T	F
T	F
T	F

No
No
No
No

0
0
0
0

T	T
T	F
F	T
F	F

F	T
F	T
F	T
F	T

Yes
No
Yes
Yes

$1 * 2 * 3 * 3=18$
0
$2 * 2 * 3 * 3=36$
$2 * 2 * 5 * 3=60$

T	T
T	F
F	T
F	F

F	F
F	F
F	F
F	F

Yes
No
Yes
Yes
\#SAT =9

$1 * 2 * 3 * 5=30$
0
$2 * 2 * 3 * 5=60$
$2 * 2 * 5 * 5=100$

Weighted First-Order Model Counting

Model = solution to first-order logic formula Δ
$\Delta=\forall d$ (Rain(d)
$\Rightarrow \operatorname{Cloudy}(\mathrm{d}))$

Days $=\{$ Monday	F	T
	F	F

$\operatorname{Rain}(\mathrm{T})$	$\mathbf{C l o u d y}(\mathbf{T})$
T	T
T	T
T	T
T	T

Model?
Yes
No
Yes
Yes

Weight
$1 * 1^{*} 3 * 3=$
$2 * 1 * 3 * 3=$
$2 * 1 * 5 * 3=$

T	T
T	F
F	T
F	F

T	F
T	F
T	F
T	F

No
No
No
No

T	T
T	F
F	T
F	F

F	T
F	T
F	T
F	T

Yes
No
Yes
Yes

$1 * 2 * 3 * 3=18$
0
$2 * 2 * 3 * 3=36$
$2 * 2 * 5 * 3=60$

T	T
T	F
F	T
F	F

F	F
F	F
F	F
F	F

Yes
No
Yes
Yes

$1 * 2 * 3 * 5=30$
0
$2 * 2 * 3 * 5=60$
$2 * 2 * 5 * 5=100$
+ WFOMC $=\mathbf{3 6 1}$

Assembly language for high-level probabilistic reasoning and learning

[VdB et al.; IJCAl'11, PhD'13, KR'14, UAl'14]

Statistical Relational Learning

Hard constraint
 $\infty \quad$ Smoker $(x) \Rightarrow$ Person(x)

3.75 Smoker $(x) \wedge$ Friend $(x, y) \Rightarrow$ Smoker (y)

- An MLN = set of constraints (w, $\Gamma(\mathbf{x})$)
- Weight of a world = product of w, for all rules $(\mathrm{w}, \Gamma(\mathbf{x}))$ and groundings $\Gamma(\mathrm{a})$ that hold in the world

$$
P_{M L N}(Q)=[\text { sum of weights of worlds of } Q] / Z
$$

Applications: large probabilistic KBs

FO NNF SYNTAX

First-Order Knowledge Compilation

- Input: Sentence in FOL
- Output: Representation tractable for some class of queries.
- In this work:
- Function-free FOL
- Model counting in NNF tradition
- Some pre-KC-map work:
- FO Horn clauses
-FO BDDs

Alphabet

- FOL
- Predicates/relations: Friends
- Object names: x, y, z
- Object variables: X, Y, Z
- Symbols classical FOL ($\forall, \exists, \wedge, \vee, \neg, \ldots$)
- Group logic
- Group variables: X, Y, Z
- Symbols from basic set theory (e.g., $\cup, \cap, \in, \subseteq,\{$,$\} , complement).$

Syntax

- Object terms: X, alice, bob
- Group terms : X, \{alice,bob\}, X $\cup \mathbf{Y}$
- Atom: Friends(alice,X)
- Formulas:

$$
\begin{aligned}
& -(\alpha), \neg \alpha, \alpha \vee \beta, \text { and } \alpha \wedge \beta \\
& -\forall X \in \mathbf{G}, \alpha \text { and } \exists X \in \mathbf{G}, \alpha \\
& -\forall \mathbf{X} \subseteq \mathbf{G}, \alpha \text { and } \exists \mathbf{X} \subseteq \mathbf{G}, \alpha
\end{aligned}
$$

- Group logic syntactic sugar:
$-P(G)$ is $\forall X \in G, P(X)$
- $\bar{P}(\mathbf{G})$ is $\forall X \in \mathbf{G}, \neg P(X)$

Examples:

- $\forall X \in G, Y \in\{$ alice, bob\},

Enemies(X, Y)
$\Rightarrow \neg$ Friends $(\mathrm{X}, \mathrm{Y}) \wedge \neg$ Friends (Y, X)

- $\forall X \in \mathbf{G}, Y \in \mathbf{G}$, Smokes $(\mathrm{X}) \wedge$ Friends $(\mathrm{X}, \mathrm{Y}) \Rightarrow \operatorname{Smokes}(\mathrm{Y})$
- $\exists \mathbf{G} \subseteq\{$ alice, bob$\}, \operatorname{Smokes}(\mathbf{G}) \wedge \overline{\operatorname{Healthy}}(\mathbf{G})$

