
Backdoors to
Satisfaction:

Parameterized
Complexity

Serge Gaspers

Backdoors

Parameterized
Complexity

Detecting
Backdoors

Tree-like SAT
instances

Algorithm for
detecting strong
Wt -backdoors

Backdoors to Satisfaction:
Parameterized Complexity

Serge Gaspers

The University of New South Wales, Sydney, Australia

National ICT Australia, Sydney, Australia

First Symposium on Structure in Hard Combinatorial Problems
16-May-2013

Vienna, Austria

1 / 47

Backdoors to
Satisfaction:

Parameterized
Complexity

Serge Gaspers

Backdoors

Parameterized
Complexity

Detecting
Backdoors

Tree-like SAT
instances

Algorithm for
detecting strong
Wt -backdoors

Outline

1 Backdoors

2 Parameterized Complexity

3 Detecting Backdoors

4 Tree-like SAT instances

5 Algorithm for detecting strongWt-backdoors

2 / 47

Backdoors to
Satisfaction:

Parameterized
Complexity

Serge Gaspers

Backdoors

Parameterized
Complexity

Detecting
Backdoors

Tree-like SAT
instances

Algorithm for
detecting strong
Wt -backdoors

SAT and #SAT

SAT
Input: A propositional formula F in conjunctive normal

form (CNF)
Question: Is there an assignment to var(F) satisfying all

clauses of F?

#SAT
Input: A CNF formula F
Question: What is the number of assignments to var(F)

satisfying all clauses of F?

Example:

(x1 ∨ x2) ∧ (¬x2 ∨ x3 ∨ ¬x4) ∧ (x1 ∨ x4) ∧ (¬x1 ∨ ¬x3 ∨ ¬x4)

3 / 47

Backdoors to
Satisfaction:

Parameterized
Complexity

Serge Gaspers

Backdoors

Parameterized
Complexity

Detecting
Backdoors

Tree-like SAT
instances

Algorithm for
detecting strong
Wt -backdoors

SAT: theory vs. practice

theory

NP-complete
ETH: SAT cannot be
solved in time 2o(n)

Strong ETH: SAT cannot
be solved in time (2− ε)n

for any ε > 0

practice

Want to solve an
NP-complete problem?
Just encode into SAT and
use a SAT solver
Real-world instances with
millions of variables and
clauses

4 / 47

Backdoors to
Satisfaction:

Parameterized
Complexity

Serge Gaspers

Backdoors

Parameterized
Complexity

Detecting
Backdoors

Tree-like SAT
instances

Algorithm for
detecting strong
Wt -backdoors

Backdoors

Belief: real world instances have a “hidden structure” that
makes them easy to solve
Challenge: measure and identify this hidden structure
One way: Backdoor = set of “key” variables that make it
easy to solve the formula

5 / 47

Backdoors to
Satisfaction:

Parameterized
Complexity

Serge Gaspers

Backdoors

Parameterized
Complexity

Detecting
Backdoors

Tree-like SAT
instances

Algorithm for
detecting strong
Wt -backdoors

Backdoors

CNF formula F

Set of variables B ⊆ var(F)

For a truth assignment τ to B, the reduced formula F[τ] is
obtained from F by removing all clauses satisfied by τ and
removing all remaining literals on B from the other clauses
Base class C: class of poly-time solvable CNF formulas

Definition (Weak Backdoor [Williams, Gomes, Selman, 2003])

B is a weak C-backdoor for F if there is a truth assignment τ to B
such that F[τ] ∈ C and F[τ] is satisfiable.

Definition (Strong Backdoor [Williams, Gomes, Selman, 2003])

B is a strong C-backdoor for F if for every truth assignment τ to B
we have F[τ] ∈ C.

6 / 47

Backdoors to
Satisfaction:

Parameterized
Complexity

Serge Gaspers

Backdoors

Parameterized
Complexity

Detecting
Backdoors

Tree-like SAT
instances

Algorithm for
detecting strong
Wt -backdoors

Backdoors

CNF formula F

Set of variables B ⊆ var(F)

For a truth assignment τ to B, the reduced formula F[τ] is
obtained from F by removing all clauses satisfied by τ and
removing all remaining literals on B from the other clauses
Base class C: class of poly-time solvable CNF formulas

Definition (Weak Backdoor [Williams, Gomes, Selman, 2003])

B is a weak C-backdoor for F if there is a truth assignment τ to B
such that F[τ] ∈ C and F[τ] is satisfiable.

Definition (Strong Backdoor [Williams, Gomes, Selman, 2003])

B is a strong C-backdoor for F if for every truth assignment τ to B
we have F[τ] ∈ C.

6 / 47

Backdoors to
Satisfaction:

Parameterized
Complexity

Serge Gaspers

Backdoors

Parameterized
Complexity

Detecting
Backdoors

Tree-like SAT
instances

Algorithm for
detecting strong
Wt -backdoors

Backdoors

CNF formula F

Set of variables B ⊆ var(F)

For a truth assignment τ to B, the reduced formula F[τ] is
obtained from F by removing all clauses satisfied by τ and
removing all remaining literals on B from the other clauses
Base class C: class of poly-time solvable CNF formulas

Definition (Weak Backdoor [Williams, Gomes, Selman, 2003])

B is a weak C-backdoor for F if there is a truth assignment τ to B
such that F[τ] ∈ C and F[τ] is satisfiable.

Definition (Strong Backdoor [Williams, Gomes, Selman, 2003])

B is a strong C-backdoor for F if for every truth assignment τ to B
we have F[τ] ∈ C.

