
First-Order Knowledge Compilation
for Probabilistic Reasoning

Guy Van den Broeck

based on joint work with Adnan Darwiche,
Dan Suciu, and many others

MOTIVATION 1

...

A Simple Reasoning Problem

?

Probability that Card1 is Hearts?

[Van den Broeck; AAAI-KRR‟15]

...

A Simple Reasoning Problem

?

Probability that Card1 is Hearts? 1/4

[Van den Broeck; AAAI-KRR‟15]

A Simple Reasoning Problem

...

?

Probability that Card52 is Spades
given that Card1 is QH?

[Van den Broeck; AAAI-KRR‟15]

A Simple Reasoning Problem

...

?

Probability that Card52 is Spades
given that Card1 is QH? 13/51

[Van den Broeck; AAAI-KRR‟15]

Automated Reasoning

Let us automate this:

1. CNF encoding for deck of cards

2. Compile to tractable knowledge base (e.g., d-DNNF)

3. Condition on observations/questions

“Card1 is hearts”

4. Model counting

Automated Reasoning

Let us automate this:

1. CNF encoding for deck of cards

2. Compile to tractable knowledge base (e.g., d-DNNF)

3. Condition on observations/questions

“Card1 is hearts”

4. Model counting

A typical BeyondNP pipeline!

Automated Reasoning

Let us automate this:

1. CNF encoding for deck of cards

 Card(p1,c1) v Card(p1,c2) v …
 Card(p1,c1) v Card(p2,c1) v …

¬Card(p1,c1) v ¬Card(p1,c2)
¬Card(p1,c2) v ¬Card(p1,c3)

…
¬Card(p2,c1) v ¬Card(p2,c2)

…

Let us automate this:

1. CNF encoding for deck of cards

2. Compile to tractable knowledge base (e.g., d-DNNF)

3. Condition on observations/questions

“Card1 is hearts”

4. Model counting

Which language to choose?
Cards problem is easy: we want to be polynomial.

Automated Reasoning

Deck of Cards Graphically

K♥

A♥

2♥

3♥

…

…

Card(K♥,p14)

2. Compile to tractable knowledge base
3. Condition on observations/questions
4. Model counting

Deck of Cards Graphically

K♥

A♥

2♥

3♥

…

…

Card(K♥,p14)

2. Compile to tractable knowledge base
3. Condition on observations/questions
4. Model counting

Deck of Cards Graphically

K♥

A♥

2♥

3♥

…

…

Card(K♥,p14)

2. Compile to tractable knowledge base
3. Condition on observations/questions
4. Model counting

¬ Card(K♥,p14)

Deck of Cards Graphically

K♥

A♥

2♥

3♥

…

…

2. Compile to tractable knowledge base
3. Condition on observations/questions
4. Model counting

¬ Card(K♥,p14)

Deck of Cards Graphically

K♥

A♥

2♥

3♥

…

…

2. Compile to tractable knowledge base
3. Condition on observations/questions
4. Model counting

Deck of Cards Graphically

K♥

A♥

2♥

3♥

…

…

2. Compile to tractable knowledge base
3. Condition on observations/questions
4. Model counting: How many perfect matchings?

Deck of Cards Graphically

K♥

A♥

2♥

3♥

…

…

2. Compile to tractable knowledge base
3. Condition on observations/questions
4. Model counting: How many perfect matchings?

Observations

• Deck of cards = complete bigraph

• CD = removing edges in bigraph

Encode any bigraph in cards problem

• CT = counting perfect matchings

• Problem is #P-complete!

No language with CD and CT can represent the
cards problem compactly, unless P=NP.

...

What's Going On Here?

?

Probability that Card52 is Spades
given that Card1 is QH?

[Van den Broeck; AAAI-KRR‟15]

...

What's Going On Here?

?

Probability that Card52 is Spades
given that Card1 is QH?

[Van den Broeck; AAAI-KRR‟15]

13/51

...

What's Going On Here?

?

Probability that Card52 is Spades
given that Card1 is QH? 13/51

[Van den Broeck; AAAI-KRR‟15]

What's Going On Here?

