
First-Order Knowledge Compilation  
for Probabilistic Reasoning 

Guy Van den Broeck 
 
 

based on joint work with Adnan Darwiche, 
Dan Suciu, and many others 



MOTIVATION 1 
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A Simple Reasoning Problem 

? 

Probability that Card1 is Hearts? 

[Van den Broeck; AAAI-KRR‟15] 
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A Simple Reasoning Problem 

? 

Probability that Card1 is Hearts? 1/4 

[Van den Broeck; AAAI-KRR‟15] 
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? 

Probability that Card52 is Spades 
given that Card1 is QH? 

[Van den Broeck; AAAI-KRR‟15] 
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? 

Probability that Card52 is Spades 
given that Card1 is QH? 13/51 

[Van den Broeck; AAAI-KRR‟15] 



Automated Reasoning 

Let us automate this: 

1. CNF encoding for deck of cards 

2. Compile to tractable knowledge base (e.g., d-DNNF) 

3. Condition on observations/questions 

“Card1 is hearts” 

4. Model counting 



Automated Reasoning 

Let us automate this: 

1. CNF encoding for deck of cards 

2. Compile to tractable knowledge base (e.g., d-DNNF) 

3. Condition on observations/questions 

“Card1 is hearts” 

4. Model counting 

A typical BeyondNP pipeline! 



Automated Reasoning 

Let us automate this: 

1. CNF encoding for deck of cards 

      Card(p1,c1) v Card(p1,c2) v …  
     Card(p1,c1) v Card(p2,c1) v … 

¬Card(p1,c1) v  ¬Card(p1,c2)  
¬Card(p1,c2) v  ¬Card(p1,c3) 

… 
¬Card(p2,c1) v  ¬Card(p2,c2) 

… 



Let us automate this: 

1. CNF encoding for deck of cards 

2. Compile to tractable knowledge base (e.g., d-DNNF) 

3. Condition on observations/questions 

“Card1 is hearts” 

4. Model counting 

Which language to choose? 
Cards problem is easy: we want to be polynomial. 

Automated Reasoning 



Deck of Cards Graphically 

K♥ 

A♥ 

2♥ 

3♥ 

…
 

…
 

Card(K♥,p14) 

2. Compile to tractable knowledge base 
3. Condition on observations/questions 
4.  Model counting 
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Card(K♥,p14) 

2. Compile to tractable knowledge base 
3.  Condition on observations/questions 
4.  Model counting 



Deck of Cards Graphically 

K♥ 

A♥ 

2♥ 

3♥ 

…
 

…
 

Card(K♥,p14) 

2. Compile to tractable knowledge base 
3.  Condition on observations/questions 
4.  Model counting 

¬ Card(K♥,p14) 



Deck of Cards Graphically 

K♥ 

A♥ 

2♥ 

3♥ 

…
 

…
 

2. Compile to tractable knowledge base 
3.  Condition on observations/questions 
4.  Model counting 

¬ Card(K♥,p14) 



Deck of Cards Graphically 

K♥ 

A♥ 

2♥ 

3♥ 

…
 

…
 

2. Compile to tractable knowledge base 
3.  Condition on observations/questions 
4.  Model counting 



Deck of Cards Graphically 

K♥ 

A♥ 

2♥ 

3♥ 

…
 

…
 

2. Compile to tractable knowledge base 
3.  Condition on observations/questions 
4.  Model counting: How many perfect matchings? 



Deck of Cards Graphically 

K♥ 

A♥ 

2♥ 

3♥ 

…
 

…
 

2. Compile to tractable knowledge base 
3.  Condition on observations/questions 
4.  Model counting: How many perfect matchings? 



Observations 

• Deck of cards = complete bigraph 

• CD = removing edges in bigraph 

Encode any bigraph in cards problem 

• CT = counting perfect matchings 

• Problem is #P-complete! 

 

No language with CD and CT can represent the 
cards problem compactly, unless P=NP. 



... 

What's Going On Here? 

? 

Probability that Card52 is Spades 
given that Card1 is QH? 

[Van den Broeck; AAAI-KRR‟15] 
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What's Going On Here? 

? 

Probability that Card52 is Spades 
given that Card1 is QH? 

