47

Backdoors to
Satisfaction:
Parameterized

Complexity

Backdoors to Satisfaction:
Parameterized Complexity

Serge Gaspers

The University of New South Wales, Sydney, Australia

National ICT Australia, Sydney, Australia

First Symposium on Structure in Hard Combinatorial Problems
16-May-2013
Vienna, Austria

Outline

Backdoors to
Satisfaction:
Parameterized
Complexity

@ Backdoors

Backdoors

SAT and #SAT

SAT
Input: A propositional formula F in conjunctive normal
form (CNF)
Question: Is there an assignment to var(F) satisfying all
clauses of F?

#SAT
Input: A CNF formula F
Question: What is the number of assignments to var(F)
satisfying all clauses of F?

Example:

()C] \/Xz) AN ("Xz \/)C3 \Y _|X4) A (X] \/X4) A\ (—\xl V X3 V _|)C4)

Backdoors to
Satisfaction:
Parameterized
Complexity

Backdoors

SAT: theory vs. practice

Backdoors to
Satisfaction:
Parameterized
Complexity

|
p raCt'Ce Backdoors
I

.|
theory
|

@ Want to solve an
NP-complete problem?
Just encode into SAT and
use a SAT solver

@ Real-world instances with
millions of variables and
clauses

@ NP-complete
@ ETH: SAT cannot be
solved in time 2°("

@ Strong ETH: SAT cannot
be solved in time (2 — ¢)"
forany e >0

Backdoors

Backdoors to
Satisfaction:
Parameterized
Complexity

Backdoors

@ Belief: real world instances have a “hidden structure” that
makes them easy to solve

@ Challenge: measure and identify this hidden structure

@ One way: Backdoor = set of “key” variables that make it
easy to solve the formula

5/47

Backdoors

Backdoors to
Satisfaction:

CNF formula F Parameterized
Set of variables B C var(F)
For a truth assignment 7 to B, the reduced formula F[r] is Backdoors

obtained from F by removing all clauses satisfied by and
removing all remaining literals on B from the other clauses

Base class C: class of poly-time solvable CNF formulas

Backdoors

Backdoors to
Satisfaction:

Parameterized

@ CNF formula F ooy
@ Set of variables B C var(F)
@ For a truth assignment 7 to B, the reduced formula F[r] is Backdoors

obtained from F by removing all clauses satisfied by and
removing all remaining literals on B from the other clauses

@ Base class C: class of poly-time solvable CNF formulas

Definition (Weak Backdoor

B is a weak C-backdoor for F if there is a truth assignment 7 to B
such that F[r] € C and F|r] is satisfiable.

Backdoors

Backdoors to
Satisfaction:

o CNF formula F P?:rinﬂ:;}::ifyed
@ Set of variables B C var(F)

@ For a truth assignment 7 to B, the reduced formula F[r] is Backdoors
obtained from F by removing all clauses satisfied by and
removing all remaining literals on B from the other clauses

@ Base class C: class of poly-time solvable CNF formulas

Definition (Weak Backdoor)

B is a weak C-backdoor for F if there is a truth assignment 7 to B
such that F[r] € C and F|r] is satisfiable.

Definition (Strong Backdoor)

B is a strong C-backdoor for F if for every truth assignment 7 to B
we have F[7] € C.

v

6/47

Experimental results

Table 4. Size, percentage, and number of small backdoors found by the local search
algorithms within a cutoff of 3 hours when applied to real-world instances with n
variables (n < 10,000) and m clauses.

‘ ‘ \ KILBY KiLsyImp | TABU
Instance n m_ |BD size (%)[# BDs|BD size (%)][# BDs|BD size (%)[# BDs
SAT Competition 2002

apex7_gr_res_wb.shuffled|1500 11136| 77 (5.13%) 1(47 (3.13%) 4| 53 (3.53%)| 42885

dp10s10.shuffled [8372| 8557| 9 (0.11%)| 10520| 9 (0.11%)| 9573| 9 (0.11%)| 59399
bart11.shuffled| 162 675 15 (9.26%)| 4190| 14 (8.64%)| 2903|14 (8.64%)|45044
SAT-Race 2005 and 2008
grieu-vipc-s05-24s| 576| 49478 3 (0.52%) 143| 3
grieu-vmpe-s05-27r| 729| 71380| 4 (0.55%) 710 4
simon-mixed-s02bis-01|2424| 13793| 8 (0.33%) 566| 8
simon-s02b-r4b1k1.2|2424| 13811 8 (0.33%) 394 7