?

...

Probability that Card52 is Spades
given that Card2 is QH?

[Van den Broeck; AAAI-KRR‟15]

What's Going On Here?

?

...

Probability that Card52 is Spades
given that Card2 is QH? 13/51

[Van den Broeck; AAAI-KRR‟15]

What's Going On Here?

?

...

Probability that Card52 is Spades
given that Card3 is QH?

[Van den Broeck; AAAI-KRR‟15]

What's Going On Here?

?

...

Probability that Card52 is Spades
given that Card3 is QH? 13/51

[Van den Broeck; AAAI-KRR‟15]

...

Tractable Reasoning

What's going on here?
Which property makes reasoning tractable?

[Niepert, Van den Broeck; AAAI‟14], [Van den Broeck; AAAI-KRR‟15]

...

Tractable Reasoning

What's going on here?
Which property makes reasoning tractable?

⇒ Lifted Inference

 High-level (first-order) reasoning
 Symmetry
 Exchangeability

[Niepert, Van den Broeck; AAAI‟14], [Van den Broeck; AAAI-KRR‟15]

Let us automate this:
 Relational/FO model

 First-Order Knowledge Compilation

∀p, ∃c, Card(p,c)
∀c, ∃p, Card(p,c)

∀p, ∀c, ∀c‟, Card(p,c) ∧ Card(p,c‟) ⇒ c = c‟

...

MOTIVATION 2

Model Counting

• Model = solution to a propositional logic formula Δ
• Model counting = #SAT

Rain Cloudy Model?
T T Yes

T F No

F T Yes

F F Yes

#SAT = 3
+

 Δ = (Rain ⇒ Cloudy)

[Valiant] #P-hard, even for 2CNF

Weighted Model Counting
• Model = solution to a propositional logic formula Δ
• Model counting = #SAT

Rain Cloudy Model?
T T Yes

T F No

F T Yes

F F Yes

#SAT = 3
+

 Δ = (Rain ⇒ Cloudy)

Weighted Model Counting
• Model = solution to a propositional logic formula Δ
• Model counting = #SAT

Rain Cloudy Model?
T T Yes

T F No

F T Yes

F F Yes

#SAT = 3

Weight
1 * 3 = 3

 0

2 * 3 = 6

2 * 5 = 10

• Weighted model counting (WMC)
– Weights for assignments to variables
– Model weight is product of variable weights w(.)

+

 Δ = (Rain ⇒ Cloudy)

w(R)=1
 w(¬R)=2
 w(C)=3
 w(¬C)=5

Weighted Model Counting
• Model = solution to a propositional logic formula Δ
• Model counting = #SAT

Rain Cloudy Model?
T T Yes

T F No

F T Yes

F F Yes

#SAT = 3

Weight
1 * 3 = 3

 0

2 * 3 = 6

2 * 5 = 10

WMC = 19

• Weighted model counting (WMC)
– Weights for assignments to variables
– Model weight is product of variable weights w(.)

+ +

 Δ = (Rain ⇒ Cloudy)

w(R)=1
 w(¬R)=2
 w(C)=3
 w(¬C)=5

Assembly language for
probabilistic reasoning and learning

Bayesian networks
Factor graphs

Probabilistic
databases

Relational Bayesian
networks

Probabilistic
logic programs

Markov Logic

Weighted Model
Counting

First-Order Model Counting
Model = solution to first-order logic formula Δ

Δ = ∀d (Rain(d)
 ⇒ Cloudy(d))

Days = {Monday}

First-Order Model Counting
Model = solution to first-order logic formula Δ

Rain(M) Cloudy(M) Model?

T T Yes

T F No

F T Yes

F F Yes

FOMC = 3
+

Δ = ∀d (Rain(d)
 ⇒ Cloudy(d))

Days = {Monday}

Weighted First-Order Model Counting
Model = solution to first-order logic formula Δ

Rain(M) Cloudy(M) Rain(T) Cloudy(T) Model?