Semantics

- Template language for propositional logic
- Grounding a sentence: gr(a)
- Replace \forall by \wedge
- Replace \exists by v
- End result: ground sentence = propositional logic
- Grounding is polynomial in group sizes when no $\forall \mathbf{X} \subseteq \mathbf{G}$ or $\boldsymbol{\exists} \mathbf{X} \subseteq \mathbf{G}$
Important for polytime reduction to NNF circuits

Decomposability

- Conjunction: $\alpha(X, \mathbf{G}) \wedge \beta(X, \mathbf{G})$

For any substitution $X=c$ and $G=g$, we have that $\operatorname{gr}(\alpha(c, g)) \wedge \operatorname{gr}(\beta(c, g))$ is decomposable

Meaning: α and β can never talk about the same ground atoms

- Quantifier: $\forall Y \in G, \alpha(Y)$

For any two $a, b \in \mathbf{G}$, we have that $\operatorname{gr}(\alpha(a)) \wedge \operatorname{gr}(\alpha(b))$ is decomposable

Determinism

- Disjunction: $\alpha(X, \mathbf{G}) \vee \beta(X, \mathbf{G})$

For any substitution $X=c$ and $G=g$, we have that $\operatorname{gr}(\alpha(\mathrm{c}, \mathrm{g})) \vee \mathrm{gr}(\beta(\mathrm{c}, \mathrm{g}))$ is deterministic

Meaning: $\alpha \wedge \beta$ is UNSAT

- Quantifier: $\exists Y \in G, a(Y)$

For any two $a, b \in \mathbf{G}$, we have that $\operatorname{gr}(\alpha(a)) \vee \operatorname{gr}(\alpha(b))$ is decomposable

Group Quantifiers

- Decomposability: $\forall \mathbf{X} \subseteq \mathbf{G}, \mathbf{\alpha}(\mathbf{X})$

For any two $\mathbf{A}, \mathbf{B} \subseteq \mathbf{G}$, we have that $\operatorname{gr}(\alpha(\mathbf{A})) \vee \operatorname{gr}(\alpha(\mathbf{B}))$ is decomposable

- Determinism: $\exists \mathbf{X} \subseteq \mathbf{G}, \mathbf{\alpha}(\mathbf{X})$

For any two $\mathbf{A}, \mathbf{B} \subseteq \mathbf{G}$, we have that $\operatorname{gr}(\alpha(\mathbf{A})) \vee \operatorname{gr}(\alpha(\mathbf{B}))$ is deterministic

Automorphism

- Object permutation $\sigma: \mathrm{D} \rightarrow \mathrm{D}$ is a one-to-one mapping from objects to objects.
- Permuting α using σ replaces o in α by $\sigma(o)$.
- Sentences α and β are p-equivalent iff α is equivalent to an object permutation of β.
Smokes(alice) and Smokes(bob) are p-equivalent
- Group quantifiers: $\forall \mathbf{X} \subseteq \mathbf{G}, \mathbf{\alpha}(\mathbf{X})$ or $\exists \mathbf{X} \subseteq \mathbf{G}, \mathbf{\alpha}(\mathbf{X})$

Are automorphic iff for any two $\mathbf{A}, \mathbf{B} \subseteq \mathbf{G}$ s.t. $|A|=|B|, \operatorname{gr}(\alpha(A))$ and $\operatorname{gr}(\alpha(B))$ are p-equivalent

First-Order NNF

$\forall X, X \in$ People : belgian $(X) \Rightarrow$ likes $(X$, chocolate $)$

First-Order NNF

$\forall X, X \in$ People : belgian $(X) \Rightarrow$ likes $(X$, chocolate $)$

First-Order DNNF

$\forall X, X \in$ People : belgian $(X) \Rightarrow$ likes $(X$, chocolate $)$

First-Order DNNF

$\forall X, X \in$ People : belgian $(X) \Rightarrow$ likes $(X$, chocolate $)$

First-Order d-DNNF

$\forall X, X \in$ People : belgian $(X) \Rightarrow$ likes $(X$, chocolate $)$

First-Order d-DNNF

$\forall X, X \in$ People : belgian $(X) \Rightarrow$ likes $(X$, chocolate $)$

First-Order d-DNNF

$\forall X, X \in \operatorname{People}: \operatorname{belgian}(X) \Rightarrow$ likes $(X$, chocolate $)$

First-Order ad-DNNF

$\forall X, X \in$ People : belgian $(X) \Rightarrow$ likes $(X$, chocolate $)$

FO NNF Languages

- FO NNF: group logic circuits, negation only on atoms
- FO d-DNNF: determinism and decomposability Grounding generates a d-DNNF
- FO DNNF

Grounding generates a DNNF

- FO ad-DNNF: automorphic

Powerful properties!