[Van den Broeck; AAAI-KRR‟15] 
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... 

What's Going On Here? 

? 

Probability that Card52 is Spades 
given that Card1 is QH? 13/51 

[Van den Broeck; AAAI-KRR‟15] 



What's Going On Here? 

? 

... 

Probability that Card52 is Spades 
given that Card2 is QH? 

[Van den Broeck; AAAI-KRR‟15] 



What's Going On Here? 

? 

... 

Probability that Card52 is Spades 
given that Card2 is QH? 13/51 

[Van den Broeck; AAAI-KRR‟15] 



What's Going On Here? 

? 

... 

Probability that Card52 is Spades 
given that Card3 is QH? 

[Van den Broeck; AAAI-KRR‟15] 



What's Going On Here? 

? 

... 

Probability that Card52 is Spades 
given that Card3 is QH? 13/51 

[Van den Broeck; AAAI-KRR‟15] 



... 

Tractable Reasoning 

What's going on here? 
Which property makes reasoning tractable? 
 

[Niepert, Van den Broeck; AAAI‟14], [Van den Broeck; AAAI-KRR‟15] 



... 

Tractable Reasoning 

What's going on here? 
Which property makes reasoning tractable? 
 

⇒ Lifted Inference 

 High-level (first-order) reasoning 
 Symmetry 
 Exchangeability 

[Niepert, Van den Broeck; AAAI‟14], [Van den Broeck; AAAI-KRR‟15] 



Let us automate this: 
 Relational/FO model 

 
 
 

 
 First-Order Knowledge Compilation 

∀p, ∃c, Card(p,c) 
∀c, ∃p, Card(p,c) 

∀p, ∀c, ∀c‟, Card(p,c) ∧ Card(p,c‟) ⇒ c = c‟ 

... 



MOTIVATION 2 

 



Model Counting 

• Model = solution to a propositional logic formula Δ 
• Model counting = #SAT 

Rain Cloudy Model? 
T T Yes 

T F No 

F T Yes 

F F Yes 

#SAT = 3 
+ 

  Δ = (Rain ⇒ Cloudy) 

[Valiant]  #P-hard, even for 2CNF 



Weighted Model Counting 
• Model = solution to a propositional logic formula Δ 
• Model counting = #SAT 

Rain Cloudy Model? 
T T Yes 

T F No 

F T Yes 

F F Yes 

#SAT = 3 
+ 

  Δ = (Rain ⇒ Cloudy) 



Weighted Model Counting 
• Model = solution to a propositional logic formula Δ 
• Model counting = #SAT 

Rain Cloudy Model? 
T T Yes 

T F No 

F T Yes 

F F Yes 

#SAT = 3 

Weight 
1 * 3 =   3  

              0 

2 * 3 =   6 

2 * 5 = 10 

• Weighted model counting (WMC) 
– Weights for assignments to variables 
– Model weight is product of variable weights w(.) 

+ 

  Δ = (Rain ⇒ Cloudy) 

w( R)=1 
 w(¬R)=2 
   w( C)=3 
 w(¬C)=5 



Weighted Model Counting 
• Model = solution to a propositional logic formula Δ 
• Model counting = #SAT 

Rain Cloudy Model? 
T T Yes 

T F No 

F T Yes 

F F Yes 

#SAT = 3 

Weight 
1 * 3 =   3  

              0 

2 * 3 =   6 

2 * 5 = 10 

WMC = 19 

• Weighted model counting (WMC) 
– Weights for assignments to variables 
– Model weight is product of variable weights w(.) 

+ + 

  Δ = (Rain ⇒ Cloudy) 

w( R)=1 
 w(¬R)=2 
   w( C)=3 
 w(¬C)=5 



Assembly language for  
probabilistic reasoning and learning 

Bayesian networks 
Factor graphs 

Probabilistic 
databases 

Relational Bayesian 
networks 

Probabilistic 
logic programs 

Markov Logic 

Weighted Model 
Counting 



First-Order Model Counting 
Model = solution to first-order logic formula Δ 

Δ = ∀d (Rain(d)  
            ⇒ Cloudy(d))  

Days = {Monday} 



First-Order Model Counting 
Model = solution to first-order logic formula Δ 

Rain(M) Cloudy(M) Model? 