6 / 47

Experimental results

Table 4. Size, percentage, and number of small backdoors found by the local search
algorithms within a cutoff of 3 hours when applied to real-world instances with n
variables (n < 10, 000) and m clauses.

Kilby KilbyImp Tabu
Instance n m BD size (%) # BDs BD size (%) # BDs BD size (%) # BDs

SAT Competition 2002

apex7 gr rcs w5.shuffled 1500 11136 77 (5.13%) 1 47 (3.13%) 4 53 (3.53%) 42885
dp10s10.shuffled 8372 8557 9 (0.11%) 10520 9 (0.11%) 9573 9 (0.11%) 59399
bart11.shuffled 162 675 15 (9.26%) 4190 14 (8.64%) 2903 14 (8.64%) 45044

SAT-Race 2005 and 2008

grieu-vmpc-s05-24s 576 49478 3 (0.52%) 143 3 (0.52%) 143 3 (0.52%) 143
grieu-vmpc-s05-27r 729 71380 4 (0.55%) 710 4 (0.55%) 660 4 (0.55%) 3271

simon-mixed-s02bis-01 2424 13793 8 (0.33%) 566 8 (0.33%) 566 8 (0.33%) 10440
simon-s02b-r4b1k1.2 2424 13811 8 (0.33%) 394 7 (0.29%) 3 7 (0.29%) 16

Blocks world planning

bw large.c 3016 50237 4 (0.13%) 1934 3 (0.10%) 15 3 (0.10%) 15
bw large.d 6325 131607 6 (0.10%) 790 5 (0.08%) 69 6 (0.10%) 640

Logistics planning

logistics.a 828 3116 20 (2.42%) 147 20 (2.42%) 6675 24 (2.90%) 584257
logistics.b 843 3480 16 (1.90%) 1688 15 (1.78%) 9789 16 (1.90%) 7634
logistics.c 1141 5867 26 (2.28%) 18 25 (2.19%) 387 28 (2.45%) 424467
logistics.d 4713 16588 25 (0.53%) 39 22 (0.47%) 61 28 (0.59%) 36610

was 168 seconds after the 15-hour cutoff time. It is possible that Kilby and Kil-
byImp would have found smaller backdoors during this leeway. Although Tabu
takes longer in one iteration thanKilby andKilbyImp, Tabu is sometimes able
to find a larger number of backdoors in the given time, and for instances that
have small backdoors of size less than 10, a remarkably larger number. For many
more of these real-world instances, KilbyImp outperformed Kilby and Tabu in
finding small backdoors. Both Kilby and KilbyImp select the first candidate
backdoor encountered. The Tabu algorithm searches the entire neighborhood
for the best improvement, which can be too expensive when the backdoor size
and the total number of variables are large.

Williams et al. [13] experimented on practical instances with fewer than
10,000 variables and showed that such instances had relatively small backdoors.
We extend their result to the SAT-Race 2008 instances, which have a huge num-
ber of variables and clauses. The SAT-Race 2008 instances have backdoors that
consist of hundreds of variables. However, the backdoor size is usually less than
0.5% of the total number of variables. Thus, our results agree with Williams et
al. that practical instances generally have small tractable structures.

5.2 Experiments on Finding Strong Backdoors

In previous work [11, 2], unsatisfiable SAT benchmarks from automotive config-
uration [12] were used in the experiments. Among the 84 unsatisfiable instances,
Minisat concludes the unsatisfiability of 71 instances after pre-processing. We ap-
plied the Strong algorithm to find minimal strong backdoors for the remaining
13 instances (see Table 6). The sizes of minimal strong backdoors range from

[Li, van Beek, 2011] weak backdoors to UP+2CNF+1-VAL+0-VAL

Backdoors to
Satisfaction:

Parameterized
Complexity

Serge Gaspers

Backdoors

Parameterized
Complexity

Detecting
Backdoors

Tree-like SAT
instances

Algorithm for
detecting strong
Wt -backdoors

Backdoor Problems

Weak (Strong) C-Backdoor Detection
Input: A CNF formula F, an integer k
Question: Does F have a weak (strong) C-backdoor of

size at most k?

Weak (Strong) C-Backdoor Evaluation
Input: A CNF formula F, a weak (strong) C-backdoor

B
Question: Is F satisfiable?

8 / 47

Backdoors to
Satisfaction:

Parameterized
Complexity

Serge Gaspers

Backdoors

Parameterized
Complexity

Detecting
Backdoors

Tree-like SAT
instances

Algorithm for
detecting strong
Wt -backdoors

Outline

1 Backdoors

2 Parameterized Complexity

3 Detecting Backdoors

4 Tree-like SAT instances

5 Algorithm for detecting strongWt-backdoors

9 / 47

Backdoors to
Satisfaction:

Parameterized
Complexity

Serge Gaspers

Backdoors

Parameterized
Complexity

Detecting
Backdoors

Tree-like SAT
instances

Algorithm for
detecting strong
Wt -backdoors

Parameterized Complexity

“complexity is not governed by the instance size alone”

Definition (Parameterized problem)

A parameterized decision problem is a subset of Σ∗ × N for
some finite alphabet Σ. For an instance (x, k) ∈ Σ∗ × N, x is the
main part and k the parameter.

FPT: class of param. pbs that can be solved in time f (k) · nO(1)

W[·]: parameterized intractability classes
XP: class of param. pbs that can be solved in time f (k) · ng(k)

FPT ⊆W[1] ⊆W[2] ⊆ . . .XP.

All inclusions believed to be strict.