FO NNF TRACTABILITY

Symmetric WFOMC

Def. A weighted vocabulary is (\mathbf{R}, \mathbf{w}), where
$-\mathbf{R}=\left(R_{1}, R_{2}, \ldots, R_{k}\right)=$ relational vocabulary
$-\mathbf{w}=\left(w_{1}, w_{2}, \ldots, w_{k}\right)=$ weights

- Fix an FO formula Q, domain of size n
- The weight of a ground tuple t in R_{i} is w_{i}

Complexity of FOMC / WFOMC(Q, n)?
Data/domain complexity:
fixed Q, input n / and w

Symmetric WFOMC on FO ad-DNNF

$U(\alpha)=\left\{\begin{array}{l}0 \\ 1 \\ 0.5 \\ U\left(\ell_{1}\right) \times \cdots \times U\left(\ell_{n}\right) \\ U\left(\ell_{1}\right)+\cdots+U\left(\ell_{n}\right) \\ \prod_{i=1}^{n} U\left(\beta\left\{X / x_{i}\right\}\right) \\ \sum_{i=1}^{n} U\left(\beta\left\{X / x_{i}\right\}\right) \\ \prod_{i=0}^{|\tau|} U\left(\beta\left\{\mathbf{X} / \mathbf{x}_{i}\right\}\right)^{(|\tau|} \begin{array}{l}\mid \tau) \\ \sum_{i=0}^{|\tau|}\binom{|\tau|}{i} \cdot U\left(\beta\left\{\mathbf{X} / \mathbf{x}_{i}\right\}\right)\end{array}\end{array}\right.$
when $\alpha=$ false
when $\alpha=$ true
when α is a literal
when $\alpha=\ell_{1} \wedge \cdots \wedge \ell_{n}$
when $\alpha=\ell_{1} \vee \cdots \vee \ell_{n}$
when $\alpha=\forall X \in \tau, \beta$ and x_{1}, \ldots, x_{n} are the objects in τ.
when $\alpha=\exists X \in \tau, \beta$ and x_{1}, \ldots, x_{n} are the objects in τ.
when $\alpha=\forall \mathbf{X} \subseteq \tau, \beta$, and \mathbf{x}_{i} is any subset of τ such that $\left|\mathbf{x}_{i}\right|=i$.
when $\alpha=\exists \mathbf{X} \subseteq \tau, \beta$, and \mathbf{x}_{i} is any subset of τ such that $\left|\mathbf{x}_{i}\right|=i$.

Complexity polynomial in domain size! Polynomial in NNF size for bounded depth.

FOMC Query: Example

FO-Model Counting: $w(R)=w(\neg R)=1$
FO ad-DNNF sentences

FOMC Query: Example

FO-Model Counting: $w(R)=w(\neg R)=1$
FO ad-DNNF sentences
4. $\Delta=($ Stress(Alice) \Rightarrow Smokes(Alice))

FOMC Query: Example

FO-Model Counting: $w(R)=w(\neg R)=1$
FO ad-DNNF sentences
4. $\Delta=($ Stress $($ Alice $) \Rightarrow \operatorname{Smokes}($ Alice $))$
$\rightarrow 3$ models

FOMC Query: Example

FO-Model Counting: $w(R)=w(\neg R)=1$
FO ad-DNNF sentences
4. $\Delta=($ Stress(Alice) \Rightarrow Smokes(Alice))
$\rightarrow 3$ models
3. $\Delta=\forall x,(\operatorname{Stress}(x) \Rightarrow \operatorname{Smokes}(\mathrm{x}))$

FOMC Query: Example

FO-Model Counting: $w(R)=w(\neg R)=1$
FO ad-DNNF sentences
4. $\Delta=($ Stress $($ Alice $) \Rightarrow \operatorname{Smokes}($ Alice $))$
$\rightarrow 3$ models
3. $\Delta=\forall x,(\operatorname{Stress}(x) \Rightarrow \operatorname{Smokes}(\mathrm{x}))$
$\rightarrow 3^{n}$ models

FOMC Query: Example

3. $\Delta=\forall x,(\operatorname{Stress}(\mathrm{x}) \Rightarrow \operatorname{Smokes}(\mathrm{x}))$
$\rightarrow 3^{n}$ models

FOMC Query: Example

3. $\Delta=\forall x,(\operatorname{Stress}(x) \Rightarrow \operatorname{Smokes}(\mathrm{x}))$
$\rightarrow 3^{n}$ models
4. $\Delta=\forall y$, (ParentOf $(\mathrm{y}) \wedge$ Female \Rightarrow MotherOf $(\mathrm{y}))$

