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Motivating (Standard) Example I

Established efficiency race for NP-hard Vertex Cover problem:
Input: An undirected graph G = (V ,E) and a nonnegative integer k .
Task: Find a subset of vertices C ⊆ V with k or fewer vertices such

that each edge in E has at least one of its endpoints in C.

Currently best upper bound: O(1.274k + k |V |) time.
(Chen, Kanj, Xia: Theor. Comput. Sci. 2010)

Grain of salt: In many applications, the parameter k is not small and grows
with the graph size.
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Motivating Example Vertex Cover

Input: An undirected graph G = (V ,E) and a nonnegative integer k .
Task: Find a subset of vertices C ⊆ V with k or fewer vertices such

that each edge in E has at least one of its endpoints in C.

New (above guarantee) parameter for Vertex Cover: k ′ := k − LP, where LP
denotes the value of the linear programming relaxation of the standard ILP for
Vertex Cover...
(Narayanaswamy et al., STACS 2012)

So, LP bound is a guaranteed lower bound for solution size!

Clearly, k ′ is “stronger” than k .

Central result: Vertex Cover solvable in 2.62k ′ · (|V |+ |E |)O(1) time.

 Our general theme: Are there structures (that is, parameterizations) that
can be exploited for deriving “efficient” solutions for NP-hard problems?
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Parameterized Algorithmics in a Nutshell
NP-hard problem X : Input size n and problem parameter k .

If there is an algorithm solving X in time

f (k) · nO(1),

then X is called fixed-parameter tractable (FPT):

n
k

instead of
k

n

Completeness program developed by Downey and Fellows (1999).

FPT ⊆

Presumably fixed-parameter intractable︷ ︸︸ ︷
W[1] ⊆ W[2] ⊆ . . . ⊆ W[P] ⊆ XP

´
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Parameterized Complexity Hierarchy

FPT vs W[1]-hard vs para-NP-hard:

• Vertex Cover, parameterized by solution size is FPT;
• Clique parameterized by solution size is W[1]-hard (but in XP);
• k -Coloring is para-NP-hard (and thus not in XP unless P=NP)

(because it is NP-hard for k = 3 colors (that is, constant parameter
value)).

“Function battle” concerning allowed running time:

FPT: f (k) · nO(1) vs XP: f (k) · ng(k)

Assumption: FPT 6= W[1]

For instance, if W[1]=FPT then 3-SAT for a Boolean formula F with n variables
can be solved in 2o(n) · |F |O(1) time.
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The “Art” of Parameter Identification

Central question: How to find relevant parameterizations?

Central fact: One problem may have a large number of different (relevant)
parameterizations, that is, structures to exploit...

Consequence: We achieve a more fine-grained but also more complicated
picture of the computational complexity of problems.
 Parameterized algorithmics goes multivariate...

Note: Parameterizations typically are of “structural nature”, modelling
properties that input instances may have...

Basic philosophy: Different parameterizations allow for different views,
resulting in a “holistic” approach to complexity analysis.
Revisiting hardness proofs, deconstruct intractability!
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Simple Examples for Problem Parameterization

Leitmotif: Achieve a better understanding / more complete picture of a
problem’s computational complexity by means of a refined running time and
complexity analysis employing problem-specific parameters.

Natural parameterizations include:
• solution size (“pay for what you get”);
• special properties of input instances (e.g. (maximum) vertex degree or

treewidth of graphs or...);
• distance measures (e.g. allowed (solution) error);
• . . .
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A Theoretical Way of Spotting Parameters

Call parameter k1 stronger than parameter k2 if there is a constant c such
that k1 ≤ c · k2 for all inputs, and there is no constant d such that k2 ≤ d · k1
for all inputs.
(Analogously: k2 is weaker than k1).

Examples:
• Average vertex degree of a graph is stronger than maximum vertex

degree.
• Treewidth is a stronger parameter than vertex cover number of a graph.
• Also: Single parameter k1 is stronger than combined parameter k1 + k2

whatever k2 is.
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Goals for Stronger and Weaker Parameterizations

Primary goals:
1 Whenever a problem is fixed-parameter tractable with respect to a

parameter k1, then try to also show fixed-parameter tractability for a
stronger parameter k2.

