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History

The late Grisha Mints asked Scott whether a naive set theory could be
consistent in modal logic. Here are two modal forms of comprehension:

(∃y)(∀x)(x ∈ y ↔ �ϕ) (Comp�)

(∃y)(∀x)�(x ∈ y ↔ �ϕ) (�Comp�)

At the time (2009) neither he nor Scott knew the answer.

In the most commonly used systems, where the Converse Barcan
Formula (�∀xϕ→ ∀x�ϕ) is derivable, (�Comp�) follows from
another comprehension principle:

(∃y)�(∀x)(x ∈ y ↔ �ϕ)

In lectures Scott had presented a modal version of ZF which uses:

(∃y)�(∀x)(x ∈ y ↔ x ∈ u ∧ ϕ) (MZF Comp)
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Background

Modalized comprehension principles have been studied in a number of
different settings in the literature. Here are a few:

I intensional higher-order logic. see, e.g., Gallin (1975, p. 77) or
Zalta (1988, p. 22)

I modalizing common set theories. Fine (1981); Shapiro (1985)

I making the iterative conception explicit. Studd (2013) and
Linnebo (2013)

I comprehension with intensional biconditional: Aczel & Feferman
(1980)

I Kraj́ıček (1987), Kraj́ıček (1988):

(∃y)(∀x)((�x ∈ y ↔ �ϕ) ∧ (�¬x ∈ y ↔ �¬ϕ)) (MCA)

I Fitch (1966), Fitch (1967b), Fitch (1967a)
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The Logical Setup

Our language will be the language of predicate logic with ¬,∧,∀,∃,
plus identity = and the relation symbol ∈, along with the unary
modal operator �. The modal system T can then be axiomatized
with the following schematic axioms and rules:

(LPC) Any substitution instance of a theorem of predicate logic
(K) ` �(ϕ→ ψ)→ (�ϕ→ �ψ)
(T) ` �ϕ→ ϕ

(MP) From ` ϕ and ` ϕ→ ψ infer ` ψ
(UG) From ` ϕ→ ψ infer ` ϕ→ ∀xψ, if x is not free in ϕ
(RN) From ` ϕ infer ` �ϕ

Using (K), (MP), and (RN), one shows that T has the derived rule:

(RM) From ` ϕ→ ψ infer ` �ϕ→ �ψ

There is no derivation of the Barcan formula (∀x�ϕ→ �∀xϕ).
However, the converse Barcan formula (�∀xϕ→ ∀x�ϕ) holds.
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The Inconsistency of (�Comp�)

We can employ the following single instance of (�Comp�):

(∃y)(∀x)�(x ∈ y ↔ �¬x ∈ x) (�Russell�)

Theorem. (�Russell�) is inconsistent in T.

Proof.
(1) (∀x)�(x ∈ R↔ �¬x ∈ x)→ �(R ∈ R↔ �¬R ∈ R) UI
(2) �(R ∈ R↔ �¬R ∈ R)→ (R ∈ R↔ �¬R ∈ R) (T)
(3) (R ∈ R↔ �¬R ∈ R)→ (R ∈ R→ ¬R ∈ R) (T)
(4) (R ∈ R↔ �¬R ∈ R)→ ¬R ∈ R 3, PL
(5) �(R ∈ R↔ �¬R ∈ R)→ �¬R ∈ R 4, RM
(6) (∀x)�(x ∈ R↔ �¬x ∈ x)→ (R ∈ R↔ �¬R ∈ R) 2, 3
(7) (∀x)�(x ∈ R↔ �¬x ∈ x)→

(�¬R ∈ R ∧ (R ∈ R↔ �¬R ∈ R)) 1, 5, 6, PL
(8) (∀x)�(x ∈ R↔ �¬x ∈ x)→ (�¬R ∈ R ∧R ∈ R) 7, PL
(9) (∀x)�(x ∈ R↔ �¬x ∈ x)→ (¬R ∈ R ∧R ∈ R) 8, (T), PL

(10) ¬(∀x)�(x ∈ R↔ �¬x ∈ x) 9, PL
(11) ¬∃y∀x�(x ∈ y ↔ �¬x ∈ x) 10, UG, PL
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Proving Inconsistency of (�Comp�)

Note that this result does not depend on special laws for the
quantifier, as it may be seen as an instance of the following general
fact about the propositional fragment of the logic (exercise, using the
model of the previous proof!):

Proposition. If ` ϕ→ (ψ ↔ �¬ψ), then ` ¬�ϕ in T.

Letting (R ∈ R↔ �¬R ∈ R) = ϕ and R ∈ R = ψ, we then derive the
contradiction for (�Comp�) as follows:

(1) ¬�(R ∈ R↔ �¬R ∈ R)
(2) ∃x¬�(x ∈ R↔ �¬x ∈ x) 1, EI
(3) ¬∀x�(x ∈ R↔ �¬x ∈ x) 1, 2, PL
(4) ∀y¬∀x�(x ∈ y ↔ �¬x ∈ x) 3, UG
(5) ¬∃y∀x�(x ∈ y ↔ �¬x ∈ x) 4, PL
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The Inconsistency of (�Comp�♦)

Having seen that the simple version of (�Comp�) is inconsistent in
T, we can ask whether deeper modalities might be helpful. In doing
so, it is better to move to the Lewis system S4 where there are fewer
compositions of modal operators. And we need to check as before:

Proposition. If ` �ϕ→ (ψ ↔ �¬ψ) then ` ¬�ϕ in S4.