FOMC Query: Example

3. $\Delta=\forall x,(\operatorname{Stress}(\mathrm{x}) \Rightarrow \operatorname{Smokes}(\mathrm{x}))$
$\rightarrow 3^{n}$ models
4. $\Delta=\forall y$, (ParentOf $(\mathrm{y}) \wedge$ Female \Rightarrow MotherOf $(\mathrm{y}))$
$D=\{n$ people $\}$

If Female = true?
$\Delta=\forall y,($ ParentOf $(y) \Rightarrow$ MotherOf $(y))$
$\rightarrow 3^{n}$ models

FOMC Query: Example

3. $\Delta=\forall x,(\operatorname{Stress}(\mathrm{x}) \Rightarrow \operatorname{Smokes}(\mathrm{x}))$
$\rightarrow 3^{n}$ models
4. $\Delta=\forall y,($ ParentOf $(\mathrm{y}) \wedge$ Female \Rightarrow MotherOf $(\mathrm{y}))$
$D=\{n$ people $\}$

If Female = true?
$\Delta=\forall y,($ ParentOf $(\mathrm{y}) \Rightarrow$ MotherOf $(\mathrm{y}))$
$\Delta=$ true
$\rightarrow 3^{n}$ models
$\rightarrow 4^{\mathrm{n}}$ models

FOMC Query: Example

3. $\Delta=\forall x,(\operatorname{Stress}(x) \Rightarrow \operatorname{Smokes}(\mathrm{x}))$

$$
\text { Domain }=\{n \text { people }\}
$$

$\rightarrow 3^{n}$ models
2. $\Delta=\forall y$, (ParentOf $(\mathrm{y}) \wedge$ Female \Rightarrow MotherOf(y$)$)
$D=\{n$ people $\}$
$\begin{array}{lll}\text { If Female }=\text { true } ? & \Delta=\forall y,(\text { ParentOf }(y) \Rightarrow \text { MotherOf }(y)) & \rightarrow 3^{n} \text { models } \\ \text { If Female }=\text { false } ? & \Delta=\text { true } & \rightarrow 4^{n} \text { models } \\ & & \rightarrow 3^{n}+4^{n} \text { models }\end{array}$

FOMC Query: Example

3. $\Delta=\forall x,(\operatorname{Stress}(x) \Rightarrow \operatorname{Smokes}(\mathrm{x}))$
$\rightarrow 3^{n}$ models
4. $\Delta=\forall y,(\operatorname{ParentOf}(\mathrm{y}) \wedge$ Female \Rightarrow MotherOf(y$))$
$D=\{n$ people $\}$

If Female $=$ true $?$	$\Delta=\forall y,($ ParentOf $(y) \Rightarrow$ MotherOf $(y))$	$\rightarrow 3^{n}$ models
If Female $=$ false?	$\Delta=$ true	$\rightarrow 4^{n}$ models
		$\rightarrow 3^{n}+4^{n}$ models

1. $\Delta=\forall x, \forall y,(\operatorname{ParentOf}(x, y) \wedge$ Female $(x) \Rightarrow \operatorname{MotherOf}(x, y)) \quad D=\{$ n people $\}$

FOMC Query: Example

3. $\Delta=\forall x,(\operatorname{Stress}(x) \Rightarrow \operatorname{Smokes}(\mathrm{x}))$
$\rightarrow 3^{n}$ models
4. $\Delta=\forall y,(\operatorname{ParentOf}(\mathrm{y}) \wedge$ Female \Rightarrow MotherOf(y$))$
$D=\{n$ people $\}$
$\begin{array}{lll}\text { If Female }=\text { true } ? & \Delta=\forall y,(\text { ParentOf }(y) \Rightarrow \text { MotherOf }(y)) & \rightarrow 3^{n} \text { models } \\ \text { If Female }=\text { false? } & \Delta=\text { true } & \rightarrow 4^{n} \text { models } \\ & & \rightarrow 3^{n}+4^{n} \text { models }\end{array}$
5. $\Delta=\forall x, \forall y,(\operatorname{ParentOf}(x, y) \wedge \operatorname{Female}(x) \Rightarrow \operatorname{MotherOf}(x, y)) \quad D=$ n people $\}$
$\rightarrow\left(3^{n}+4^{n}\right)^{n}$ models

Group Quantifiers: Example

$\Delta=\forall x, y \in D,(\operatorname{Smokes}(x) \wedge$ Friends $(x, y) \Rightarrow \operatorname{Smokes}(\mathrm{y}))$ Domain $=\{n$ people $\}$