2 If a problem is W[1]-hard with respect to a parameter k1, then try to show
fixed-parameter tractability for a weaker parameter k2.

Secondary goals:
• Can similar upper bounds be achieved for stronger parameters?
• Provide a “complete” map of a problem’s (parameterized) computational

complexity with respect to various parameterizations (partially) ordered
by their respective “strength”.
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The Multivariate Landscape of Finding 2-Clubs
NP-hard s-Club problem (occurring in the analysis of social and biological
networks):

Input A graph G = (V ,E) and an integer k .
Question Is there a vertex set V ′ ⊆ V of size at least k such that G[V ′]

has diameter at most s?

• 1-Club is equivalent to Clique.
• We focus on 2-Club:

star diamond C5
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Navigating Through Parameter Space: 2-Clubs
[Hartung, Komusiewicz, Nichterlein, IPEC 2012 + SOFSEM 2013].

Vertex Cover Cluster Editing Max Leaf #Distance to Clique

Minimum
Clique Cover Distance to

Co-Cluster
Distance to

Cluster
Distance to

Disjoint Paths
Feedback
Edge Set

Bandwidth

Maximum
Independent Set Distance to

Cograph
Distance to

Interval
Feedback
Vertex Set

Pathwidth

Minimum
Dominating Set Distance to

Chordal
Distance to

Bipartite

Maximum
Degree

Diameter Distance to
Perfect

Treewidth h-index

Degeneracy

Chromatic
Number Average

Degree

FPT and polynomial-size kernels

NP-hard with constant parameter values

W[1]-
hard

FPT,
but no polynomial-
size kernel unless

NP ⊆ coNP/poly
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A More Pragmatic Way of Spotting Parameters

A simple way to spot interesting parameterizations (structure) in real-world
graph problems: Measure “all” possible parameters...:
Use tool Graphana for data-driven parameterization:

www.akt.tu-berlin.de/menue/software
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Outline of the Remaining Talk

We discuss four recent examples where structure detection and
parameterized complexity analysis were instrumental:

• Network analysis:
• biological (Highly Connected Deletion problem);
• social (Graph Anonymization problem);

• Combinatorial feature selection (Distinct Vectors problem).
• Computational social choice (Lobbying problem).
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Case Study: Highly Connected Deletion
Typical graph clustering situation:
Task: Partition a graph into clusters such that
• each cluster is dense and
• there are few edges between clusters.
 Definition: [Hartuv & Shamir, IPL ’00]

A graph with n vertices is highly connected if more than n/2 edges need to
be deleted to make it disconnected.

Properties:
• diameter two;
• each vertex has degree ≥ bn/2c.
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A MinCut Heuristic for Highly-Connected Clustering
Task: Partition the network into clusters such that
• each cluster is highly connected and
• there are few edges between clusters.

Challenge: How to find highly connected clusters?

Min-Cut Algorithm: [Hartuv & Shamir, IPL 2000]

Input: G = (V ,E)
1 (A,B)= min-cut(G)
2 if (A,B) has > |V |/2 edges : output V
3 else: recurse on G[A] and G[B]

Biological applications:
• Clustering cDNA fingerprints
• Complex identification in protein–interaction networks
• Hierarchical clustering of protein sequences
• Clustering regulatory RNA structures
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Edge Coverage

Task: Partition the network into clusters such that
• each cluster is highly connected and
• the number of edges between clusters is minimal.

Does the MinCut heuristic achieve the second goal?
 Comparison with optimal solution...

≡ clique

 MinCut heuristic may delete Θ(OPT2) many edges!
 New goal: find optimal clustering
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Complexity of Highly Connected Deletion

Highly Connected Deletion
Input: An undirected graph.
Task: Delete a minimum number of edges such that each remaining
connected component is highly connected.

Theorem: Highly Connected Deletion is NP-hard even on 4-regular graphs.

Theorem: If the Exponential Time Hypothesis (ETH) is true, then Highly
Connected Deletion cannot be solved within 2o(m) poly(n) time or
2o(n) poly(n) time.

m := number of edges
n := number of vertices
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Data Reduction Rules
Idea 1: Find vertex sets that are inseparable because any cut of this set has
size > k
 Too-Connected-Rule: If G contains an inseparable vertex set S of size at
least 2k , then do the following. If G[S] is not highly connected, return “no”.
Otherwise, remove S from G and adapt k correspondingly.

