
+

Detecting and Exploiting
Subproblem Tractability

Christian Bessiere, Clement Carbonnel, Emmanuel
Hebrard, George Katsirelos, Toby Walsh
To appear in Proc. of IJCAI 2013, Beijing, China

+
Background

 Suppose you are all familiar with constraint satisfaction?
 Given: variables each with a (finite) domain of possible values

and a set of constraints (relations on allowed values for tuple of
vars)

 Question: does there exist assignment of values to variables so
that every constraint is satisfied?

+
Background

 Suppose you are all familiar with constraint satisfaction?
 Given: variables each with a (finite) domain of possible values

and a set of constraints (relations on allowed values for tuple of
vars)

 Question: does there exist assignment of values to variables so
that every constraint is satisfied?

 Graph colouring: vars=nodes, values=colours,
constraints=nodes connected by an edge have different colours

+
Background

 Suppose you are all familiar with constraint satisfaction?
 Given: variables each with a (finite) domain of possible values

and a set of constraints (relations on allowed values for tuple of
vars)

 Question: does there exist assignment of values to variables so
that every constraint is satisfied?

 Graph colouring: vars=nodes, values=colours,
constraints=nodes connected by an edge have different colours

 SAT: vars=Boolean, values=true/false, constraints=clauses

+
Background

 Suppose you are all familiar with constraint satisfaction?
 Given: variables each with a (finite) domain of possible values

and a set of constraints (relations on allowed values for tuple of
vars)

 Question: does there exist assignment of values to variables so
that every constraint is satisfied?

 Graph colouring: vars=nodes, values=colours,
constraints=nodes connected by an edge have different colours

 SAT: vars=Boolean, values=true/false, constraints=clauses

 Scheduling: vars=jobs, values=start times, constraints=start
times respect release times, start times+job lengths respect
due dates, etc.

+
Motivation

 Lots of research on tractable
constraint problems

 Restricted language (e.g.
2SAT)

 Restricted constraint
structure (e.g. tree)

 But solvers often perform
poorly on tractable problems

 [Petke & Jeavons 2009]

 Little research on detecting
when a (sub)problem is
tractable

+
Motivation

 Exploit (strong) backdoors
into tractable subproblems
 Identify some key variables

(backdoor) that make
problem intractable

 Branch on these to give a
tractable subproblem

 FPT algorithm in size of
backdoor

 Need to detect tractable
subproblems
 Not so much work on

computational question of
how to identify tractable
subproblems!

+
Motivation

 Preliminary work

 Our methods for identifying
tractable subproblems have
large polynomial cost

 E.g. O(d6) and O(d7) time

 May be able to offset this
over many instances

 Challenge will be to reduce
costs!

+
Outline

 Identify tractable classes Exploit tractable classes

+
Outline

 Identify tractable classes

 Detecting set of relations
that admit majority
polymorphism

 Detecting set of relations
that admit conservative
Mal’tsev polymorphism

 Exploit tractable classes

+
Outline

 Identify tractable classes

 Detecting set of relations
that admit majority
polymorphism

 Detecting set of relations
that admit conservative
Mal’tsev polymorphism

 Exploit tractable classes

 FPT algorithm for
idempotent classes

 FPT algorithm for
conservative classes

 NP-hardness when we don’t
know backdoor and
tractable subset of language

 But FPT in d+k+r

+
Identifying tractable class

 Constraint problems are
tractable if their relations are
closed under majority
polymorphisms

[Jeavons et al 1997]

Language closed under majority
polymorphism =
generalization of 2-SAT and
0/1/all constraints

+
Identifying tractable class

 Constraint problems are
tractable if their relations are
closed under majority
polymorphisms

[Jeavons et al 1997]

 Constraint problems are
tractable if their relations are
closed under Mal’tsev
polymorphisms

[Bulatov & Dalmau 2006]

Language closed under majority
polymorphism =
generalization of 2-SAT and
0/1/all constraints

Language closed under Mal’tsev
polymorphism =
generalization of linear
equations over a field

+
Identifying tractable class

 Constraint problems are
tractable if their relations are
closed under majority
polymorphisms

[Jeavons et al 1997]

 Constraint problems are
tractable if their relations are
closed under Mal’tsev
polymorphisms

[Bulatov & Dalmau 2006]

 Thm: Can decide if language
is closed under majority
polymorphism in O(d7t4) time

 Proof: Build an indicator
problem, repeatedly apply
SAC until failure/solution.