- Not decomposable!
- Rewrite as FO ad-DNNF:
$\exists \mathbf{G} \subseteq \mathbf{D}, \operatorname{Smokes}(\mathbf{G}) \wedge \overline{\operatorname{Son}} \operatorname{mokes}(\overline{\mathbf{G}}) \wedge \overline{\text { Friends }}(\mathbf{G}, \overline{\mathbf{G}})$
- Not possible to ground to d-DNNF!
- How to do tractable CT?
$\sum_{i=0}^{|\tau|}\binom{|\tau|}{i} \cdot U\left(\beta\left\{\mathbf{X} / \mathbf{x}_{i}\right\}\right) \quad$ when $\alpha=\exists \mathbf{X} \subseteq \tau, \beta$, and \mathbf{x}_{i} is any subset of τ such that $\left|\mathbf{x}_{i}\right|=i$

Group Quantifiers: Example

$\exists \mathbf{G} \subseteq \mathbf{D}, \operatorname{Smokes}(\mathbf{G}) \wedge \overline{\operatorname{So}} \operatorname{mokes}(\overline{\mathbf{G}}) \wedge \overline{\operatorname{Friends}}(\mathbf{G}, \overline{\mathbf{G}})$

Group Quantifiers: Example

$\exists \mathbf{G} \subseteq \mathbf{D}, \operatorname{Smokes}(\mathbf{G}) \wedge \overline{\operatorname{So}} \operatorname{mokes}(\overline{\mathbf{G}}) \wedge \overline{\operatorname{Friends}}(\mathbf{G}, \overline{\mathbf{G}})$

- If we know \mathbf{G} precisely: who smokes, and there are k smokers?

Database:

$$
\begin{aligned}
& \text { Smokes(Alice) = } 1 \\
& \text { Smokes(Bob) = } 0 \\
& \text { Smokes(Charlie) = } 0 \\
& \text { Smokes(Dave) = } 1 \\
& \text { Smokes(Eve) }=0
\end{aligned}
$$

Smokes

Smokes

Group Quantifiers: Example

$\exists \mathbf{G} \subseteq \mathbf{D}, \operatorname{Smokes}(\mathbf{G}) \wedge \overline{\operatorname{So}} \operatorname{mokes}(\overline{\mathbf{G}}) \wedge \overline{\operatorname{Friends}}(\mathbf{G}, \overline{\mathbf{G}})$

- If we know \mathbf{G} precisely: who smokes, and there are k smokers?

Database:

$$
\begin{aligned}
& \text { Smokes(Alice) = } 1 \\
& \text { Smokes(Bob) = } 0 \\
& \text { Smokes(Charlie) = } 0 \\
& \text { Smokes(Dave) = } 1 \\
& \text { Smokes(Eve) }=0
\end{aligned}
$$

Smokes

Friends

Group Quantifiers: Example

$\exists \mathbf{G} \subseteq \mathbf{D}, \operatorname{Smokes}(\mathbf{G}) \wedge \overline{\operatorname{So}} \operatorname{mokes}(\overline{\mathbf{G}}) \wedge \overline{\operatorname{Friends}}(\mathbf{G}, \overline{\mathbf{G}})$

- If we know \mathbf{G} precisely: who smokes, and there are k smokers?

Database:

$$
\begin{aligned}
& \text { Smokes(Alice) = } 1 \\
& \text { Smokes(Bob) = } 0 \\
& \text { Smokes(Charlie) = } 0 \\
& \text { Smokes(Dave) = } 1 \\
& \text { Smokes(Eve) = } 0
\end{aligned}
$$

Smokes

Friends

Group Quantifiers: Example

$\exists \mathbf{G} \subseteq \mathbf{D}, \operatorname{Smokes}(\mathbf{G}) \wedge \overline{\operatorname{So}} \operatorname{mokes}(\overline{\mathbf{G}}) \wedge \overline{\operatorname{Friends}}(\mathbf{G}, \overline{\mathbf{G}})$

- If we know \mathbf{G} precisely: who smokes, and there are k smokers?

Database:

$$
\begin{aligned}
& \text { Smokes(Alice) = } 1 \\
& \text { Smokes(Bob) = } 0 \\
& \text { Smokes(Charlie) = } 0 \\
& \text { Smokes(Dave) = } 1 \\
& \text { Smokes(Eve) }=0
\end{aligned}
$$

Group Quantifiers: Example

$\exists \mathbf{G} \subseteq \mathbf{D}, \operatorname{Smokes}(\mathbf{G}) \wedge \overline{\operatorname{So}} \operatorname{mokes}(\overline{\mathbf{G}}) \wedge \overline{\operatorname{Friends}}(\mathbf{G}, \overline{\mathbf{G}})$

- If we know \mathbf{G} precisely: who smokes, and there are k smokers?