T T T T Yes

T F T T No

F T T T Yes

F F T T Yes

T T T F No

T F T F No

F T T F No

F F T F No

T T F T Yes

T F F T No

F T F T Yes

F F F T Yes

T T F F Yes

T F F F No

F T F F Yes

F F F F Yes

Δ = ∀d (Rain(d)
 ⇒ Cloudy(d))

Days = {Monday
 Tuesday}

Weighted First-Order Model Counting
Model = solution to first-order logic formula Δ

Rain(M) Cloudy(M) Rain(T) Cloudy(T) Model?

T T T T Yes

T F T T No

F T T T Yes

F F T T Yes

T T T F No

T F T F No

F T T F No

F F T F No

T T F T Yes

T F F T No

F T F T Yes

F F F T Yes

T T F F Yes

T F F F No

F T F F Yes

F F F F Yes

#SAT = 9
+

Δ = ∀d (Rain(d)
 ⇒ Cloudy(d))

Days = {Monday
 Tuesday}

Weighted First-Order Model Counting
Model = solution to first-order logic formula Δ

Weight

 1 * 1 * 3 * 3 = 9

 0

2 * 1* 3 * 3 = 18

2 * 1 * 5 * 3 = 30

 0

 0

 0

 0

 1 * 2 * 3 * 3 = 18

 0

 2 * 2 * 3 * 3 = 36

 2 * 2 * 5 * 3 = 60

 1 * 2 * 3 * 5 = 30

 0

 2 * 2 * 3 * 5 = 60

 2 * 2 * 5 * 5 = 100

Rain(M) Cloudy(M) Rain(T) Cloudy(T) Model?

T T T T Yes

T F T T No

F T T T Yes

F F T T Yes

T T T F No

T F T F No

F T T F No

F F T F No

T T F T Yes

T F F T No

F T F T Yes

F F F T Yes

T T F F Yes

T F F F No

F T F F Yes

F F F F Yes

#SAT = 9
+

Δ = ∀d (Rain(d)
 ⇒ Cloudy(d))

Days = {Monday
 Tuesday}

w(R)=1
 w(¬R)=2
 w(C)=3
 w(¬C)=5

Weighted First-Order Model Counting
Model = solution to first-order logic formula Δ

Weight

 1 * 1 * 3 * 3 = 9

 0

2 * 1* 3 * 3 = 18

2 * 1 * 5 * 3 = 30

 0

 0

 0

 0

 1 * 2 * 3 * 3 = 18

 0

 2 * 2 * 3 * 3 = 36

 2 * 2 * 5 * 3 = 60

 1 * 2 * 3 * 5 = 30

 0

 2 * 2 * 3 * 5 = 60

 2 * 2 * 5 * 5 = 100

WFOMC = 361
+

Rain(M) Cloudy(M) Rain(T) Cloudy(T) Model?

T T T T Yes

T F T T No

F T T T Yes

F F T T Yes

T T T F No

T F T F No

F T T F No

F F T F No

T T F T Yes

T F F T No

F T F T Yes

F F F T Yes

T T F F Yes

T F F F No

F T F F Yes

F F F F Yes

#SAT = 9
+

Δ = ∀d (Rain(d)
 ⇒ Cloudy(d))

Days = {Monday
 Tuesday}

w(R)=1
 w(¬R)=2
 w(C)=3
 w(¬C)=5

Assembly language for high-level
probabilistic reasoning and learning

Parfactor graphs

Probabilistic
databases

Relational Bayesian
networks

Probabilistic
logic programs

Markov Logic

Weighted First-Order
Model Counting

[VdB et al.; IJCAI‟11, PhD‟13, KR‟14, UAI‟14]

Statistical Relational Learning

• An MLN = set of constraints (w, Γ(x))

• Weight of a world = product of w, for all rules (w, Γ(x))
and groundings Γ(a) that hold in the world

∞ Smoker(x) ⇒ Person(x)