+
Identifying tractable class

 Constraint problems are
tractable if their relations are
closed under majority
polymorphisms

[Jeavons et al 1997]

 Constraint problems are
tractable if their relations are
closed under Mal’tsev
polymorphisms

[Bulatov & Dalmau 2006]

 Thm: Can decide if language
is closed under majority
polymorphism in O(d7t4) time
 Proof: Build an indicator

problem, repeatedly apply
SAC until failure/solution.

 Thm: Can decide if language
is closed under a conservative
Mal’tsev polymorphism in
O(d6) time
 Proof: Build a special

indicator problem,
repeatedly enforce AC,
merge equals, remove
redundant/universal
constraints until failure/sol.

+
Exploiting tractable class

 Inspired by cycle cutset
method [Dechter & Pearl 1987]

 Instantiate variables to cut
cycles

 Then decide backtrack free
with Directional AC

 Tractable subproblem based
on structure of network

 We now do much the
same with a tractable
language

+
Exploiting tractable class

 Idempotent class

 I.e. fixing variables, we
remain within the class

 Conservative class

 Closed under all unary
constraints

 Stronger condition, smaller
FPT algorithm

+
Exploiting tractable class

 Idempotent class

 Let constraint relations C =
C1 + C2

 Where C2 closed under
the idempotent
polymorphism

 Instantiate all m vars in C1

 Leaves tractable
subproblem made from C2
and instantiations

 FPT in d+m

 Conservative class

+
Exploiting tractable class

 Idempotent class

 Let constraint relations C =
C1 + C2

 Where C2 closed under
the idempotent
polymorphism

 Instantiate all m vars in C1

 Leaves tractable
subproblem made from C2
and instantiations

 FPT in d+m

 Conservative class

 Similar algorithm

 FPT in strictly smaller
parameter, d+k

 Where k is minimum
vertex cover of primal
graph of C1

+
Exploiting tractable class

 Assumed so far that we know
which relations make up the
tractable subproblem

 What if we need to search
simultaneously for a backdoor
and the tractable relations?

+
Exploiting tractable class

 Assumed so far that we know
which relations make up the
tractable subproblem

 What if we need to search
simultaneously for a backdoor
and the tractable relations?

 Thm: NP-hard to decide if C
partitions into C1+C2 such
that C2 admits a
conservative majority
polymorphism and C1 has a
vertex cover of at most k

 In fact, W[2]-hard in k

+
Exploiting tractable class

 Assumed so far that we know
which relations make up the
tractable subproblem

 What if we need to search
simultaneously for a backdoor
and the tractable relations?

 Thm: FPT in d+k+r to
decide if C partitions into
C1+C2 such that C2 admits a
conservative majority
polymorphism and C1 has a
vertex cover of at most k

+
Empirical results

 Tested instances of 4th
Constraint Solver Competition

 Limited to those without
globals

 All instances put in
extensional form

 191 series of instances

 Tested for existence of
subproblem closed under
conservative majority
polymorphism

+
Empirical results

 Tested instances of 4th
Constraint Solver Competition

 Limited to those without
globals

 All instances put in
extensional form

 191 series of instances

 Tested for existence of
subproblem closed under
conservative majority
polymorphism

 Results

 135 series: exhausted 8Gb
of memory

 40 series: large backdoor

 But a few promising series

 E.g. 5 prime series

 ¼ had small backdoor (0
to 6 vars out of 100)

+
Conclusions

 We can exploit constraint problems that are nearly tractable

 Branch on backdoor into a tractable language

 For such methods to be useful, we need methods to identify
tractable (sub)languages
 Propose here two polynomial methods to identify language

closed under a majority polymorphism, and under a conservative
Mal’tsev polymorphism

 Computing a backdoor into a language closed under a
conservative majority polymorphism is W[2]-hard in k, but
FPT in d+k+r

+
Questions?

 PS we’re recruiting PhD students and a PostDoc

 Good student = guaranteed funding

 Shortly after graduating -> Australian citizen

	Detecting and Exploiting Subproblem Tractability
	Background
	Background
	Background
	Background
	Motivation
	Motivation
	Motivation
	Outline
	Outline
	Outline
	Identifying tractable class
	Identifying tractable class
	Identifying tractable class
	Identifying tractable class
	Exploiting tractable class
	Exploiting tractable class
	Exploiting tractable class
	Exploiting tractable class
	Exploiting tractable class
	Exploiting tractable class
	Exploiting tractable class
	Empirical results
	Empirical results
	Conclusions
	Questions?