In the following variant comprehension principle, ♦ stands for ¬�¬.

(∃y)(∀x)�(x ∈ y ↔ �♦ϕ) (�Comp�♦)

However, this new principle is also inconsistent, as shown by:

(∃y)(∀x)�(x ∈ y ↔ �♦¬x ∈ x) (�Russell�♦)

Theorem. (�Russell�♦) is inconsistent in S4.

Indeed this can be reduced back to the previous case.
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Proving the Inconsistency of (�Comp�♦)

Proposition. If ` �ϕ→ (ψ ↔ �♦¬ψ) then ` ¬�ϕ in S4.

Proof:
(1) �ϕ→ (ψ ↔ �♦¬ψ) (Assumption)
(2) �ϕ→ �(ψ ↔ �♦¬ψ) 1, �RM
(3) �(ψ ↔ �♦¬ψ)→ (�ψ ↔ ��♦¬ψ) K, PL
(4) ��♦¬ψ ↔ �♦¬ψ T, L4
(5) (�ψ ↔ ��♦¬ψ)↔ (�ψ ↔ �♦¬ψ) 4, Rep
(6) �ϕ→ (�ψ ↔ �♦¬ψ) 2, 3, 4, 5
(7) �ϕ→ �(�ψ ↔ �♦¬ψ) 6, �RM
(8) �ϕ→ (ψ ↔ �ψ) 1, 7, Rep�
(9) �ϕ→ �(ψ ↔ �ψ) 8, �RM

(10) �(ψ ↔ �ψ)↔ �(¬ψ ↔ ♦¬ψ) PL, Df♦
(11) �ϕ→ (ψ ↔ �¬ψ) 1, 9, 10, Rep�
(12) ¬�ϕ 11
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Inconsistency of (�Comp�♦�)

Consider next whether the a further variant is consistent in S4:

(∃y)(∀x)�(x ∈ y ↔ �♦�ϕ) (�Comp�♦�)

Once again, we show that it cannot be, using the following instance:

(∃y)�(∀x)(x ∈ y ↔ �♦�¬x ∈ x). (�Russell�♦�)

Theorem. (�Russell�♦�) is inconsistent in S4.

Recall that S4 proves every instance of the following “reduction law”:

�♦ϕ↔ �♦�♦ϕ. (Red�♦)

The theorem, then, is a consequence of the next proposition.
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Proving the Inconsistency of (�Comp�♦�)

Proposition. If ` �ϕ→ (ψ ↔ �♦�¬ψ) then ` ¬�ϕ in S4.

Proof.
(1) �ϕ→ (ψ ↔ �♦�¬ψ) (Assumption)
(2) �ϕ→ �(ψ ↔ �♦�¬ψ) 1, �RM
(3) �(ψ ↔ �♦�¬ψ)→ (�ψ ↔ ��♦�¬ψ) K, PL
(4) ��♦�¬ψ ↔ �♦�¬ψ T, L4
(5) (�ψ ↔ ��♦�¬ψ)↔ (�ψ ↔ �♦�¬ψ) 4, Rep
(6) �ϕ→ (�ψ ↔ �♦�¬ψ) 2, 3, 4, 5
(7) �ϕ→ �(�ψ ↔ �♦�¬ψ) 6, �RM
(8) �ϕ→ (ψ ↔ �ψ) 1, 7, Rep�
(9) �ϕ→ �(ψ ↔ �ψ) 8, �RM

(10) �(ψ ↔ �ψ)↔ �(¬ψ ↔ ♦¬ψ) PL, Df♦
(11) �ϕ→ (ψ ↔ �♦�♦¬ψ) 1, 9, 10, Rep�
(12) �ϕ→ (ψ ↔ �♦¬ψ) 11, Red�♦
(13) ¬�ϕ 12
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Dual Modalities?

S4 has fourteen (well, thirteen) modalities. First there are the seven
positive ones:

(1) ¬¬, (2) �, (3) ♦, (4) �♦, (5) ♦�, (6) �♦�, (7) ♦�♦

If © is one of the operators 1, 2, 4, or 6, we know (�Comp©) is
inconsistent in S4. The other operators are the duals ¬©¬ (with (1)
being self-dual). Consider a principle:

(∃y)�(∀x)(x ∈ y ↔ ¬©¬¬x ∈ x). (�Russell¬©¬)

This is an equivalent version:

(∃y)�(∀x)(x /∈ y ↔©¬x /∈ x). (�Russell© /∈)

But we can regard /∈ as just another binary relation — and then
derive a contradiction as before. Thus, all positive modalities lead to
the inconsistency of (�Comp©).
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Negative Modalities?