3.75 Smoker(x)∧Friend(x,y) ⇒ Smoker(y)

PMLN(Q) = [sum of weights of worlds of Q] / Z

Soft constraint

Hard constraint

Applications: large probabilistic KBs

FO NNF SYNTAX

First-Order Knowledge Compilation

• Input: Sentence in FOL
• Output: Representation tractable for some

class of queries.
• In this work:

– Function-free FOL
– Model counting in NNF tradition

• Some pre-KC-map work:
– FO Horn clauses
– FO BDDs

Alphabet

• FOL
– Predicates/relations: Friends
– Object names: x, y, z
– Object variables: X, Y, Z
– Symbols classical FOL (∀, ∃, ∧, ∨, ¬,…)

• Group logic
– Group variables: X, Y, Z
– Symbols from basic set theory

(e.g., ∪, ∩, ∈, ⊆, {, }, complement).

Syntax

• Object terms: X, alice, bob
• Group terms : X, {alice,bob}, X ∪ Y
• Atom: Friends(alice,X)
• Formulas:

– (α), ¬α, α ∨ β, and α ∧ β
– ∀X ∈ G, α and ∃X ∈ G, α
– ∀X ⊆ G, α and ∃X ⊆ G, α

• Group logic syntactic sugar:
– P(G) is ∀X ∈ G, P (X)
– `P(G) is ∀X ∈ G, ¬P (X)

Examples:

• ∀X ∈ G, Y ∈ {alice, bob},
Enemies(X, Y)
 ⇒ ¬Friends(X, Y) ∧ ¬Friends(Y, X)

• ∀X ∈ G, Y ∈ G,
Smokes(X) ∧ Friends(X, Y) ⇒ Smokes(Y)

• ∃G ⊆ {alice, bob}, Smokes(G) ∧`Healthy(G)

Semantics

• Template language for propositional logic
• Grounding a sentence: gr(α)

• Replace ∀ by ∧
• Replace ∃ by ∨
• End result: ground sentence = propositional logic

• Grounding is polynomial in group sizes
 when no ∀X ⊆ G or ∃X ⊆ G
 Important for polytime reduction to NNF circuits

Decomposability

• Conjunction: α(X,G) ∧ β(X,G)
 For any substitution X=c and G=g, we have that
 gr(α(c,g)) ∧ gr(β(c,g)) is decomposable

 Meaning: α and β can never talk about the
 same ground atoms

• Quantifier: ∀Y ∈ G, α(Y)
 For any two a,b ∈ G, we have that
 gr(α(a)) ∧ gr(α(b)) is decomposable

Determinism

• Disjunction: α(X,G) ∨ β(X,G)
 For any substitution X=c and G=g, we have that
 gr(α(c,g)) ∨ gr(β(c,g)) is deterministic

 Meaning: α ∧ β is UNSAT

• Quantifier: ∃Y ∈ G, α(Y)
 For any two a,b ∈ G, we have that
 gr(α(a)) ∨ gr(α(b)) is decomposable

Group Quantifiers

• Decomposability: ∀X ⊆ G, α(X)
 For any two A,B ⊆ G, we have that
 gr(α(A)) ∨ gr(α(B)) is decomposable

• Determinism: ∃X ⊆ G, α(X)
 For any two A,B ⊆ G, we have that
 gr(α(A)) ∨ gr(α(B)) is deterministic

Automorphism

• Object permutation σ : D→ D is a one-to-one
mapping from objects to objects.

• Permuting α using σ replaces o in α by σ(o).
• Sentences α and β are p-equivalent iff α is

equivalent to an object permutation of β.
Smokes(alice) and Smokes(bob) are p-equivalent

• Group quantifiers: ∀X ⊆ G, α(X) or ∃X ⊆ G, α(X)
Are automorphic iff for any two A,B ⊆ G s.t.
|A|=|B|, gr(α(A)) and gr(α(B)) are p-equivalent

First-Order NNF

Decomposable

First-Order NNF

Decomposable

First-Order DNNF

Decomposable

First-Order DNNF

Deterministic

First-Order d-DNNF

Deterministic

First-Order d-DNNF

Automorphic

First-Order d-DNNF

Automorphic

First-Order ad-DNNF

Automorphic

FO NNF Languages

• FO NNF: group logic circuits, negation only on
atoms

• FO d-DNNF: determinism and decomposability
 Grounding generates a d-DNNF

• FO DNNF
 Grounding generates a DNNF
• FO ad-DNNF: automorphic
 Powerful properties!