Blocks world planning
bw_large.c
bw_large.d

Logistics planning

logistics.a| 828| 3116| 20 (2.42%) 147|120 (2.42%)| 6675| 24 (2.90%)|584257
logistics.b| 843| 3480| 16 (1.90%)| 1688|15 (1.78%)| 9789| 16 (1.90%)| 7634
logistics.c|1141| 5867| 26 (2.28%) 18(25 (2.19%)| 387| 28 (2.45%)[424467
logistics.d|4713| 16588| 25 (0.53%) 39|22 (0.47%) 61| 28 (0.59%)| 36610

() 143] 3(0.52%)] 143
(0.55%)| 660| 4 (0.55%)| 3271
()| 566| 8 (0.33%)|10440
() 3| 7(0.29%)| 16

3016
6325

15
69

3 (0.10%)
6 (0.10%)

15

131607| 6 (0.10%)| 790/ 5 (0.08%) 640

50237‘ 4(0.13%)‘ 1934‘ 3 (0.10%)

[Li, van Beek, 2011] weak backdoors to UP+2CNF+1-VAL+0-VAL

Backdoor Problems

Weak (Strong) C-Backdoor Detection
Input: A CNF formula F, an integer &
Question: Does F have a weak (strong) C-backdoor of
size at most k?

Weak (Strong) C-Backdoor Evaluation

Input: A CNF formula F, a weak (strong) C-backdoor
B
Question: Is F satisfiable?

Backdoors to
Satisfaction:
Parameterized
Complexity

Backdoors

Outline

Backdoors to
Satisfaction:
Parameterized
Complexity

Parameterized
Complexity

e Parameterized Complexity

Parameterized Complexity

Backdoors to
Satisfaction:
Parameterized
Complexity

“complexity is not governed by the instance size alone”

Definition (Parameterized problem)
A parameterized decision problem is a subset of ¥* x N for Carameterized

Complexity

some finite alphabet X. For an instance (x,k) € £* x N, x is the
main part and k the parameter.

FPT: class of param. pbs that can be solved in time f (k) - n°(")
WI[-]: parameterized intractability classes
XP: class of param. pbs that can be solved in time f(k) - n¢¥)

FPT C W[1] C W[2] C ... XP.

All inclusions believed to be strict.

Parameterized Backdoor Problems

Backdoors to
Satisfaction:
Parameterized
Complexity

Weak (Strong) C-Backdoor Detection

Input: A CNF formula F, an integer k
Parameter: & parameteized
Question: Does F have a weak (strong) C-backdoor of

size at most k?

Weak (Strong) C-Backdoor Evaluation
Input: A CNF formula F, a weak (strong) C-backdoor
B
Parameter: k= |B|
Question: Is F satisfiable?

Weak Backdoor Detection

Backdoors to
Satisfaction:
Parameterized
Complexity

Simple Weak C-Backdoor Detection Algorithm

Input: A CNF formula F and an integer k.

Output: YES if F has a weak C-backdoor of size k, and
No otherwise. Faramelorizeg

Complexity
foreach subset B C var(F) with |B| = k do
foreach assignmentr: B — {0,1} do
if F[7] € C then
L if F[7] is satisfiable then
L return YES

return NO

Weak Backdoor Detection

Backdoors to
Satisfaction:
Parameterized
Complexity

Simple Weak C-Backdoor Detection Algorithm

Input: A CNF formula F and an integer k.

Output: YES if F has a weak C-backdoor of size k, and
No otherwise. Faramelorizeg

Complexity
foreach subset B C var(F) with |B| = k do
foreach assignmentr: B — {0,1} do
if F[7] € C then
L if F[7] is satisfiable then
L return YES

return NO

e runtime: (}) - 2¢ .- n0) = pk+o(®)
@ XP-algorithm

Strong Backdoor Detection

Backdoors to
Satisfaction:

Simple Strong C-Backdoor Detection Algorithm e

Input: A CNF formula F and an integer k.