10 / 47

Backdoors to
Satisfaction:

Parameterized
Complexity

Serge Gaspers

Backdoors

Parameterized
Complexity

Detecting
Backdoors

Tree-like SAT
instances

Algorithm for
detecting strong
Wt -backdoors

Parameterized Backdoor Problems

Weak (Strong) C-Backdoor Detection
Input: A CNF formula F, an integer k
Parameter: k
Question: Does F have a weak (strong) C-backdoor of

size at most k?

Weak (Strong) C-Backdoor Evaluation
Input: A CNF formula F, a weak (strong) C-backdoor

B
Parameter: k = |B|
Question: Is F satisfiable?

11 / 47

Backdoors to
Satisfaction:

Parameterized
Complexity

Serge Gaspers

Backdoors

Parameterized
Complexity

Detecting
Backdoors

Tree-like SAT
instances

Algorithm for
detecting strong
Wt -backdoors

Weak Backdoor Detection

Simple Weak C-Backdoor Detection Algorithm
Input: A CNF formula F and an integer k.
Output: YES if F has a weak C-backdoor of size k, and

NO otherwise.

foreach subset B ⊆ var(F) with |B| = k do
foreach assignment τ : B→ {0, 1} do

if F[τ] ∈ C then
if F[τ] is satisfiable then

return YES

return NO

run time:
(n

k

)
· 2k · nO(1) = nk+O(1)

XP-algorithm

12 / 47

Backdoors to
Satisfaction:

Parameterized
Complexity

Serge Gaspers

Backdoors

Parameterized
Complexity

Detecting
Backdoors

Tree-like SAT
instances

Algorithm for
detecting strong
Wt -backdoors

Weak Backdoor Detection

Simple Weak C-Backdoor Detection Algorithm
Input: A CNF formula F and an integer k.
Output: YES if F has a weak C-backdoor of size k, and

NO otherwise.

foreach subset B ⊆ var(F) with |B| = k do
foreach assignment τ : B→ {0, 1} do

if F[τ] ∈ C then
if F[τ] is satisfiable then

return YES

return NO

run time:
(n

k

)
· 2k · nO(1) = nk+O(1)

XP-algorithm

12 / 47

Backdoors to
Satisfaction:

Parameterized
Complexity

Serge Gaspers

Backdoors

Parameterized
Complexity

Detecting
Backdoors

Tree-like SAT
instances

Algorithm for
detecting strong
Wt -backdoors

Strong Backdoor Detection

Simple Strong C-Backdoor Detection Algorithm
Input: A CNF formula F and an integer k.
Output: YES if F has a strong C-backdoor of size k, and

NO otherwise.

foreach subset B ⊆ var(F) with |B| = k do
valid← true
foreach assignment τ : B→ {0, 1} do

if F[τ] /∈ C then
valid← false

if valid then
return YES

return NO

run time:
(n

k

)
· 2k · nO(1) = nk+O(1)

XP-algorithm
13 / 47

Backdoors to
Satisfaction:

Parameterized
Complexity

Serge Gaspers

Backdoors

Parameterized
Complexity

Detecting
Backdoors

Tree-like SAT
instances

Algorithm for
detecting strong
Wt -backdoors

Strong Backdoor Detection

Simple Strong C-Backdoor Detection Algorithm
Input: A CNF formula F and an integer k.
Output: YES if F has a strong C-backdoor of size k, and

NO otherwise.

foreach subset B ⊆ var(F) with |B| = k do
valid← true
foreach assignment τ : B→ {0, 1} do

if F[τ] /∈ C then
valid← false

if valid then
return YES

return NO

run time:
(n

k

)
· 2k · nO(1) = nk+O(1)

XP-algorithm
13 / 47

Backdoors to
Satisfaction:

Parameterized
Complexity

Serge Gaspers

Backdoors

Parameterized
Complexity

Detecting
Backdoors

Tree-like SAT
instances

Algorithm for
detecting strong
Wt -backdoors

Backdoor Evaluation

Simple C-Backdoor Evaluation Algorithm
Input: A CNF formula F and a weak or strong C-backdoor B of

size k.
Output: YES if F is satisfiable, and

NO otherwise.

foreach assignment τ : B→ {0, 1} do
if F[τ] ∈ C then /* not necessary for strong */

if F[τ] is satisfiable then
return YES

return NO /* not possible for weak */

run time: 2k · nO(1)

FPT-algorithm

14 / 47

Backdoors to
Satisfaction:

Parameterized
Complexity

Serge Gaspers

Backdoors

Parameterized
Complexity

Detecting
Backdoors

Tree-like SAT
instances

Algorithm for
detecting strong
Wt -backdoors

Backdoor Evaluation

Simple C-Backdoor Evaluation Algorithm
Input: A CNF formula F and a weak or strong C-backdoor B of

size k.
Output: YES if F is satisfiable, and

NO otherwise.

foreach assignment τ : B→ {0, 1} do
if F[τ] ∈ C then /* not necessary for strong */

if F[τ] is satisfiable then
return YES

return NO /* not possible for weak */

run time: 2k · nO(1)

FPT-algorithm

14 / 47

Backdoors to
Satisfaction:

Parameterized
Complexity

Serge Gaspers

Backdoors

Parameterized
Complexity

Detecting
Backdoors

Tree-like SAT
instances

Algorithm for
detecting strong
Wt -backdoors

Consequences for SAT

The challenging part is Backdoor Detection.
If Weak (Strong) C-Backdoor Detection is FPT, then SAT is
FPT parameterized by the size of a smallest weak (strong)
C-backdoor.