FO NNF TRACTABILITY

Symmetric WFOMC

Def. A weighted vocabulary is (R, w), where
– R = (R1, R2, …, Rk) = relational vocabulary
– w = (w1, w2, …, wk) = weights

• Fix an FO formula Q, domain of size n
• The weight of a ground tuple t in Ri is wi

Complexity of FOMC / WFOMC(Q, n)?
Data/domain complexity:
 fixed Q, input n / and w

Symmetric WFOMC
on FO ad-DNNF

Complexity polynomial in domain size!
Polynomial in NNF size for bounded depth.

FO-Model Counting: w(R) = w(¬R) = 1
FO ad-DNNF sentences

FOMC Query: Example

4.

FO-Model Counting: w(R) = w(¬R) = 1
FO ad-DNNF sentences

Δ = (Stress(Alice) ⇒ Smokes(Alice)) Domain = {Alice}

FOMC Query: Example

4.

FO-Model Counting: w(R) = w(¬R) = 1
FO ad-DNNF sentences

→ 3 models

Δ = (Stress(Alice) ⇒ Smokes(Alice)) Domain = {Alice}

FOMC Query: Example

4.

FO-Model Counting: w(R) = w(¬R) = 1
FO ad-DNNF sentences

→ 3 models

Δ = (Stress(Alice) ⇒ Smokes(Alice)) Domain = {Alice}

3. Δ = ∀x, (Stress(x) ⇒ Smokes(x)) Domain = {n people}

FOMC Query: Example

4.

→ 3n models

FO-Model Counting: w(R) = w(¬R) = 1
FO ad-DNNF sentences

→ 3 models

Δ = (Stress(Alice) ⇒ Smokes(Alice)) Domain = {Alice}

3. Δ = ∀x, (Stress(x) ⇒ Smokes(x)) Domain = {n people}

FOMC Query: Example

FOMC Query: Example

→ 3n models

3. Δ = ∀x, (Stress(x) ⇒ Smokes(x)) Domain = {n people}

FOMC Query: Example

→ 3n models

3. Δ = ∀x, (Stress(x) ⇒ Smokes(x)) Domain = {n people}

2. Δ = ∀y, (ParentOf(y) ∧ Female ⇒ MotherOf(y)) D = {n people}

FOMC Query: Example

→ 3n models

3. Δ = ∀x, (Stress(x) ⇒ Smokes(x)) Domain = {n people}

2. Δ = ∀y, (ParentOf(y) ∧ Female ⇒ MotherOf(y)) D = {n people}

If Female = true? Δ = ∀y, (ParentOf(y) ⇒ MotherOf(y)) → 3n models

FOMC Query: Example

→ 3n models

3. Δ = ∀x, (Stress(x) ⇒ Smokes(x)) Domain = {n people}

2. Δ = ∀y, (ParentOf(y) ∧ Female ⇒ MotherOf(y)) D = {n people}

If Female = true? Δ = ∀y, (ParentOf(y) ⇒ MotherOf(y)) → 3n models

→ 4n models If Female = false? Δ = true

→ 3n + 4n models

FOMC Query: Example

→ 3n models

3. Δ = ∀x, (Stress(x) ⇒ Smokes(x)) Domain = {n people}

2. Δ = ∀y, (ParentOf(y) ∧ Female ⇒ MotherOf(y)) D = {n people}

If Female = true? Δ = ∀y, (ParentOf(y) ⇒ MotherOf(y)) → 3n models

→ 4n models If Female = false? Δ = true

→ 3n + 4n models

FOMC Query: Example

→ 3n models

3. Δ = ∀x, (Stress(x) ⇒ Smokes(x)) Domain = {n people}

2. Δ = ∀y, (ParentOf(y) ∧ Female ⇒ MotherOf(y))