Database:

$$
\begin{aligned}
& \text { Smokes(Alice) = } 1 \\
& \text { Smokes(Bob) = } 0 \\
& \text { Smokes(Charlie) = } 0 \\
& \text { Smokes(Dave) = } 1 \\
& \text { Smokes(Eve) }=0
\end{aligned}
$$

Group Quantifiers: Example

$\exists \mathbf{G} \subseteq \mathbf{D}, \operatorname{Smokes}(\mathbf{G}) \wedge \overline{\operatorname{So}} \operatorname{mokes}(\overline{\mathbf{G}}) \wedge \overline{\operatorname{Friends}}(\mathbf{G}, \overline{\mathbf{G}})$

- If we know \mathbf{G} precisely: who smokes, and there are k smokers?

Database:

$$
\begin{aligned}
& \text { Smokes(Alice) = } 1 \\
& \text { Smokes(Bob) = } 0 \\
& \text { Smokes(Charlie) = } 0 \\
& \text { Smokes(Dave) = } 1 \\
& \text { Smokes(Eve) = 0 }
\end{aligned}
$$

Group Quantifiers: Example

$\exists \mathbf{G} \subseteq \mathbf{D}, \operatorname{Smokes}(\mathbf{G}) \wedge \overline{\operatorname{So}} \operatorname{mokes}(\overline{\mathbf{G}}) \wedge \overline{\operatorname{Friends}}(\mathbf{G}, \overline{\mathbf{G}})$

- If we know \mathbf{G} precisely: who smokes, and there are k smokers?

Database:

$$
\begin{aligned}
& \text { Smokes(Alice) = } 1 \\
& \text { Smokes(Bob) = } 0 \\
& \text { Smokes(Charlie) = } 0 \\
& \text { Smokes(Dave) = } 1 \\
& \text { Smokes(Eve) = } 0
\end{aligned}
$$

Group Quantifiers: Example

$\exists \mathbf{G} \subseteq \mathbf{D}, \operatorname{Smokes}(\mathbf{G}) \wedge \overline{\operatorname{So}} \operatorname{mokes}(\overline{\mathbf{G}}) \wedge \overline{\operatorname{Friends}}(\mathbf{G}, \overline{\mathbf{G}})$

- If we know \mathbf{G} precisely: who smokes, and there are k smokers?

Database:

$$
\begin{aligned}
& \text { Smokes(Alice) = } 1 \\
& \text { Smokes(Bob) = } 0 \\
& \text { Smokes(Charlie) = } 0 \\
& \text { Smokes(Dave) = } 1 \\
& \text { Smokes(Eve) = 0 }
\end{aligned}
$$

Group Quantifiers: Example

$\exists \mathbf{G} \subseteq \mathbf{D}, \operatorname{Smokes}(\mathbf{G}) \wedge \overline{\operatorname{So}} \operatorname{mokes}(\overline{\mathbf{G}}) \wedge \overline{\operatorname{Friends}}(\mathbf{G}, \overline{\mathbf{G}})$

- If we know \mathbf{G} precisely: who smokes, and there are k smokers?

Database:

$$
\begin{aligned}
& \text { Smokes(Alice) = } 1 \\
& \text { Smokes(Bob) = } 0 \\
& \text { Smokes(Charlie) = } 0 \\
& \text { Smokes(Dave) = } 1 \\
& \text { Smokes(Eve) = 0 }
\end{aligned}
$$

Group Quantifiers: Example

$\exists \mathbf{G} \subseteq \mathbf{D}, \operatorname{Smokes}(\mathbf{G}) \wedge \overline{\operatorname{S}} \operatorname{mokes}(\overline{\mathbf{G}}) \wedge \overline{\operatorname{Friends}}(\mathbf{G}, \overline{\mathbf{G}})$

- If we know \mathbf{G} precisely: who smokes, and there are k smokers?

$$
\begin{aligned}
& \text { Database: } \\
& \text { Smokes(Alice) }=1 \\
& \text { Smokes(Bob) }=0 \\
& \text { Smokes(Charlie) }=0 \\
& \text { Smokes(Dave) }=1 \\
& \text { Smokes(Eve) }=0 \\
& \ldots \\
& \rightarrow 2^{n^{2}-k(n-k)} \text { models }
\end{aligned}
$$

Smokes
Friends
Smokes

Group Quantifiers: Example

$\exists \mathbf{G} \subseteq \mathbf{D}, \operatorname{Smokes}(\mathbf{G}) \wedge \overline{\operatorname{S}} \operatorname{mokes}(\overline{\mathbf{G}}) \wedge \overline{\operatorname{Friends}}(\mathbf{G}, \overline{\mathbf{G}})$

- If we know \mathbf{G} precisely: who smokes, and there are k smokers?

$$
\begin{aligned}
& \text { Database: } \\
& \text { Smokes(Alice) }=1 \\
& \text { Smokes(Bob) }=0 \\
& \text { Smokes(Charlie) }=0 \\
& \text { Smokes(Dave) }=1 \\
& \text { Smokes(Eve) }=0 \\
& \cdots \\
& \rightarrow 2^{n^{2}-k(n-k)} \text { models }
\end{aligned}
$$

Smokes
Friends
Smokes

- If we know that there are k smokers?