Output: YES if F has a strong C-backdoor of size k, and
NoO otherwise.

foreach subset B C var(F) with |B| = k do

valid < true

foreach assignmentr: B — {0,1} do
L if F[7] ¢ C then

Parameterized
Complexity

L valid « false

if valid then
L return YES

return NO

Strong Backdoor Detection

Backdoors to
Satisfaction:

Simple Strong C-Backdoor Detection Algorithm e

Input: A CNF formula F and an integer k.

Output: YES if F has a strong C-backdoor of size k, and
NoO otherwise.

foreach subset B C var(F) with |B| = k do

valid < true

foreach assignmentr: B — {0,1} do
L if F[7] ¢ C then

Parameterized
Complexity

L valid « false

if valid then
L return YES

return NO

@ runtime: (}) - 2*- 70(1) — ykt+0(1)
@ XP-algorithm

13/4

Backdoor Evaluation

Backdoors to
Satisfaction:
Parameterized
Complexity

Simple C-Backdoor Evaluation Algorithm
Input: A CNF formula F and a weak or strong C-backdoor B of

size k.
Output: YEs if F is satisfiable, and e
NO otherwise.

foreach assignment~: B — {0,1} do
if F[r]eCthen /+ not necessary for strong */
L if F[7] is satisfiable then
L return YES

return NO /* not possible for weak x/

14/47

Backdoor Evaluation

Backdoors to
Satisfaction:
Parameterized
Complexity

Simple C-Backdoor Evaluation Algorithm
Input: A CNF formula F and a weak or strong C-backdoor B of
size k.
Output: YEs if F is satisfiable, and e
NO otherwise.
foreach assignment~: B — {0,1} do
if F[r]eCthen /+ not necessary for strong */

if F[7] is satisfiable then
L return YES

return NO /* not possible for weak x/

@ run time: 2¢ . n°0)
@ FPT-algorithm

14/47

Consequences for SAT

Backdoors to
Satisfaction:
Parameterized
Complexity

Parameterized
Complexity

@ The challenging part is Backdoor Detection.

@ If Weak (Strong) C-Backdoor Detection is FPT, then SAT is
FPT parameterized by the size of a smallest weak (strong)
C-backdoor.

Outline

Backdoors to
Satisfaction:
Parameterized
Complexity

Detecting
Backdoors

e Detecting Backdoors

Detecting backdoors to some base classes

Backdoors to
Satisfaction:
Parameterized

Weak Strong Sy
Base Class CNF r-CNF CNF r-CNF
HORN W[2]-h FPT FPT FPT
2CNF WI[2]-h FPT FPT FPT
up W[P]-c W[r]-c W[r]-c W[Pr]-c Backdoors
RHORN WI[2]-h WI[2]-h WI[2]-h open
CLu WI[2]-h FPT WI[2]-h FPT

The parameterized complexity of finding weak and strong
backdoor sets of CNF formulas and r-CNF formulas, where r > 3
is a fixed integer.

Results by: [Nishimura, Ragde, Szeider, 2004] [Szeider, 2005]
[Nishimura, Ragde, Szeider, 2007] [Gaspers, Szeider, 2012]
See [Gaspers, Szeider, 2012] for a survey.

What does this tell us?

Backdoors to
Satisfaction:
Parameterized
Complexity

@ FPT cases

e There is an algorithm with running time f (k) - n°(") that either
finds a backdoor of size k, or determines that no such
backdoor exists

o If the instance has a small backdoor, there is at least one el
efficient way to find it (maybe many efficient ways)

@ WI[.]-hard cases

e There is probably no algorithm with running time £ (k) - n°")
that either finds a backdoor of size k, or determines that no
such backdoor exists

@ There are instances with small backdoors of size k, but
probably no efficient way to find these backdoors

e Maybe a backdoor of size k + 1 can still be found efficiently
... or one of size 2¢?