1. Δ = ∀x, ∀ y, (ParentOf(x,y) ∧ Female(x) ⇒ MotherOf(x,y)) D = {n people}

D = {n people}

If Female = true? Δ = ∀y, (ParentOf(y) ⇒ MotherOf(y)) → 3n models

→ 4n models If Female = false? Δ = true

→ 3n + 4n models

→ (3n + 4n)
n models

FOMC Query: Example

→ 3n models

3. Δ = ∀x, (Stress(x) ⇒ Smokes(x)) Domain = {n people}

2. Δ = ∀y, (ParentOf(y) ∧ Female ⇒ MotherOf(y))

1. Δ = ∀x, ∀ y, (ParentOf(x,y) ∧ Female(x) ⇒ MotherOf(x,y)) D = {n people}

D = {n people}

If Female = true? Δ = ∀y, (ParentOf(y) ⇒ MotherOf(y)) → 3n models

→ 4n models If Female = false? Δ = true

Group Quantifiers: Example

• Not decomposable!
• Rewrite as FO ad-DNNF:

• Not possible to ground to d-DNNF!
• How to do tractable CT?

∃G ⊆ D, Smokes(G) ∧`Smokes(`G) ∧`Friends(G ,`G)

Δ = ∀x ,y ∈ D, (Smokes(x) ∧ Friends(x,y) ⇒ Smokes(y)) Domain = {n people}

Group Quantifiers: Example

∃G ⊆ D, Smokes(G) ∧`Smokes(`G) ∧`Friends(G ,`G)

Group Quantifiers: Example

 If we know G precisely: who smokes, and there are k smokers?

k

n-k

k

n-k

Database:
Smokes(Alice) = 1
Smokes(Bob) = 0
Smokes(Charlie) = 0
Smokes(Dave) = 1
Smokes(Eve) = 0
...

Smokes Smokes Friends

∃G ⊆ D, Smokes(G) ∧`Smokes(`G) ∧`Friends(G ,`G)

Group Quantifiers: Example

 If we know G precisely: who smokes, and there are k smokers?

k

n-k

k

n-k

Database:
Smokes(Alice) = 1
Smokes(Bob) = 0
Smokes(Charlie) = 0
Smokes(Dave) = 1
Smokes(Eve) = 0
...

Smokes Smokes Friends

∃G ⊆ D, Smokes(G) ∧`Smokes(`G) ∧`Friends(G ,`G)

Group Quantifiers: Example

 If we know G precisely: who smokes, and there are k smokers?

k

n-k

k

n-k

Database:
Smokes(Alice) = 1
Smokes(Bob) = 0
Smokes(Charlie) = 0
Smokes(Dave) = 1
Smokes(Eve) = 0
...

Smokes Smokes Friends

∃G ⊆ D, Smokes(G) ∧`Smokes(`G) ∧`Friends(G ,`G)

Group Quantifiers: Example

 If we know G precisely: who smokes, and there are k smokers?

k

n-k

k

n-k

Database:
Smokes(Alice) = 1
Smokes(Bob) = 0
Smokes(Charlie) = 0
Smokes(Dave) = 1
Smokes(Eve) = 0
...

Smokes Smokes Friends

∃G ⊆ D, Smokes(G) ∧`Smokes(`G) ∧`Friends(G ,`G)

Group Quantifiers: Example

 If we know G precisely: who smokes, and there are k smokers?

k

n-k

k

n-k

Database:
Smokes(Alice) = 1
Smokes(Bob) = 0
Smokes(Charlie) = 0
Smokes(Dave) = 1
Smokes(Eve) = 0
...

Smokes Smokes Friends

∃G ⊆ D, Smokes(G) ∧`Smokes(`G) ∧`Friends(G ,`G)

Group Quantifiers: Example

 If we know G precisely: who smokes, and there are k smokers?

k

n-k

k

n-k

Database:
Smokes(Alice) = 1
Smokes(Bob) = 0
Smokes(Charlie) = 0
Smokes(Dave) = 1
Smokes(Eve) = 0
...