15 / 47

Backdoors to
Satisfaction:

Parameterized
Complexity

Serge Gaspers

Backdoors

Parameterized
Complexity

Detecting
Backdoors

Tree-like SAT
instances

Algorithm for
detecting strong
Wt -backdoors

Outline

1 Backdoors

2 Parameterized Complexity

3 Detecting Backdoors

4 Tree-like SAT instances

5 Algorithm for detecting strongWt-backdoors

16 / 47

Backdoors to
Satisfaction:

Parameterized
Complexity

Serge Gaspers

Backdoors

Parameterized
Complexity

Detecting
Backdoors

Tree-like SAT
instances

Algorithm for
detecting strong
Wt -backdoors

Detecting backdoors to some base classes

Weak Strong
Base Class CNF r-CNF CNF r-CNF

HORN W[2]-h FPT FPT FPT
2CNF W[2]-h FPT FPT FPT
UP W[P]-c W[P]-c W[P]-c W[P]-c
RHORN W[2]-h W[2]-h W[2]-h open
CLU W[2]-h FPT W[2]-h FPT

The parameterized complexity of finding weak and strong
backdoor sets of CNF formulas and r-CNF formulas, where r ≥ 3
is a fixed integer.

Results by: [Nishimura, Ragde, Szeider, 2004] [Szeider, 2005]
[Nishimura, Ragde, Szeider, 2007] [Gaspers, Szeider, 2012]
See [Gaspers, Szeider, 2012] for a survey.

17 / 47

Backdoors to
Satisfaction:

Parameterized
Complexity

Serge Gaspers

Backdoors

Parameterized
Complexity

Detecting
Backdoors

Tree-like SAT
instances

Algorithm for
detecting strong
Wt -backdoors

What does this tell us?

FPT cases
There is an algorithm with running time f (k) · nO(1) that either
finds a backdoor of size k, or determines that no such
backdoor exists
If the instance has a small backdoor, there is at least one
efficient way to find it (maybe many efficient ways)

W[·]-hard cases
There is probably no algorithm with running time f (k) · nO(1)

that either finds a backdoor of size k, or determines that no
such backdoor exists
There are instances with small backdoors of size k, but
probably no efficient way to find these backdoors
Maybe a backdoor of size k + 1 can still be found efficiently
. . . or one of size 2k?

18 / 47

Backdoors to
Satisfaction:

Parameterized
Complexity

Serge Gaspers

Backdoors

Parameterized
Complexity

Detecting
Backdoors

Tree-like SAT
instances

Algorithm for
detecting strong
Wt -backdoors

FPT Approximation

Definition ([Downey, Fellows, McCartin, 2006])

A parameterized algorithm is an FPT-approximation algorithm
for a minimization problem if there exist functions f , g such that
on input (x, k), the algorithm has running time f (k) · nO(1) and it
either

determines that (x, k) is a NO-instance, or
determines that (x, k′) is a YES-instance for some k′ ≤ g(k)

19 / 47

Backdoors to
Satisfaction:

Parameterized
Complexity

Serge Gaspers

Backdoors

Parameterized
Complexity

Detecting
Backdoors

Tree-like SAT
instances

Algorithm for
detecting strong
Wt -backdoors

Outline

1 Backdoors

2 Parameterized Complexity

3 Detecting Backdoors

4 Tree-like SAT instances

5 Algorithm for detecting strongWt-backdoors

20 / 47

Backdoors to
Satisfaction:

Parameterized
Complexity

Serge Gaspers

Backdoors

Parameterized
Complexity

Detecting
Backdoors

Tree-like SAT
instances

Algorithm for
detecting strong
Wt -backdoors

Incidence graph

t u v w x y z

c1 c2 c3 c4 c5 c6 c7 c8

Incidence graph of the formula F =
∧8

i=1 ci with

c1 = t ∨ ¬u, c2 = u ∨ v ∨ w, c3 = w ∨ x, c4 = x ∨ ¬y,

c5 = y ∨ ¬z, c6 = t ∨ u ∨ ¬w, c7 = ¬x ∨ z, c8 = ¬t ∨ w ∨ x

21 / 47

Backdoors to
Satisfaction:

Parameterized
Complexity

Serge Gaspers

Backdoors

Parameterized
Complexity

Detecting
Backdoors

Tree-like SAT
instances

Algorithm for
detecting strong
Wt -backdoors

Acyclic SAT formulas

Definition
A SAT formula is acyclic if its incidence graph has no cycle.

Definition
FOREST denotes the class of all acyclic SAT formulas

22 / 47

Backdoors to
Satisfaction:

Parameterized
Complexity

Serge Gaspers

Backdoors

Parameterized
Complexity

Detecting
Backdoors

Tree-like SAT
instances

Algorithm for
detecting strong
Wt -backdoors

Results for FOREST-backdoors

Theorem ([Gaspers, Szeider, ICALP 2012])

Weak FOREST-Backdoor Detection is W[2]-hard.

Theorem ([Gaspers, Szeider, ICALP 2012])

For every constant r ≥ 3, Weak FOREST-Backdoor Detection is
FPT for r-CNF formulas.

Theorem ([Gaspers, Szeider, ICALP 2012])

There is an FPT-approximation algorithm for Strong
FOREST-Backdoor Detection.

23 / 47

Backdoors to
Satisfaction:

Parameterized
Complexity

Serge Gaspers

Backdoors

Parameterized
Complexity

Detecting
Backdoors

Tree-like SAT
instances

Algorithm for
detecting strong
Wt -backdoors

Consequences for SAT

Corollary ([Gaspers, Szeider, ICALP 2012])

r-SAT and r-#SATare FPT parameterized by the size of a
smallest weak FOREST-backdoor.

Corollary ([Gaspers, Szeider, ICALP 2012])

SAT and #SATare FPT parameterized by the size of a smallest
strong FOREST-backdoor.