Idea 2: Find highly connected clusters that are large compared to the number
of “outgoing” edges
 D(S) := edge cut between S and V \ S
Small-Cut-Rule: If G contains a vertex set S such that
• |S| ≥ 4,
• G[S] is highly connected, and
• |D(S)| ≤ 0.3 ·

√
|S|,

then remove S from G.

Theorem: Highly Connected Deletion admits polynomial-time data
reduction to an equivalent instance with ≤ 10 · k1.5 vertices.
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FPT Algorithm and Further Data Reduction

Combination of branching, data reduction, and dynamic programming 

Theorem: Highly Connected Deletion can be solved
in O(34k · k2 + n2mk · log n) time.

Lemma: Let G be a highly connected graph. If two vertices in G are adjacent,
they have at least one common neighbor.
 Reduction rule: If there are two vertices that are connected by an edge
but have no common neighbors, then delete the edge.
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Highly Connected Deletion: PPI Experiments
n m ∆k ∆k [%] n′ m′

C. elegans phys. 157 153 100 92.6 11 38
C. elegans all 3613 6828 5204 80.1 373 1562
M. musculus phys. 4146 7097 5659 85.3 426 1339
M. musculus all 5252 9640 7609 84.8 595 1893
A. thaliana phys. 1872 2828 2057 83.1 187 619
A. thaliana all 5704 12627 8797 79.5 866 3323

n′,m′: size of largest connected component after data reduction

min-cut without DR min-cut with DR column generation

k s t k s t k s t

CE-p 111 136 0.01 108 133 0.01 108 133 0.06
CE-a 6714 3589 86.46 6630 3521 6.36 6499 3436 2088.35
MM-p 7004 4116 126.30 6882 4003 7.42 6638 3845 898.13
MM-a 9563 5227 267.63 9336 5044 17.84 8978 4812 3858.62
AT-p 2671 1796 5.82 2567 1723 0.68 2476 1675 60.34
AT-a 12096 5559 434.52 11590 5213 32.09 11069 4944 34121.23

s: number of unclustered vertices; t : running time in seconds
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Case Study: Graph Anonymization

Degree Anonymization
Input: An undirected graph G = (V ,E) and two positive integers k and s.
Question: Is there an edge set E ′ over V with |E ′| ≤ s such
that G′ = (V ,E ∪ E ′) is k -anonymous, that is, for every vertex v ∈ V there are
at least k − 1 other vertices in G′ having the same degree?

2-anonymous graph 1-anonymous graph 1-anonymous graph
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An Anon. Heuristic of Liu and Terzi [SIGMOD 2008]

1.⇒ 1,2,2,3 2.⇒ 3,3,3,3 3.⇒

input graph degree
sequence

“anonymized”
degree

sequence

“realized”
degree

sequence

Step 1: Sorting the degrees.
Step 2: Standard dynamic programming

(running time O(n · s · k ·∆) = O(n4)).
Step 3: (Due to graph structure not always possible!)

If there exists a “realization”, then it can be constructed in
polynomial time ( f -factors).
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The Third Step of the Liu-Terzi-Heuristic

Lemma
If the solution (edge set) found in the dynamic programming is “large”
(s > ∆4), then there is always a realization of the anonymized degree
sequence that is a supergraph of the input graph. This realization can be
found in polynomial time.

Consequence: win-win situation. Either
• the problem is polynomial-time solvable or
• the solution is “small” (≤ ∆4).
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Case Study: Distinct Vectors
Genre of dimension reduction: Represent objects in a lower-dimensional
space that still “explains” their properties.

Distinct Vectors:
Input: A multiset S = {x1, . . . , xn} ⊆ Σd containing n distinct points and k ≥ 1.
Question: ∃K ⊆ {1, . . . ,d} with |K | ≤ k such that all points in S|K are still
distinct?
Also known as finding unique keys in databases or the Minimal Reduct
problem in rough set theory.
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0
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1
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0

1
1
1
1
0

1
1
1
0
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0
0
1
1
1

0
0
1
0
0
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Distinct Vectors
Let h be the maximum Hamming distance between two input (row) vectors.
Intuition: Data sets containing “similar” points are easy to solve?!
 Complexity dichotomy...