Consider a negative modality ¬© where © is positive. Can one of
these help us?

The following is an instance of (�Comp¬©).

(∃y)�(∀x)(x ∈ y ↔ ¬© x ∈ x). (1)

But this is equivalent to:

(∃y)�(∀x)(x ∈ y ↔ ¬©¬¬x ∈ x). (2)

And (2) is exactly (�Russell¬©¬), which, because ¬©¬ is positive,
we showed inconsistent previously. Thus, (1) is inconsistent in S4 as
well. Thus, not surprisingly, negative modalities are of no help at all.
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A Consistency Result

In the system S4 we have shown that (�Comp©) is inconsistent for
all 13 modalities. Next, however, we will outline a proof that:

Theorem. The weaker (Comp�) has a model in S5 also satisfying:

(Bar) �∀xϕ(x)↔ ∀x�ϕ(x)
(Ext) (∀y)(∀z) [(∀x) (x ∈ y ↔ x ∈ z)→ y = z]
(Neg) (∀z)(∃y)(∀x) [x ∈ y ↔ ¬(x ∈ z)]
(Con) (∀z1)(∀z2)(∃y)(∀x) [x ∈ y ↔ (x ∈ z1 ∧ x ∈ z2)]

(Comp♦) (∃y)(∀x) [x ∈ y ↔ ♦ϕ(x)]
(Equ) ∀x∀y(♦x = y → �x = y)

(Mem) ∀x∀y♦x ∈ y
(Non) ∀x∀y♦¬x ∈ y

Warning! The above principles in no way should be considered as a
mathematically motivated version of a “modal naive set theory”.
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The Model Construction

The idea is based on a very simple “possible worlds” interpretation of
the modal system S5.

Call a binary relation E on the countably infinite set N “memberly” if
the transformation m 7→ {n |nEm} is a bijection between N and the
set of all finite and cofinite subsets of N.

Next, let W , the set of worlds, be the the set of all memberly
relations. Each E gives the meaning of the membership relation in its
own world.

Let N! be the set of all permutation π of N. For E ∈W define:

π(E) = {(π(n), π(m)) |nEm}.

Because π(E) is isomorphic to E by π, then π becomes a permutation
of the set W as well.
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Modal Semantics

We will define truth at a possible world for formulae without free
variables (but allowing integers in N as constants) as follows:

E � n = m iff n = m
E � n ∈ m iff nEm
E � ¬ϕ iff notE � ϕ
E � ϕ ∧ ψ iff E � ϕ and E � ψ
E � ϕ ∨ ψ iff E � ϕ or E � ψ
E � (∀x)ϕ(x) iff E � ϕ(n) for all n ∈ N
E � (∃x)ϕ(x) iff E � ϕ(n) for some n ∈ N
E � �ϕ iff F � ϕ for all F ∈W

On the basis of this semantical definition we can prove a key lemma
about automorphisms of our model.

Lemma. E � ϕ(n,m, ...) iff π(E) � ϕ(π(n), π(m), ...) if π ∈ N!
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Verifying Comprension

Checking the laws of logic and of S5 is of no problem. What we need
the automorphisms for is proving:

Lemma. The set {k |E � �ϕ(k, n,m, ...)} is always finite or cofinite.

The idea of the proof is that otherwise we could find a k0 in the set
and a k1 out of the set different from the rest of the constants in the
indicated formula. We then take a π ∈ N! where π(k0) = k1 and π
leaves the other constants in the formula fixed. By the automorphism
principle we then find:

E � �ϕ(k0, n,m, ...) iff π(E) � �ϕ(k1, n,m, ...) iff
E � �ϕ(k1, n,m, ...).

But this is impossible. And that observation is enough to validate
(Comp�) in the model. Checking the other properties mentioned
earlier is equally easy now.
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Undecidability

A memberly relation E provides a weak set theory with all finite or
cofinite subsets of the domain N. The usual definitions of unordered
and ordered pairs involve only finite sets. Bijections between finite
sets, thus, use only finte sets of finite sets ... .

Among all the sets, a finite set is characterized by the fact that it is in
a one-one correspondence with a set disjoint from it. It follows that,
in the first-order theory of a memberly relation, we can define what it
means for two finite sets to have the same cardinality.

Equally obvious is that among finite sets we can define cartesian
product and disjoint union. But this gives us the power of defining in
a first-order way the arithmetic of finite cardinals.

Therefore, the first-order theory of a memberly relation is shown to be
undecidable. In our modal theory, the non-modal part is just the
theory of a memberly relation. This, then, establishes the
undecidability of the theory of our modal model.
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Any Conclusions?

(I). Very many versions of modal comprehension are inconsistent by
proofs analogous to the Russell Paradox.

(II). A plausible version of modal comprehension gives a weak set
theory (adequate for finite arithmetic, to be sure) but not supporting
a full, transfinite set theory.

(III). It seems hard to argue from this evidence that modalities can do
much to save Naive Set Theory!
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