18/47

FPT Approximation

Backdoors to
Satisfaction:
Parameterized
Complexity

Definition ()
A parameterized algorithm is an FPT-approximation algorithm
for a minimization problem if there exist functions f, g such that
on input (x, k), the algorithm has running time 7 (k) - n°(") and it
either

@ determines that (x, k) is a No-instance, or

@ determines that (x, ') is a YES-instance for some k' < g(k)

y

Detecting
Backdoors

Outline

Backdoors to
Satisfaction:
Parameterized
Complexity

Tree-like SAT
instances

° Tree-like SAT instances

20/47

Incidence graph

Backdoors to
Satisfaction:
Parameterized
Complexity

Tree-like SAT
instances

Incidence graph of the formula F = A}_, ¢; with

cp=tV-u c=uVvVw, cc=wVXx, c4=xVy,

cs=yV—z, ce=tVuV-w, c¢3=—xVz cc="tVwVx

21/47

Acyclic SAT formulas

Backdoors to
Satisfaction:
Parameterized
Complexity

Tree-like SAT
instances

Definition
FOREST denotes the class of all acyclic SAT formulas

Definition
A SAT formula is acyclic if its incidence graph has no cycle.

Results for FOREST-backdoors

Backdoors to
Satisfaction:
Parameterized
Complexity

Weak FOREST-Backdoor Detection is W[2]-hard. l

Tree-like SAT
instances

For every constant r > 3, Weak FOREST-Backdoor Detection is
FPT for r-CNF formulas.

There is an FPT-approximation algorithm for Strong
FOREST-Backdoor Detection.

Consequences for SAT

Backdoors to
Satisfaction:
Parameterized
Complexity

r-SAT and r-#SATare FPT parameterized by the size of a
smallest weak FOREST-backdoor.

Tree-like SAT
instances

SAT and #SAT are FPT parameterized by the size of a smallest
strong FOREST-backdoor.

More general?

Backdoors to
Satisfaction:
Parameterized
Complexity

@ Are there larger base classes with an FPT-approximation for
Strong Backdoor Detection?

Tree-like SAT
instances

25/47

Tree decompositions (by example)

Backdoors to

® Agraph G
b
/ \
q — C ——

Complexity

Tree-like SAT
instances

26/47

Tree decompositions (by example)

Backdoors to

o A graph G Satisfaction:

Parameterized

a/—b\c—d Jj
~, .
_f/ \k

\8

Tree-like SAT
instances

a,b,cl—c.del—d,e.f|—d.f,h}

26/47

Tree decompositions (by example)

Backdoors to

o A graph G Satisfaction:

Parameterized

a/—b\c—d Jj
~, .
_f/ \k

\8

Tree-like SAT
instances

a,b,cl—c.del—d,e.f|—d.f,h}

Conditions:

26/47

Tree decompositions (by example)

Backdoors to

o A graph G Satisfaction:

Parameterized

a/—b\c—d Jj
~, .
— Sy

\8

Tree-like SAT
instances

a,b,cl—c.del—d,e.f|—d.f,h}

/8

Conditions: covering

26/47

Tree decompositions (by example)

Backdoors to

BEUSEIN
@ Agraph G Parameterized
b
N
aqa —— C

Complexity

_d\h—i/]
—f/ \k
\g

Tree-like SAT
instances

a,b,cl—c.del—d,e.f|—d.f,h}

/8

Conditions: covering and connectedness.

26/47

Tree decomposition (more formally)

Backdoors to
Satisfaction:
Parameterized
Complexity

@ Let G be a graph, T a tree, and x a labeling of the nodes
of T by subsets of V(G).
@ We refer to the sets x(¢) as “bags”.
@ The pair (T, x) is a tree decomposition of G if the following
two conditions hold:
e For every edge vw € E(G) there exists a node 7 of T such that
v,w € x(r) (“covering”).
e Forevery vertex vof G, the graph T[t € V(T) : v € x(¢)] is a
non-empty (connected) tree (“connectedness”).

Tree-like SAT
instances

Treewidth

Backdoors to
Satisfaction:
Parameterized
Complexity

@ The width of a tree decomposition (7', x) is defined as the
maximum |x(z)| — 1 over all nodes ¢ of T.