Theorem
Distinct Vectors restricted to binary input alphabet is

1 solvable in polynomial (cubic) time if h ≤ 3 and
2 NP-hard for h ≥ 4,
3 W[1]-hard parameterized by the number of dimensions to delete.

Algorithmic result follows from a search tree that “does not branch too much”
due to “regular structure” (sort of staircase structure) if h ≤ 3,
while with h ≥ 4 NP-hardness follows by a reduction from Distance-3
Independent Set.

Theorem
Distinct Vectors for arbitray alphabets is W[2]-hard parameterized by the
number of dimensions to keep.

Follows from a parameterized reduction from Hitting Set.
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Case Study: Optimal Lobbying

Multiple Referenda

Each voter can accept or reject
each of several issues.

Election: A ∈ {0,1}n×m.
Result: z ∈ {0,1}m.
Lobbyist’s goal: 1m.

Election with 3 issues and 5 voters
issue 1 issue 2 issue 3

voter 1 0 0 1
voter 2 1 0 1
voter 3 0 1 0
voter 4 1 0 0
voter 5 0 1 0
result 0 0 0
lobbyist 1 1 1

Optimal Lobbying

Input: A ∈ {0,1}n×m and k ≤ n.
Question: Can we change at most k rows of A such that each column has
more 1s than 0s?

[Christian, Fellows, Rosamond, and Slinko, Review of Economic Design’07]
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Parameters in Optimal Lobbying
issue 1 issue 2 issue 3

voter 1 0 0 1
voter 2 1 0 1
voter 3 0 1 0
voter 4 1 0 0
voter 5 0 1 0
result 0 0 0
target 1 1 1
gap 1 1 1

Interesting parameters
• Number n of voters (rows)
• Number m of issues (columns)
• Max. number s of 1s per row
• Max. number t of 0s per row
• Max. gap value g in a column

k = 2 s = 2 t = 2 g = 1

m k g s

m ILP-FPT FPT FPT ILP-FPT
k W[2]-c. W[2]-c. FPT

g
W[2]-h.

FPTLOGSNP-c.

s
s ≥ 3: NP-h.
s ≤ 2: P
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A Simple Greedy Algorithm for Lobbying

1: Compute the gap values of all columns;
2: while ∃ column with positive gap value do
3: Compute the costs of each row i

cost(i) =
1∑m

j=1 (1− Ai, j) ·mgj−1

4: Modify a row with minimum cost
5: Update gap values and delete satisfied columns

Example: A ∈ {0,1}6×4 and k = 2

0 1 0 0
0 0 1 1
0 0 1 1
0 1 0 1
1 0 1 0
1 1 0 0

A =

(1 · 41 + 2 · 40)−1 = 1/6

cost

(1 · 41 + 1 · 40)−1 = 1/5
1/5
1/5
1/2
1/2

1 1 1 1

1/2
1/2
1
1
0
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Properties of Greedy Algorithm for Lobbying

• Runs in quadratic time if the number of columns is constant.
• Provides optimal results for up to four columns; there is a

counter-example for five columns.
• Provides a logarithmic factor approximation.
• On synthetic random data with up to 300 columns and 1000 rows the

running times were far below one second and the delivered solutions with
very few exceptions were almost always optimal...

Remark: While Optimal Lobbying is easily shown to be W[2]-hard with
respect to the gap parameter g, it could also be shown to be
LOGSNP-complete for g = 1 (the problem is trivial for g = 0), using a
reduction from Rich Hypergraph Cover.

Rolf Niedermeier On Multivariate Algorithmics and Structure Detection Folie 29



Discussion and Outlook

• Every problem accompanied with a natural parameter space (that is,
structure) to navigate through.
 Relevance of investigating the combinatorial relationships between
different parameters and their combinations.

• Structure analysis connects very well with multivariate algorithmics.
• Potential practical relevance when taking into account structure occurring

in real-world data.
 Algorithm engineering through parameter identification in real-world
instances.

• Detecting “hidden parameters” may help in better understanding and
exploiting the power of heuristics.

• Potential drawback from a practical point of view: all our studies still rely
on worst-case analysis.

• Once a whole suite of (parameterized) algorithms is available, choosing
the “right” one depending on the current input data becomes more
relevant...
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