24 / 47

Backdoors to
Satisfaction:

Parameterized
Complexity

Serge Gaspers

Backdoors

Parameterized
Complexity

Detecting
Backdoors

Tree-like SAT
instances

Algorithm for
detecting strong
Wt -backdoors

More general?

Are there larger base classes with an FPT-approximation for
Strong Backdoor Detection?

25 / 47

Backdoors to
Satisfaction:

Parameterized
Complexity

Serge Gaspers

Backdoors

Parameterized
Complexity

Detecting
Backdoors

Tree-like SAT
instances

Algorithm for
detecting strong
Wt -backdoors

Tree decompositions (by example)

A graph G

a
b

c d

e f
h

g

i

j

k

A tree decomposition of G

a, b, c d, e, f d, f , h

f , g

c, d, e h, i

i, j

i, k

26 / 47

Backdoors to
Satisfaction:

Parameterized
Complexity

Serge Gaspers

Backdoors

Parameterized
Complexity

Detecting
Backdoors

Tree-like SAT
instances

Algorithm for
detecting strong
Wt -backdoors

Tree decompositions (by example)

A graph G

a
b

c d

e f
h

g

i

j

k

A tree decomposition of G

a, b, c d, e, f d, f , h

f , g

c, d, e h, i

i, j

i, k

26 / 47

Backdoors to
Satisfaction:

Parameterized
Complexity

Serge Gaspers

Backdoors

Parameterized
Complexity

Detecting
Backdoors

Tree-like SAT
instances

Algorithm for
detecting strong
Wt -backdoors

Tree decompositions (by example)

A graph G

a
b

c d

e f
h

g

i

j

k

A tree decomposition of G

a, b, c d, e, f d, f , h

f , g

c, d, e h, i

i, j

i, k

Conditions:

26 / 47

Backdoors to
Satisfaction:

Parameterized
Complexity

Serge Gaspers

Backdoors

Parameterized
Complexity

Detecting
Backdoors

Tree-like SAT
instances

Algorithm for
detecting strong
Wt -backdoors

Tree decompositions (by example)

A graph G

a
b

c d

e f
h

g

i

j

k

A tree decomposition of G

a, b, c d, e, f d, f , h

f , g

c, d, e h, i

i, j

i, k

Conditions: covering

26 / 47

Backdoors to
Satisfaction:

Parameterized
Complexity

Serge Gaspers

Backdoors

Parameterized
Complexity

Detecting
Backdoors

Tree-like SAT
instances

Algorithm for
detecting strong
Wt -backdoors

Tree decompositions (by example)

A graph G

a
b

c d

e f
h

g

i

j

k

A tree decomposition of G

a, b, c d, e, f d, f , h

f , g

c, d, e h, i

i, j

i, k

Conditions: covering and connectedness.

26 / 47

Backdoors to
Satisfaction:

Parameterized
Complexity

Serge Gaspers

Backdoors

Parameterized
Complexity

Detecting
Backdoors

Tree-like SAT
instances

Algorithm for
detecting strong
Wt -backdoors

Tree decomposition (more formally)

Let G be a graph, T a tree, and χ a labeling of the nodes
of T by subsets of V(G).
We refer to the sets χ(t) as “bags”.
The pair (T, χ) is a tree decomposition of G if the following
two conditions hold:

For every edge vw ∈ E(G) there exists a node t of T such that
v,w ∈ χ(t) (“covering”).
For every vertex v of G, the graph T[t ∈ V(T) : v ∈ χ(t)] is a
non-empty (connected) tree (“connectedness”).

27 / 47

Backdoors to
Satisfaction:

Parameterized
Complexity

Serge Gaspers

Backdoors

Parameterized
Complexity

Detecting
Backdoors

Tree-like SAT
instances

Algorithm for
detecting strong
Wt -backdoors

Treewidth

The width of a tree decomposition (T, χ) is defined as the
maximum |χ(t)| − 1 over all nodes t of T.
The treewidth tw(G) of a graph G is the minimum width over
all its tree decompositions.

28 / 47

Backdoors to
Satisfaction:

Parameterized
Complexity

Serge Gaspers

Backdoors

Parameterized
Complexity

Detecting
Backdoors

Tree-like SAT
instances

Algorithm for
detecting strong
Wt -backdoors

Treewidth of some graphs

Trees have treewidth 1.
Cycles have treewidth 2.
The complete graph on n vertices has treewidth n− 1.

29 / 47

Backdoors to
Satisfaction:

Parameterized
Complexity

Serge Gaspers

Backdoors

Parameterized
Complexity

Detecting
Backdoors

Tree-like SAT
instances

Algorithm for
detecting strong
Wt -backdoors

Treewidth of SAT formulas

A CNF formula has treewidth t if its incidence graph has
treewidth t.
Wt denotes the class of all CNF formulas with treewidth at
most t.

30 / 47

Backdoors to
Satisfaction:

Parameterized
Complexity

Serge Gaspers

Backdoors

Parameterized
Complexity

Detecting
Backdoors

Tree-like SAT
instances

Algorithm for
detecting strong
Wt -backdoors

Outline

1 Backdoors

2 Parameterized Complexity

3 Detecting Backdoors

4 Tree-like SAT instances

5 Algorithm for detecting strongWt-backdoors

31 / 47

Backdoors to
Satisfaction:

Parameterized
Complexity

Serge Gaspers

Backdoors

Parameterized
Complexity

Detecting
Backdoors

Tree-like SAT
instances

Algorithm for
detecting strong
Wt -backdoors

Outline of the FPT approximation algorithm

Algorithm TW-backdoor
Input: A CNF formula F and integers k, t ≥ 0.
Output: A strongWt-backdoor of F of size ≤ 2k, or

NO if F has no strongWt-backdoor of size k.

if F has “small” treewidth [Bodlaender, 1996] then
Express the problem in MSO2 using [Adler, Grohe, Kreutzer,
2008] [Lagergren, 1998]
Use Courcelle’s theorem [Courcelle, 1990] [Arnborg,
Lagergren, Seese, 1991]

else . . .