Smokes Smokes Friends

∃G ⊆ D, Smokes(G) ∧`Smokes(`G) ∧`Friends(G ,`G)

Group Quantifiers: Example

 If we know G precisely: who smokes, and there are k smokers?

k

n-k

k

n-k

Database:
Smokes(Alice) = 1
Smokes(Bob) = 0
Smokes(Charlie) = 0
Smokes(Dave) = 1
Smokes(Eve) = 0
...

Smokes Smokes Friends

∃G ⊆ D, Smokes(G) ∧`Smokes(`G) ∧`Friends(G ,`G)

Group Quantifiers: Example

 If we know G precisely: who smokes, and there are k smokers?

k

n-k

k

n-k

Database:
Smokes(Alice) = 1
Smokes(Bob) = 0
Smokes(Charlie) = 0
Smokes(Dave) = 1
Smokes(Eve) = 0
...

Smokes Smokes Friends

∃G ⊆ D, Smokes(G) ∧`Smokes(`G) ∧`Friends(G ,`G)

Group Quantifiers: Example

 If we know G precisely: who smokes, and there are k smokers?

k

n-k

k

n-k

Database:
Smokes(Alice) = 1
Smokes(Bob) = 0
Smokes(Charlie) = 0
Smokes(Dave) = 1
Smokes(Eve) = 0
...

Smokes Smokes Friends

∃G ⊆ D, Smokes(G) ∧`Smokes(`G) ∧`Friends(G ,`G)

Group Quantifiers: Example

 If we know G precisely: who smokes, and there are k smokers?

k

n-k

k

n-k

→ models

Database:
Smokes(Alice) = 1
Smokes(Bob) = 0
Smokes(Charlie) = 0
Smokes(Dave) = 1
Smokes(Eve) = 0
...

Smokes Smokes Friends

∃G ⊆ D, Smokes(G) ∧`Smokes(`G) ∧`Friends(G ,`G)

Group Quantifiers: Example

 If we know G precisely: who smokes, and there are k smokers?

k

n-k

k

n-k

 If we know that there are k smokers?

→ models

Database:
Smokes(Alice) = 1
Smokes(Bob) = 0
Smokes(Charlie) = 0
Smokes(Dave) = 1
Smokes(Eve) = 0
...

Smokes Smokes Friends

∃G ⊆ D, Smokes(G) ∧`Smokes(`G) ∧`Friends(G ,`G)

Group Quantifiers: Example

 If we know G precisely: who smokes, and there are k smokers?

k

n-k

k

n-k

 If we know that there are k smokers?

→ models

Database:
Smokes(Alice) = 1
Smokes(Bob) = 0
Smokes(Charlie) = 0
Smokes(Dave) = 1
Smokes(Eve) = 0
...

→ models

Smokes Smokes Friends

∃G ⊆ D, Smokes(G) ∧`Smokes(`G) ∧`Friends(G ,`G)

Group Quantifiers: Example

 If we know G precisely: who smokes, and there are k smokers?

k

n-k

k

n-k

 If we know that there are k smokers?

 In total…

→ models

Database:
Smokes(Alice) = 1
Smokes(Bob) = 0
Smokes(Charlie) = 0
Smokes(Dave) = 1
Smokes(Eve) = 0
...

→ models

Smokes Smokes Friends

∃G ⊆ D, Smokes(G) ∧`Smokes(`G) ∧`Friends(G ,`G)

Group Quantifiers: Example

 If we know G precisely: who smokes, and there are k smokers?

k

n-k

k

n-k

 If we know that there are k smokers?

 In total…

→ models

Database:
Smokes(Alice) = 1
Smokes(Bob) = 0
Smokes(Charlie) = 0
Smokes(Dave) = 1
Smokes(Eve) = 0
...

→ models

→ models

Smokes Smokes Friends

∃G ⊆ D, Smokes(G) ∧`Smokes(`G) ∧`Friends(G ,`G)

...