T T Yes 

T F No 

F T Yes 

F F Yes 

FOMC = 3 
+ 

Δ = ∀d (Rain(d)  
            ⇒ Cloudy(d))  

Days = {Monday} 



Weighted First-Order Model Counting 
Model = solution to first-order logic formula Δ 
 

Rain(M) Cloudy(M) Rain(T) Cloudy(T) Model? 

T T T T Yes 

T F T T No 

F T T T Yes 

F F T T Yes 

T T T F No 

T F T F No 

F T T F No 

F F T F No 

T T F T Yes 

T F F T No 

F T F T Yes 

F F F T Yes 

T T F F Yes 

T F F F No 

F T F F Yes 

F F F F Yes 

Δ = ∀d (Rain(d)  
            ⇒ Cloudy(d)) 

Days = {Monday 
              Tuesday} 



Weighted First-Order Model Counting 
Model = solution to first-order logic formula Δ 
 

Rain(M) Cloudy(M) Rain(T) Cloudy(T) Model? 

T T T T Yes 

T F T T No 

F T T T Yes 

F F T T Yes 

T T T F No 

T F T F No 

F T T F No 

F F T F No 

T T F T Yes 

T F F T No 

F T F T Yes 

F F F T Yes 

T T F F Yes 

T F F F No 

F T F F Yes 

F F F F Yes 

#SAT = 9 
+ 

Δ = ∀d (Rain(d)  
            ⇒ Cloudy(d)) 

Days = {Monday 
              Tuesday} 



Weighted First-Order Model Counting 
Model = solution to first-order logic formula Δ 
 

Weight 

 1 * 1 * 3 * 3 =    9 

                          0 

2 * 1* 3 * 3 =   18 

2 * 1 * 5 * 3 =   30 

                          0 

                          0 

                          0 

                          0 

 1 * 2 * 3 * 3 =  18 

                          0 

 2 * 2 * 3 * 3 =  36 

 2 * 2 * 5 * 3 =  60 

 1 * 2 * 3 * 5 =   30  

                         0 

 2 * 2 * 3 * 5 =  60 

 2 * 2 * 5 * 5 = 100 

Rain(M) Cloudy(M) Rain(T) Cloudy(T) Model? 

T T T T Yes 

T F T T No 

F T T T Yes 

F F T T Yes 

T T T F No 

T F T F No 

F T T F No 

F F T F No 

T T F T Yes 

T F F T No 

F T F T Yes 

F F F T Yes 

T T F F Yes 

T F F F No 

F T F F Yes 

F F F F Yes 

#SAT = 9 
+ 

Δ = ∀d (Rain(d)  
            ⇒ Cloudy(d)) 

Days = {Monday 
              Tuesday} 

w( R)=1 
 w(¬R)=2 
   w( C)=3 
 w(¬C)=5 



Weighted First-Order Model Counting 
Model = solution to first-order logic formula Δ 
 

Weight 

 1 * 1 * 3 * 3 =    9 

                          0 

2 * 1* 3 * 3 =   18 

2 * 1 * 5 * 3 =   30 

                          0 

                          0 

                          0 

                          0 

 1 * 2 * 3 * 3 =  18 

                          0 

 2 * 2 * 3 * 3 =  36 

 2 * 2 * 5 * 3 =  60 

 1 * 2 * 3 * 5 =   30  

                         0 

 2 * 2 * 3 * 5 =  60 

 2 * 2 * 5 * 5 = 100 

WFOMC = 361 
+ 

Rain(M) Cloudy(M) Rain(T) Cloudy(T) Model? 