32 / 47

Backdoors to
Satisfaction:

Parameterized
Complexity

Serge Gaspers

Backdoors

Parameterized
Complexity

Detecting
Backdoors

Tree-like SAT
instances

Algorithm for
detecting strong
Wt -backdoors

Outline of the FPT approximation algorithm

Algorithm TW-backdoor
Input: A CNF formula F and integers k, t ≥ 0.
Output: A strongWt-backdoor of F of size ≤ 2k, or

NO if F has no strongWt-backdoor of size k.

. . .
else

Compute a large wall as a topological minor [Robertson,
Seymour, Thomas ’94] [Grohe, Kawarabayashi, Marx, Wollan ’11]
Compute a set S of f (k, t) variables such that every strong
Wt-backdoor contains at least one of these variables
foreach x ∈ S do

Bx ← TW-backdoor(F[x = 1], k − 1, t)
B¬x ← TW-backdoor(F[x = 0], k − 1, t)
if (Bx 6= NO) ∧ (B¬x 6= NO) then

return Bx ∪ B¬x ∪ {x}

return NO

33 / 47

Backdoors to
Satisfaction:

Parameterized
Complexity

Serge Gaspers

Backdoors

Parameterized
Complexity

Detecting
Backdoors

Tree-like SAT
instances

Algorithm for
detecting strong
Wt -backdoors

(Topological) Minors

Definition ((Topological) Minor)

Let H,G be two graphs.
H is a (topological) minor of G if a graph isomorphic to H can be
obtained from G by a sequence of the following operations:

delete a vertex
delete an edge
contract an edge (incident to a vertex of degree 2)

u v uv

Contract the edge uv

34 / 47

Backdoors to
Satisfaction:

Parameterized
Complexity

Serge Gaspers

Backdoors

Parameterized
Complexity

Detecting
Backdoors

Tree-like SAT
instances

Algorithm for
detecting strong
Wt -backdoors

Obstructions forW3

W8

(1, 1)

(1, 8)

(8, 1)

(8, 8)

K5

K4,4

35 / 47

Backdoors to
Satisfaction:

Parameterized
Complexity

Serge Gaspers

Backdoors

Parameterized
Complexity

Detecting
Backdoors

Tree-like SAT
instances

Algorithm for
detecting strong
Wt -backdoors

Using the Topological Wall Minor

Large wall as a topological minor→ many disjoint wall
obstructions
Each obstruction needs to be killed

36 / 47

Backdoors to
Satisfaction:

Parameterized
Complexity

Serge Gaspers

Backdoors

Parameterized
Complexity

Detecting
Backdoors

Tree-like SAT
instances

Algorithm for
detecting strong
Wt -backdoors

Internal and External Killers

An internal killer

+

−

An external killer

At most k wall obstructions are killed internally.
⇒ “Guess” them and discard them
All remaining obstructions are killed externally

37 / 47

Backdoors to
Satisfaction:

Parameterized
Complexity

Serge Gaspers

Backdoors

Parameterized
Complexity

Detecting
Backdoors

Tree-like SAT
instances

Algorithm for
detecting strong
Wt -backdoors

Recall: we have many disjoint wall obstructions, and all of them
need to be killed externally.

≥ 1/2k-th of all wall obstructions are killed externally by the
same backdoor variables
⇒ “Guess” this subset O of wall obstructions and the
number ` of backdoor variables that kill them externally
Denote by Z the set of common external killers of the wall
obstructions in O

Aim: Find a small subset S ⊆ Z such that every valid (i.e.,
respecting our guesses) strongWt-backdoor contains a vertex
from S. Then, S can be used for branching.

38 / 47

Backdoors to
Satisfaction:

Parameterized
Complexity

Serge Gaspers

Backdoors

Parameterized
Complexity

Detecting
Backdoors

Tree-like SAT
instances

Algorithm for
detecting strong
Wt -backdoors

Recall: we have many disjoint wall obstructions, and all of them
need to be killed externally.

≥ 1/2k-th of all wall obstructions are killed externally by the
same backdoor variables
⇒ “Guess” this subset O of wall obstructions and the
number ` of backdoor variables that kill them externally
Denote by Z the set of common external killers of the wall
obstructions in O

Aim: Find a small subset S ⊆ Z such that every valid (i.e.,
respecting our guesses) strongWt-backdoor contains a vertex
from S. Then, S can be used for branching.

38 / 47

Backdoors to
Satisfaction:

Parameterized
Complexity

Serge Gaspers

Backdoors

Parameterized
Complexity

Detecting
Backdoors

Tree-like SAT
instances

Algorithm for
detecting strong
Wt -backdoors

We have 3 rules to construct S:

Rule 1 (Few Common Killers). If |Z| ≤ 6knb(t), then set S := Z.
(nb(t) = d16(t + 2)log(t + 2)e)

Rule 2 (Multiple Neighborhoods). If there is a subset L ⊆ Z such
that L is the neighborhood of at least t2` + 1 vertices in Bm(O),
then set S := L.

Rule 3 (No Multiple Neighborhoods). Set S to be the 6knb(t)
vertices from Z of highest degree in B(O) (ties are broken
arbitrarily).