Playing Cards Revisited

Let us automate this:

∀p, ∃c, Card(p,c)
∀c, ∃p, Card(p,c)

∀p, ∀c, ∀c’, Card(p,c) ∧ Card(p,c’) ⇒ c = c’

[Van den Broeck.; AAAI-KR‟15]

...

Playing Cards Revisited

Let us automate this:

∀p, ∃c, Card(p,c)
∀c, ∃p, Card(p,c)

∀p, ∀c, ∀c’, Card(p,c) ∧ Card(p,c’) ⇒ c = c’

[Van den Broeck.; AAAI-KR‟15]

...

Playing Cards Revisited

Let us automate this:

∀p, ∃c, Card(p,c)
∀c, ∃p, Card(p,c)

∀p, ∀c, ∀c’, Card(p,c) ∧ Card(p,c’) ⇒ c = c’

Computed in time polynomial in n

[Van den Broeck.; AAAI-KR‟15]

FO COMPILATION

Compilation Rules

• Lots of preprocessing

• Shannon decomposition/Boole’s expansion

• Detect propositional decomposability

• FO Shannon decomposition:

Simplify β (remove atoms subsumed by P(X))

Always deterministic! Ensure automorphic ∃

• Detect FO decomposability

FO NNF EXPRESSIVENESS

Main Positive Result: FO2

• FO2 = FO restricted to two variables
• “The graph has a path of length 10”:

• Theorem: Compilation algorithm to FO ad-
DNNF is complete for FO2

• Model counting for FO2 in PTIME domain
complexity

∃x∃y(R(x,y) ∧∃x (R(y,x) ∧∃y (R(x,y) ∧…)))

Main Negative Results

Domain complexity:
• There exists an FO formula Q s.t. symmetric

FOMC(Q, n) is #P1 hard
• There exists Q in FO3 s.t. FOMC(Q, n) is #P1

hard
• There exists a conjunctive query Q s.t.

symmetric WFOMC(Q, n) is #P1 hard
• There exists a positive clause Q w.o. „=„ s.t.

symmetric WFOMC(Q, n) is #P1 hard
Therefore, no FO ad-DNNF can exist

Proof

Theorem. There exists an FO3 sentence Q s.t.
FOMC(Q,n) is #P1-hard

Proof
• Step 1. Construct a Turing Machine U s.t.

– U is in #P1 and runs in linear time in n
– U computes a #P1 –hard function

• Step 2. Construct an FO3 sentence Q s.t.
FOMC(Q,n) / n! = U(n)

Fertile Ground

FO2

CNF

FO2

Safe
monotone
CNF

 Safe type-1 CNF

Θ1

FO3

Υ1

CQs

 S

[VdB; NIPS’11], [VdB et al.; KR’14], [Gribkoff, VdB, Suciu; UAI’15], [Beame, VdB, Gribkoff, Suciu; PODS’15], etc.

Fertile Ground

FO2

CNF

FO2

Safe
monotone
CNF

 Safe type-1 CNF

? Θ1

FO3

Υ1

CQs

Δ = ∀x,y,z, Friends(x,y) ∧ Friends(y,z) ⇒ Friends(x,z)

 S

[VdB; NIPS’11], [VdB et al.; KR’14], [Gribkoff, VdB, Suciu; UAI’15], [Beame, VdB, Gribkoff, Suciu; PODS’15], etc.

Other Queries and Transformations

• What if all ground atoms have different
weights? Asymmetric WFOMC

• FO d-DNNF complete for all monotone FO
CNFs that support efficient CT

• No clausal entailment
• No conditioning

Conclusions

• Very powerful already!
• We need to solve this!

THANKS

References

• Cards Example:
Guy Van den Broeck. Towards High-Level
Probabilistic Reasoning with Lifted Inference, In
Proceedings of KRR, 2015.

• First-Order Knowledge Compilation:
Guy Van den Broeck. Lifted Inference and
Learning in Statistical Relational Models, PhD
thesis, KU Leuven, 2013.

• Expressiveness:
Paul Beame, Guy Van den Broeck, Eric Gribkoff,
Dan Suciu. Symmetric Weighted First-Order
Model Counting, In Proceedings of PODS, 2015.