@ The treewidth tw(G) of a graph G is the minimum width over
all its tree decompositions.

Tree-like SAT
instances

28/47

Treewidth of some graphs

Backdoors to
Satisfaction:
Parameterized
Complexity

@ Trees have treewidth 1.
@ Cycles have treewidth 2.
@ The complete graph on n vertices has treewidth n — 1.

Tree-like SAT
instances

29/47

Treewidth of SAT formulas

Backdoors to
Satisfaction:
Parameterized
Complexity

@ A CNF formula has treewidth ¢ if its incidence graph has
treewidth ¢.

@ W, denotes the class of all CNF formulas with treewidth at
most ¢.

Tree-like SAT
instances

30/47

Outline

Backdoors to
Satisfaction:
Parameterized
Complexity

Algorithm for
detecting strong
W;-backdoors

e Algorithm for detecting strong W,-backdoors

31/47

Outline of the FPT approximation algorithm

Backdoors to
Satisfaction:
Parameterized
Complexity

Algorithm TW-backdoor

Input: A CNF formula F and integers k,¢ > 0.

Output: A strong W,-backdoor of F of size < 2%, or
No if F has no strong W,-backdoor of size k.

if F has “small” treewidth [Bodlaender, 1996] then
Express the problem in MSO, using [Adler, Grohe, Kreutzer,
2008] [Lagergren, 1998]
Use Courcelle’s theorem [Courcelle, 1990] [Arnborg,
Lagergren, Seese, 1991]

else

Algorithm for
detecting strong
W;-backdoors

Outline of the FPT approximation algorithm

Backdoors to
Algorithm TW-backdoor Parameterzed
Input: A CNF formula F and integers k, ¢ > 0. complexty
Output: A strong W,-backdoor of F of size < 2%, or
No if F has no strong W,-backdoor of size k.

else
Compute a large wall as a topological minor [Robertson,
Seymour, Thomas '94] [Grohe, Kawarabayashi, Marx, Wollan *11]
Compute a set S of f(k, r) variables such that every strong
W,-backdoor contains at least one of these variables
foreach x € S do

B, + TW-backdoor(F[x = 1],k — 1,7)

B_, + TW-backdoor(F[x = 0],k — 1,1)

if (B, # NO) A (B—, # NO) then

| returnB,UB-, U {x}

Algorithm for
detecting strong
W;-backdoors

L return NO

33/47

(Topological) Minors

Definition ((Topological) Minor)

Let H, G be two graphs.
H is a (topological) minor of G if a graph isomorphic to H can be
obtained from G by a sequence of the following operations:

@ delete a vertex
@ delete an edge
@ contract an edge (incident to a vertex of degree 2)

P = 2

Contract the edge uv

Backdoors to
Satisfaction:
Parameterized
Complexity

Algorithm for
detecting strong
W;-backdoors

Obstructions for s

Backdoors to
Satisfaction:
Parameterized
Complexity

Algorithm for
detecting strong
W;-backdoors

Kia

35/47

Using the Topological Wall Minor

Backdoors to
Satisfaction:
Parameterized
Complexity

@ Large wall as a topological minor — many disjoint wall
obstructions

@ Each obstruction needs to be killed

Algorithm for
detecting strong
W;-backdoors

36/47

Internal and External Killers

Backdoors to
Satisfaction:
Parameterized
Complexity

Algorithm for
detecting strong
W;-backdoors

An internal killer An external killer
@ At most k& wall obstructions are killed internally.
@ = “Guess” them and discard them
@ All remaining obstructions are killed externally

Backdoors to
Satisfaction:
Parameterized
Complexity

Recall: we have many disjoint wall obstructions, and all of them
need to be killed externally.

@ > 1/2*-th of all wall obstructions are killed externally by the
same backdoor variables

@ = “Guess” this subset O of wall obstructions and the
number ¢ of backdoor variables that kill them externally

@ Denote by Z the set of common external killers of the wall
obstructions in O

Algorithm for
detecting strong
W;-backdoors

38/47

Backdoors to
Satisfaction:
Parameterized
Complexity

Recall: we have many disjoint wall obstructions, and all of them
need to be killed externally.