Group Quantifiers: Example

$\exists \mathbf{G} \subseteq \mathbf{D}, \operatorname{Smokes}(\mathbf{G}) \wedge \overline{\operatorname{S}} \operatorname{mokes}(\overline{\mathbf{G}}) \wedge \overline{\operatorname{Friends}}(\mathbf{G}, \overline{\mathbf{G}})$

- If we know \mathbf{G} precisely: who smokes, and there are k smokers?

$$
\begin{aligned}
& \text { Database: } \\
& \text { Smokes(Alice) }=1 \\
& \text { Smokes(Bob) }=0 \\
& \text { Smokes(Charlie) }=0 \\
& \text { Smokes(Dave) }=1 \\
& \text { Smokes(Eve) }=0 \\
& \cdots \\
& \rightarrow 2^{n^{2}-k(n-k)} \text { models }
\end{aligned}
$$

- If we know that there are k smokers?

Smokes

Friends Smokes

$$
\rightarrow\binom{n}{k} 2^{n^{2}-k(n-k)} \quad \text { models }
$$

Group Quantifiers: Example

$\exists \mathbf{G} \subseteq \mathbf{D}, \operatorname{Smokes}(\mathbf{G}) \wedge \overline{\operatorname{S}} \operatorname{mokes}(\overline{\mathbf{G}}) \wedge \overline{\operatorname{Friends}}(\mathbf{G}, \overline{\mathbf{G}})$

- If we know \mathbf{G} precisely: who smokes, and there are k smokers?

$$
\begin{aligned}
& \text { Database: } \\
& \text { Smokes(Alice) }=1 \\
& \text { Smokes(Bob) }=0 \\
& \text { Smokes(Charlie) }=0 \\
& \text { Smokes(Dave) }=1 \\
& \text { Smokes(Eve) }=0 \\
& \cdots \\
& \rightarrow 2^{n^{2}-k(n-k)} \text { models }
\end{aligned}
$$

- If we know that there are k smokers?

$$
\rightarrow\binom{n}{k} 2^{n^{2}-k(n-k)} \text { models }
$$

- In total...

Group Quantifiers: Example

$\exists \mathbf{G} \subseteq \mathbf{D}, \operatorname{Smokes}(\mathbf{G}) \wedge \overline{\operatorname{S}} \operatorname{mokes}(\overline{\mathbf{G}}) \wedge \overline{\operatorname{Friends}}(\mathbf{G}, \overline{\mathbf{G}})$

- If we know \mathbf{G} precisely: who smokes, and there are k smokers?

Database:

$$
\begin{aligned}
& \text { Smokes(Alice) }=1 \\
& \text { Smokes(Bob) }=0 \\
& \text { Smokes(Charlie) }=0 \\
& \text { Smokes(Dave) }=1 \\
& \text { Smokes(Eve) }=0 \\
& \ldots \\
\rightarrow 2 & 2^{n^{2}-k(n-k) \quad \text { models }}
\end{aligned}
$$

- If we know that there are k smokers? $\quad \rightarrow\binom{n}{k} 2^{n^{2}-k(n-k)}$ models
- In total...

$$
\rightarrow \quad \sum_{k=0}^{n}\binom{n}{k} 2^{n^{2}-k(n-k)} \text { models }
$$

Playing Cards Revisited

Let us automate this:

$\forall p, \exists c, \operatorname{Card}(p, c)$
$\forall c, \exists p, \operatorname{Card}(p, c)$
$\forall p, \forall c, \forall c^{\prime}, \operatorname{Card}(p, c) \wedge \operatorname{Card}\left(p, c^{\prime}\right) \Rightarrow c=c^{\prime}$

Playing Cards Revisited

Let us automate this:

$$
\begin{gathered}
\forall \mathrm{p}, \exists \mathrm{c}, \operatorname{Card}(\mathrm{p}, \mathrm{c}) \\
\forall \mathrm{c}, \exists \mathrm{p}, \operatorname{Card}(\mathrm{p}, \mathrm{c}) \\
\forall \mathrm{p}, \forall \mathrm{c}, \forall \mathrm{c}^{\prime}, \operatorname{Card}(\mathrm{p}, \mathrm{c}) \wedge \operatorname{Card}\left(\mathrm{p}, \mathrm{c}^{\prime}\right) \Rightarrow \mathrm{c}=\mathrm{c}^{\prime}
\end{gathered}
$$

$$
\text { \#SAT }=\sum_{k=0}^{n}\binom{n}{k} \sum_{l=0}^{n}\binom{n}{l}(l+1)^{k}(-1)^{2 n-k-l}=\mathrm{n}!
$$