T T T T Yes 

T F T T No 

F T T T Yes 

F F T T Yes 

T T T F No 

T F T F No 

F T T F No 

F F T F No 

T T F T Yes 

T F F T No 

F T F T Yes 

F F F T Yes 

T T F F Yes 

T F F F No 

F T F F Yes 

F F F F Yes 

#SAT = 9 
+ 

Δ = ∀d (Rain(d)  
            ⇒ Cloudy(d)) 

Days = {Monday 
              Tuesday} 

w( R)=1 
 w(¬R)=2 
   w( C)=3 
 w(¬C)=5 



Assembly language for high-level 
probabilistic reasoning and learning 

Parfactor graphs 

Probabilistic 
databases 

Relational Bayesian 
networks 

Probabilistic 
logic programs 

Markov Logic 

Weighted First-Order 
Model Counting 

[VdB et al.; IJCAI‟11, PhD‟13, KR‟14, UAI‟14] 



Statistical Relational Learning 

• An MLN = set of constraints (w, Γ(x)) 
 

• Weight of a world = product of w, for all rules (w, Γ(x)) 
and groundings Γ(a) that hold in the world 

∞   Smoker(x) ⇒ Person(x) 

3.75   Smoker(x)∧Friend(x,y) ⇒ Smoker(y) 

PMLN(Q) = [sum of weights of worlds of Q] / Z 

Soft constraint 

Hard constraint 

Applications: large probabilistic KBs 



FO NNF SYNTAX 

 



First-Order Knowledge Compilation 

• Input: Sentence in FOL 
• Output: Representation tractable for some 

class of queries. 
• In this work:  

– Function-free FOL 
– Model counting in NNF tradition 

• Some pre-KC-map work: 
– FO Horn clauses 
– FO BDDs 



Alphabet 

• FOL 
– Predicates/relations: Friends 
– Object names: x, y, z 
– Object variables: X, Y, Z 
– Symbols classical FOL (∀, ∃, ∧, ∨, ¬,…) 

• Group logic 
– Group variables: X, Y, Z 
– Symbols from basic set theory  

(e.g., ∪, ∩, ∈, ⊆, {, }, complement). 



Syntax 

• Object terms: X, alice, bob 
• Group terms : X, {alice,bob}, X ∪ Y 
• Atom: Friends(alice,X) 
• Formulas:  

– (α), ¬α, α ∨ β, and α ∧ β 
– ∀X ∈ G, α and ∃X ∈ G, α 
– ∀X ⊆ G, α and ∃X ⊆ G, α 

• Group logic syntactic sugar: 
–  P(G) is ∀X ∈ G, P (X) 
– `P(G) is ∀X ∈ G, ¬P (X) 

 



Examples: 

• ∀X ∈ G, Y ∈ {alice, bob},  
Enemies(X, Y )  
   ⇒ ¬Friends(X, Y ) ∧ ¬Friends(Y, X) 
 

• ∀X ∈ G, Y ∈ G,  
Smokes(X) ∧ Friends(X, Y) ⇒ Smokes(Y) 
 

• ∃G ⊆ {alice, bob}, Smokes(G) ∧`Healthy(G) 
 



Semantics 

• Template language for propositional logic 
• Grounding a sentence: gr(α) 

• Replace ∀ by ∧ 
• Replace ∃ by ∨ 
• End result: ground sentence = propositional logic 

• Grounding is polynomial in group sizes 
 when no ∀X ⊆ G or ∃X ⊆ G 
 Important for polytime reduction to NNF circuits 

 
 

 



Decomposability 

• Conjunction: α(X,G) ∧ β(X,G) 
 For any substitution X=c and G=g, we have that 
 gr(α(c,g)) ∧ gr(β(c,g)) is decomposable 
  
 Meaning: α and β can never talk about the 
 same ground atoms 
 
• Quantifier: ∀Y ∈ G, α(Y) 
 For any two a,b ∈ G, we have that  
 gr(α(a)) ∧ gr(α(b)) is decomposable 
 

 

 
 



Determinism 

• Disjunction: α(X,G) ∨ β(X,G) 
 For any substitution X=c and G=g, we have that 
 gr(α(c,g)) ∨ gr(β(c,g)) is deterministic 
  
 Meaning: α ∧ β is UNSAT 
 
• Quantifier: ∃Y ∈ G, α(Y) 
 For any two a,b ∈ G, we have that  
 gr(α(a)) ∨ gr(α(b)) is decomposable 
 

 

 
 



Group Quantifiers 

• Decomposability: ∀X ⊆ G, α(X)  
 For any two A,B ⊆ G, we have that  
 gr(α(A)) ∨ gr(α(B)) is decomposable 
 
• Determinism: ∃X ⊆ G, α(X)  
 For any two A,B ⊆ G, we have that  
 gr(α(A)) ∨ gr(α(B)) is deterministic 
 
 

 

 
 



Automorphism 

• Object permutation σ : D→ D is a one-to-one 
mapping from objects to objects.  