But what are Bm(O) and B(O)?

39 / 47

Backdoors to
Satisfaction:

Parameterized
Complexity

Serge Gaspers

Backdoors

Parameterized
Complexity

Detecting
Backdoors

Tree-like SAT
instances

Algorithm for
detecting strong
Wt -backdoors

We have 3 rules to construct S:

Rule 1 (Few Common Killers). If |Z| ≤ 6knb(t), then set S := Z.
(nb(t) = d16(t + 2)log(t + 2)e)

Rule 2 (Multiple Neighborhoods). If there is a subset L ⊆ Z such
that L is the neighborhood of at least t2` + 1 vertices in Bm(O),
then set S := L.

Rule 3 (No Multiple Neighborhoods). Set S to be the 6knb(t)
vertices from Z of highest degree in B(O) (ties are broken
arbitrarily).

But what are Bm(O) and B(O)?

39 / 47

Backdoors to
Satisfaction:

Parameterized
Complexity

Serge Gaspers

Backdoors

Parameterized
Complexity

Detecting
Backdoors

Tree-like SAT
instances

Algorithm for
detecting strong
Wt -backdoors

We have 3 rules to construct S:

Rule 1 (Few Common Killers). If |Z| ≤ 6knb(t), then set S := Z.
(nb(t) = d16(t + 2)log(t + 2)e)

Rule 2 (Multiple Neighborhoods). If there is a subset L ⊆ Z such
that L is the neighborhood of at least t2` + 1 vertices in Bm(O),
then set S := L.

Rule 3 (No Multiple Neighborhoods). Set S to be the 6knb(t)
vertices from Z of highest degree in B(O) (ties are broken
arbitrarily).

But what are Bm(O) and B(O)?

39 / 47

Backdoors to
Satisfaction:

Parameterized
Complexity

Serge Gaspers

Backdoors

Parameterized
Complexity

Detecting
Backdoors

Tree-like SAT
instances

Algorithm for
detecting strong
Wt -backdoors

We have 3 rules to construct S:

Rule 1 (Few Common Killers). If |Z| ≤ 6knb(t), then set S := Z.
(nb(t) = d16(t + 2)log(t + 2)e)

Rule 2 (Multiple Neighborhoods). If there is a subset L ⊆ Z such
that L is the neighborhood of at least t2` + 1 vertices in Bm(O),
then set S := L.

Rule 3 (No Multiple Neighborhoods). Set S to be the 6knb(t)
vertices from Z of highest degree in B(O) (ties are broken
arbitrarily).

But what are Bm(O) and B(O)?

39 / 47

Backdoors to
Satisfaction:

Parameterized
Complexity

Serge Gaspers

Backdoors

Parameterized
Complexity

Detecting
Backdoors

Tree-like SAT
instances

Algorithm for
detecting strong
Wt -backdoors

We have 3 rules to construct S:

Rule 1 (Few Common Killers). If |Z| ≤ 6knb(t), then set S := Z.
(nb(t) = d16(t + 2)log(t + 2)e)

Rule 2 (Multiple Neighborhoods). If there is a subset L ⊆ Z such
that L is the neighborhood of at least t2` + 1 vertices in Bm(O),
then set S := L.

Rule 3 (No Multiple Neighborhoods). Set S to be the 6knb(t)
vertices from Z of highest degree in B(O) (ties are broken
arbitrarily).

But what are Bm(O) and B(O)?

39 / 47

Backdoors to
Satisfaction:

Parameterized
Complexity

Serge Gaspers

Backdoors

Parameterized
Complexity

Detecting
Backdoors

Tree-like SAT
instances

Algorithm for
detecting strong
Wt -backdoors

The Beast

Definition (obstruction-template)

An obstruction-template OT(W) of a wall-obstruction W ∈ O is a
triple (B(W),P,R), where
B(W) is a bipartite graph whose vertex set is bipartitioned
into the two independent sets Z and QW , where QW is a set
of new vertices,
P is a partition of V(W) into regions such that for each
region A ∈ P, we have that W[A] is connected, and
R : QW → P is a function associating a region of P with each
vertex in QW .

40 / 47

Backdoors to
Satisfaction:

Parameterized
Complexity

Serge Gaspers

Backdoors

Parameterized
Complexity

Detecting
Backdoors

Tree-like SAT
instances

Algorithm for
detecting strong
Wt -backdoors

The Beast (2)

Definition (valid obstruction-template)

An obstruction-template OT(W) = (B(W),P,R) of a
wall-obstruction W ∈ Os is valid if it satisfies the following
properties:
(1) only existing edges: for each q ∈ QW we have that

NB(W)(q) ⊆ NG(R(q)),
(2) private neighbor: for each q ∈ QW , there is a vertex

z ∈ NB(W)(q), called q’s private neighbor, such that
there is no other q′ ∈ NB(W)(z) with R(q′) = R(q),

(3) degree-Z: for each z ∈ Z we have that dB(W)(z) ≥ 1,
(4) degree-QW : for each q ∈ QW we have that

nb(t) ≤ dB(W)(q) ≤ 3nb(t), and
(5) vulnerable vertex: for each q ∈ QW , there is at most one

vertex v ∈ R(q), called q’s vulnerable vertex, such
that NG(v) ∩ Z 6⊆ NB(W)(q).

41 / 47

Backdoors to
Satisfaction:

Parameterized
Complexity

Serge Gaspers

Backdoors

Parameterized
Complexity

Detecting
Backdoors

Tree-like SAT
instances

Algorithm for
detecting strong
Wt -backdoors

The Beast (3)

Bm(O) is obtained by taking the union of all B(W), W ∈ O.