Playing Cards Revisited

Let us automate this:

$$
\begin{gathered}
\forall p, \exists c, \operatorname{Card}(\mathrm{p}, \mathrm{c}) \\
\forall \mathrm{c}, \exists \mathrm{p}, \operatorname{Card}(\mathrm{p}, \mathrm{c}) \\
\forall \mathrm{p}, \forall \mathrm{c}, \forall \mathrm{c}^{\prime}, \operatorname{Card}(\mathrm{p}, \mathrm{c}) \wedge \operatorname{Card}\left(\mathrm{p}, \mathrm{c}^{\prime}\right) \Rightarrow \mathrm{c}=\mathrm{c}^{\prime}
\end{gathered}
$$

$$
\text { \#SAT }=\sum_{k=0}^{n}\binom{n}{k} \sum_{l=0}^{n}\binom{n}{l}(l+1)^{k}(-1)^{2 n-k-l}=\mathrm{n}!
$$

Computed in time polynomial in n

FO COMPILATION

Compilation Rules

- Lots of preprocessing
- Shannon decomposition/Boole's expansion
- Detect propositional decomposability
- FO Shannon decomposition:

$$
\exists \mathbf{X} \subseteq \tau, P(\mathbf{X}) \wedge \bar{P}(\overline{\mathbf{X}}) \wedge \beta
$$

Simplify β (remove atoms subsumed by $P(\mathbf{X})$) Always deterministic! Ensure automorphic \exists

- Detect FO decomposability

FO NNF EXPRESSIVENESS

Main Positive Result: FO^{2}

- $\mathrm{FO}^{2}=\mathrm{FO}$ restricted to two variables
- "The graph has a path of length 10 ":

$$
\exists x \exists y(R(x, y) \wedge \exists x(R(y, x) \wedge \exists y(R(x, y) \wedge \ldots)))
$$

- Theorem: Compilation algorithm to FO adDNNF is complete for FO^{2}
- Model counting for FO^{2} in PTIME domain complexity

Main Negative Results

Domain complexity:

- There exists an FO formula Q s.t. symmetric FOMC(Q, n) is \#P P_{1} hard
- There exists Q in FO^{3} s.t. $\operatorname{FOMC}(\mathrm{Q}, \mathrm{n})$ is $\# \mathrm{P}_{1}$ hard
- There exists a conjunctive query Q s.t. symmetric WFOMC(Q, n) is \# $_{1}$ hard
- There exists a positive clause Q w.o. '=' s.t. symmetric WFOMC(Q, n) is \#P P_{1} hard
Therefore, no FO ad-DNNF can exist $;$

Proof

Theorem. There exists an FO^{3} sentence Q s.t. $\operatorname{FOMC}(\mathrm{Q}, \mathrm{n})$ is $\# \mathrm{P}_{1}$-hard

Proof

- Step 1. Construct a Turing Machine U s.t.
$-U$ is in $\# P_{1}$ and runs in linear time in n
- U computes a \# P_{1}-hard function
- Step 2. Construct an FO^{3} sentence Q s.t. $\operatorname{FOMC}(\mathrm{Q}, \mathrm{n}) / \mathrm{n}!=\mathrm{U}(\mathrm{n})$

Fertile Ground

Fertile Ground

[VdB; NIPS'11], [VdB et al.; KR'14], [Gribkoff, VdB, Suciu; UAI'15], [Beame, VdB, Gribkoff, Suciu; PODS'15], etc.

Other Queries and Transformations

- What if all ground atoms have different weights? Asymmetric WFOMC
- FO d-DNNF complete for all monotone FO CNFs that support efficient CT
- No clausal entailment
- No conditioning

Conclusions

- Very powerful already!
- We need to solve this!

THANKS

References

- Cards Example:

Guy Van den Broeck. Towards High-Level Probabilistic Reasoning with Lifted Inference, In Proceedings of KRR, 2015.

- First-Order Knowledge Compilation:

Guy Van den Broeck. Lifted Inference and Learning in Statistical Relational Models, PhD thesis, KU Leuven, 2013.

- Expressiveness:

Paul Beame, Guy Van den Broeck, Eric Gribkoff, Dan Suciu. Symmetric Weighted First-Order Model Counting, In Proceedings of PODS, 2015.