• Permuting α using σ replaces o in α by σ(o). 
• Sentences α and β are p-equivalent iff α is 

equivalent to an object permutation of β. 
Smokes(alice) and Smokes(bob) are p-equivalent 

• Group quantifiers: ∀X ⊆ G, α(X) or ∃X ⊆ G, α(X) 
Are automorphic iff for any two A,B ⊆ G s.t. 
|A|=|B|, gr(α(A)) and gr(α(B)) are p-equivalent 



First-Order NNF 

Decomposable 



First-Order NNF 

Decomposable 



First-Order DNNF 

Decomposable 



First-Order DNNF 

Deterministic 



First-Order d-DNNF 

Deterministic 



First-Order d-DNNF 

Automorphic 



First-Order d-DNNF 

Automorphic 



First-Order ad-DNNF 

Automorphic 



FO NNF Languages 

• FO NNF: group logic circuits, negation only on 
atoms 

• FO d-DNNF: determinism and decomposability 
 Grounding generates a d-DNNF 

• FO DNNF 
 Grounding generates a DNNF 
• FO ad-DNNF: automorphic 
 Powerful properties! 



FO NNF TRACTABILITY 

 



Symmetric WFOMC 

Def. A weighted vocabulary is (R, w), where 
– R = (R1, R2, …, Rk) = relational vocabulary 
– w = (w1, w2, …, wk) = weights 

• Fix an FO formula Q, domain of size n 
• The weight of a ground tuple t in Ri is wi 

 
Complexity of FOMC / WFOMC(Q, n)? 
Data/domain complexity:   
 fixed Q, input n  / and w 



Symmetric WFOMC  
on FO ad-DNNF 

Complexity polynomial in domain size! 
Polynomial in NNF size for bounded depth. 



  
   

FO-Model Counting: w(R) = w(¬R) = 1 
FO ad-DNNF sentences 

FOMC Query: Example 



4.  
 

FO-Model Counting: w(R) = w(¬R) = 1 
FO ad-DNNF sentences 

Δ = (Stress(Alice) ⇒ Smokes(Alice)) Domain = {Alice} 

FOMC Query: Example 
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FO-Model Counting: w(R) = w(¬R) = 1 
FO ad-DNNF sentences 

→ 3 models 

Δ = (Stress(Alice) ⇒ Smokes(Alice)) Domain = {Alice} 

FOMC Query: Example 
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FO-Model Counting: w(R) = w(¬R) = 1 
FO ad-DNNF sentences 

→ 3 models 

Δ = (Stress(Alice) ⇒ Smokes(Alice)) Domain = {Alice} 

3.  Δ = ∀x, (Stress(x) ⇒ Smokes(x)) Domain = {n people} 

FOMC Query: Example 



4.  
 