B(O) is obtained from Bm(O) by merging vertices from
V(Bm(O)) \ Z with identical neighborhoods.

42 / 47

Backdoors to
Satisfaction:

Parameterized
Complexity

Serge Gaspers

Backdoors

Parameterized
Complexity

Detecting
Backdoors

Tree-like SAT
instances

Algorithm for
detecting strong
Wt -backdoors

Computing and Taming the Beast

To identify a small S ⊆ Z intersecting every valid strong
Wt-backdoor, we need to find obstructions involving S and O
for at least one assignment to every candidate backdoor of
size k avoiding S.
Valid obstruction-templates model various ways to
assemble such obstructions.
A valid obstruction-template can be computed in O(n2) time.
We prove that for a set S constructed by our rules, a valid
Wt-backdoor contains a variable from S, otherwise at least
one assignment to the backdoor produces a formula whose
incidence graph has treewidth at least t + 1.

43 / 47

Backdoors to
Satisfaction:

Parameterized
Complexity

Serge Gaspers

Backdoors

Parameterized
Complexity

Detecting
Backdoors

Tree-like SAT
instances

Algorithm for
detecting strong
Wt -backdoors

Computing and Taming the Beast

To identify a small S ⊆ Z intersecting every valid strong
Wt-backdoor, we need to find obstructions involving S and O
for at least one assignment to every candidate backdoor of
size k avoiding S.
Valid obstruction-templates model various ways to
assemble such obstructions.
A valid obstruction-template can be computed in O(n2) time.
We prove that for a set S constructed by our rules, a valid
Wt-backdoor contains a variable from S, otherwise at least
one assignment to the backdoor produces a formula whose
incidence graph has treewidth at least t + 1.

43 / 47

Backdoors to
Satisfaction:

Parameterized
Complexity

Serge Gaspers

Backdoors

Parameterized
Complexity

Detecting
Backdoors

Tree-like SAT
instances

Algorithm for
detecting strong
Wt -backdoors

Computing and Taming the Beast

To identify a small S ⊆ Z intersecting every valid strong
Wt-backdoor, we need to find obstructions involving S and O
for at least one assignment to every candidate backdoor of
size k avoiding S.
Valid obstruction-templates model various ways to
assemble such obstructions.
A valid obstruction-template can be computed in O(n2) time.
We prove that for a set S constructed by our rules, a valid
Wt-backdoor contains a variable from S, otherwise at least
one assignment to the backdoor produces a formula whose
incidence graph has treewidth at least t + 1.

43 / 47

Backdoors to
Satisfaction:

Parameterized
Complexity

Serge Gaspers

Backdoors

Parameterized
Complexity

Detecting
Backdoors

Tree-like SAT
instances

Algorithm for
detecting strong
Wt -backdoors

Computing and Taming the Beast

To identify a small S ⊆ Z intersecting every valid strong
Wt-backdoor, we need to find obstructions involving S and O
for at least one assignment to every candidate backdoor of
size k avoiding S.
Valid obstruction-templates model various ways to
assemble such obstructions.
A valid obstruction-template can be computed in O(n2) time.
We prove that for a set S constructed by our rules, a valid
Wt-backdoor contains a variable from S, otherwise at least
one assignment to the backdoor produces a formula whose
incidence graph has treewidth at least t + 1.

43 / 47

Backdoors to
Satisfaction:

Parameterized
Complexity

Serge Gaspers

Backdoors

Parameterized
Complexity

Detecting
Backdoors

Tree-like SAT
instances

Algorithm for
detecting strong
Wt -backdoors

Results for Bounded Treewidth

Theorem ([Gaspers, Szeider, 2012])

There is an FPT algorithm with parameter k + t that either
concludes that F has no strongWt-backdoor of size at most k or
finds a strongWt-backdoor of F of size at most 2k.

Corollary ([Gaspers, Szeider, 2012])

There is a cubic-time algorithm that, given a CNF formula F,
computes the number of satisfying assignments of F or
concludes that the smallest strongWt-backdoor of F is larger
than k, for any pair of constants k, t ≥ 0.

44 / 47

Backdoors to
Satisfaction:

Parameterized
Complexity

Serge Gaspers

Backdoors

Parameterized
Complexity

Detecting
Backdoors

Tree-like SAT
instances

Algorithm for
detecting strong
Wt -backdoors

Related Results

Faster and simpler randomized FPT algorithm for detecting
weak FOREST-backdoors for r-CNF formulas
(based on [Fomin, Lokshtanov, Misra, Saurabh, FOCS 2012])
Also extends to the base classWt ∩ r-CNF

45 / 47

Backdoors to
Satisfaction:

Parameterized
Complexity

Serge Gaspers

Backdoors

Parameterized
Complexity

Detecting
Backdoors

Tree-like SAT
instances

Algorithm for
detecting strong
Wt -backdoors

Conclusion

Aim at explaining the good running times of SAT solvers
Is there a strong correlation between

“the problem is FPT w.r.t. parameter k”
and

“heuristics work well if k is small”?
Need simpler algorithms (randomization?)
Is Strong FOREST/Wt-backdoor detection FPT?
Combination of base classes

46 / 47

Backdoors to
Satisfaction:

Parameterized
Complexity

Serge Gaspers

Backdoors

Parameterized
Complexity

Detecting
Backdoors

Tree-like SAT
instances

Algorithm for
detecting strong
Wt -backdoors

Thank you!

Questions? Comments?

47 / 47

	Backdoors
	Parameterized Complexity
	Detecting Backdoors
	Tree-like SAT instances
	Algorithm for detecting strong Wt-backdoors