→ 3n models 

FO-Model Counting: w(R) = w(¬R) = 1 
FO ad-DNNF sentences 

→ 3 models 

Δ = (Stress(Alice) ⇒ Smokes(Alice)) Domain = {Alice} 

3.  Δ = ∀x, (Stress(x) ⇒ Smokes(x)) Domain = {n people} 

FOMC Query: Example 



FOMC Query: Example 

→ 3n models 

3.  Δ = ∀x, (Stress(x) ⇒ Smokes(x)) Domain = {n people} 



FOMC Query: Example 

→ 3n models 

3.  Δ = ∀x, (Stress(x) ⇒ Smokes(x)) Domain = {n people} 

2.  Δ = ∀y, (ParentOf(y) ∧ Female ⇒ MotherOf(y)) D = {n people} 



FOMC Query: Example 

→ 3n models 

3.  Δ = ∀x, (Stress(x) ⇒ Smokes(x)) Domain = {n people} 

2.  Δ = ∀y, (ParentOf(y) ∧ Female ⇒ MotherOf(y)) D = {n people} 

If Female = true?   Δ = ∀y, (ParentOf(y) ⇒ MotherOf(y)) → 3n models 



FOMC Query: Example 

→ 3n models 

3.  Δ = ∀x, (Stress(x) ⇒ Smokes(x)) Domain = {n people} 

2.  Δ = ∀y, (ParentOf(y) ∧ Female ⇒ MotherOf(y)) D = {n people} 

If Female = true?   Δ = ∀y, (ParentOf(y) ⇒ MotherOf(y)) → 3n models 

→ 4n models If Female = false?  Δ = true 



→ 3n + 4n models 

FOMC Query: Example 

→ 3n models 

3.  Δ = ∀x, (Stress(x) ⇒ Smokes(x)) Domain = {n people} 

2.  Δ = ∀y, (ParentOf(y) ∧ Female ⇒ MotherOf(y)) D = {n people} 

If Female = true?   Δ = ∀y, (ParentOf(y) ⇒ MotherOf(y)) → 3n models 

→ 4n models If Female = false?  Δ = true 



→ 3n + 4n models 

FOMC Query: Example 

→ 3n models 

3.  Δ = ∀x, (Stress(x) ⇒ Smokes(x)) Domain = {n people} 

2.  Δ = ∀y, (ParentOf(y) ∧ Female ⇒ MotherOf(y)) 

1.  Δ = ∀x, ∀ y, (ParentOf(x,y) ∧ Female(x) ⇒ MotherOf(x,y)) D = {n people} 

D = {n people} 

If Female = true?   Δ = ∀y, (ParentOf(y) ⇒ MotherOf(y)) → 3n models 

→ 4n models If Female = false?  Δ = true 



→ 3n + 4n models 

→ (3n + 4n)
n models 

FOMC Query: Example 

→ 3n models 

3.  Δ = ∀x, (Stress(x) ⇒ Smokes(x)) Domain = {n people} 

2.  Δ = ∀y, (ParentOf(y) ∧ Female ⇒ MotherOf(y)) 

1.  Δ = ∀x, ∀ y, (ParentOf(x,y) ∧ Female(x) ⇒ MotherOf(x,y)) D = {n people} 

D = {n people} 

If Female = true?   Δ = ∀y, (ParentOf(y) ⇒ MotherOf(y)) → 3n models 

→ 4n models If Female = false?  Δ = true 



Group Quantifiers: Example 

• Not decomposable! 
• Rewrite as FO ad-DNNF: 

 
 

• Not possible to ground to d-DNNF! 
• How to do tractable CT? 

∃G ⊆ D, Smokes( G ) ∧`Smokes(`G ) ∧`Friends( G ,`G ) 

Δ = ∀x ,y ∈ D, (Smokes(x) ∧ Friends(x,y) ⇒ Smokes(y)) Domain = {n people} 



Group Quantifiers: Example 

∃G ⊆ D, Smokes( G ) ∧`Smokes(`G ) ∧`Friends( G ,`G ) 



 

Group Quantifiers: Example 

 If we know G precisely: who smokes, and there are k smokers? 
 

k 

n-k 

k 

n-k 

Database: 
Smokes(Alice) = 1 
Smokes(Bob) = 0 
Smokes(Charlie) = 0 
Smokes(Dave) = 1 
Smokes(Eve) = 0 
... 

Smokes Smokes Friends 

∃G ⊆ D, Smokes( G ) ∧`Smokes(`G ) ∧`Friends( G ,`G ) 
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Smokes(Bob) = 0 
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Group Quantifiers: Example 

 If we know G precisely: who smokes, and there are k smokers? 
 

k 

n-k 

k 

n-k 

Database: 
Smokes(Alice) = 1 
Smokes(Bob) = 0 
Smokes(Charlie) = 0 
Smokes(Dave) = 1 
Smokes(Eve) = 0 
... 

Smokes Smokes Friends 

∃G ⊆ D, Smokes( G ) ∧`Smokes(`G ) ∧`Friends( G ,`G ) 



 

Group Quantifiers: Example 

 If we know G precisely: who smokes, and there are k smokers? 
 

k 

n-k 

k 

n-k 

Database: 
Smokes(Alice) = 1 
Smokes(Bob) = 0 
Smokes(Charlie) = 0 
Smokes(Dave) = 1 
Smokes(Eve) = 0 
... 

Smokes Smokes Friends 

∃G ⊆ D, Smokes( G ) ∧`Smokes(`G ) ∧`Friends( G ,`G ) 



 

Group Quantifiers: Example 

 If we know G precisely: who smokes, and there are k smokers? 
 

k 

n-k 

k 

n-k 

Database: 
Smokes(Alice) = 1 
Smokes(Bob) = 0 
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Playing Cards Revisited 

Let us automate this: 

∀p, ∃c, Card(p,c) 
∀c, ∃p, Card(p,c)  

∀p, ∀c, ∀c’, Card(p,c) ∧ Card(p,c’) ⇒ c = c’ 

[Van den Broeck.; AAAI-KR‟15] 
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... 

Playing Cards Revisited 

Let us automate this: 

∀p, ∃c, Card(p,c) 
∀c, ∃p, Card(p,c)  

∀p, ∀c, ∀c’, Card(p,c) ∧ Card(p,c’) ⇒ c = c’ 

Computed in time polynomial in n 

[Van den Broeck.; AAAI-KR‟15] 



FO COMPILATION 



Compilation Rules 

• Lots of preprocessing 

• Shannon decomposition/Boole’s expansion 

• Detect propositional decomposability 

• FO Shannon decomposition: 

 

Simplify β (remove atoms subsumed by P(X)) 

Always deterministic! Ensure automorphic ∃ 

• Detect FO decomposability 



FO NNF EXPRESSIVENESS 

 



Main Positive Result: FO2 

• FO2  =   FO restricted to two variables 
• “The graph has a path of length 10”: 

 
 

• Theorem: Compilation algorithm to FO ad-
DNNF is complete for FO2 

• Model counting for FO2 in PTIME domain 
complexity 

∃x∃y(R(x,y) ∧∃x (R(y,x) ∧∃y (R(x,y) ∧…))) 



Main Negative Results 

Domain complexity: 
• There exists an FO formula Q s.t. symmetric 

FOMC(Q, n) is #P1 hard 
• There exists Q in FO3 s.t. FOMC(Q, n) is #P1 

hard 
• There exists a conjunctive query Q s.t. 

symmetric WFOMC(Q, n) is #P1 hard 
• There exists a positive clause Q w.o. „=„ s.t. 

symmetric WFOMC(Q, n) is #P1 hard 
Therefore, no FO ad-DNNF can exist  

 
 
 



Proof 

Theorem.  There exists an FO3 sentence Q s.t. 
FOMC(Q,n)  is #P1-hard 
 
Proof 
• Step 1. Construct a Turing Machine U s.t. 

– U is in #P1 and runs in linear time in n 
– U computes a #P1 –hard function 

• Step 2. Construct an FO3 sentence Q s.t. 
FOMC(Q,n) / n!  =  U(n) 
 



Fertile Ground 

FO2 

CNF 

FO2 

 

Safe 
monotone 
CNF 
 
 Safe type-1 CNF 

 
 

Θ1 

FO3 

 

Υ1 

CQs 

 

 S 

[VdB; NIPS’11], [VdB et al.; KR’14], [Gribkoff, VdB, Suciu; UAI’15], [Beame, VdB, Gribkoff, Suciu; PODS’15], etc. 
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FO2 

CNF 

FO2 

 

Safe 
monotone 
CNF 
 
 Safe type-1 CNF 

 
 

? Θ1 

FO3 

 

Υ1 

CQs 

 

Δ = ∀x,y,z, Friends(x,y) ∧ Friends(y,z) ⇒ Friends(x,z) 

 S 

[VdB; NIPS’11], [VdB et al.; KR’14], [Gribkoff, VdB, Suciu; UAI’15], [Beame, VdB, Gribkoff, Suciu; PODS’15], etc. 
 
 



Other Queries and Transformations 

• What if all ground atoms have different 
weights? Asymmetric WFOMC 

• FO d-DNNF complete for all monotone FO 
CNFs that support efficient CT 

• No clausal entailment 
• No conditioning 



Conclusions 

• Very powerful already! 
• We need to solve this! 

 
THANKS 
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