@ > 1/2*-th of all wall obstructions are killed externally by the
same backdoor variables

@ = “Guess” this subset O of wall obstructions and the
number ¢ of backdoor variables that kill them externally

@ Denote by Z the set of common external killers of the wall
obstructions in O

Algorithm for
detecting strong
W;-backdoors

Aim: Find a small subset S C Z such that every valid (i.e.,
respecting our guesses) strong W,-backdoor contains a vertex
from S. Then, S can be used for branching.

38/47

We have 3 rules to construct S:

39/47

Backdoors to
Satisfaction:
Parameterized
Complexity

Algorithm for
detecting strong
W;-backdoors

Backdoors to
Satisfaction:
Parameterized
Complexity

We have 3 rules to construct S:

Rule 1 (Few Common Killers). If |Z| < 6knb(r), then set S := Z.
(nb(r) = [16(r + 2)log(r + 2)])

Algorithm for
detecting strong
W;-backdoors

39/47

Backdoors to
Satisfaction:
Parameterized
Complexity

We have 3 rules to construct S:

Rule 1 (Few Common Killers). If |Z| < 6knb(r), then set S := Z.
(nb(r) = [16(r + 2)log(r + 2)])

Rule 2 (Multiple Neighborhoods). If there is a subset L C Z such
that L is the neighborhood of at least 12 + 1 vertices in B,,(0),
thenset S := L.

Algorithm for
detecting strong
W;-backdoors

39/47

Backdoors to
Satisfaction:
Parameterized
Complexity

We have 3 rules to construct S:

Rule 1 (Few Common Killers). If |Z| < 6knb(r), then set S := Z.
(nb(r) = [16(r + 2)log(r + 2)])

Rule 2 (Multiple Neighborhoods). If there is a subset L C Z such
that L is the neighborhood of at least 12 + 1 vertices in B,,(0),
thenset S := L.

Algorithm for
detecting strong
W;-backdoors

Rule 3 (No Multiple Neighborhoods). Set S to be the 6knb(r)
vertices from Z of highest degree in 5(O) (ties are broken
arbitrarily).

39/47

Backdoors to
Satisfaction:
Parameterized
Complexity

We have 3 rules to construct S:

Rule 1 (Few Common Killers). If |Z| < 6knb(r), then set S := Z.
(nb(r) = [16(r + 2)log(r + 2)])

Rule 2 (Multiple Neighborhoods). If there is a subset L C Z such
that L is the neighborhood of at least 12 + 1 vertices in B,,(0),
thenset S := L.

Algorithm for
detecting strong
W;-backdoors

Rule 3 (No Multiple Neighborhoods). Set S to be the 6knb(r)
vertices from Z of highest degree in 5(O) (ties are broken
arbitrarily).

But what are B,,(0) and B(0)?

39/47

The Beast

Backdoors to
Satisfaction:
Parameterized
Complexity

Definition (obstruction-template)
An obstruction-template OT (W) of a wall-obstruction W € O is a
triple (B(W), P,R), where
@ B(W) is a bipartite graph whose vertex set is bipartitioned
into the two independent sets Z and Qy, where Qy is a set
of new vertices,
@ Pis a partition of V(W) into regions such that for each
region A € P, we have that W[A] is connected, and

@ R: Qw — Pis a function associating a region of P with each
vertex in Qy.

Algorithm for
detecting strong
W;-backdoors

The Beast (2)

Definition (valid obstruction-template)

An obstruction-template OT(W) = (B(W), P,R) of a
wall-obstruction W € O; is valid if it satisfies the following
properties:
(1) only existing edges: for each ¢ € Qy we have that
Niw)(q) € N6(R(q)),
(2) private neighbor: for each g € Qw, there is a vertex
z € Ngw)(q), called ¢’s private neighbor, such that
there is no other ¢’ € Np(w)(z) with R(¢") = R(q),
(3) degree-Z: for each z € Z we have that dgw)(z) > 1,

(4) degree-Qy: for each g € Qw we have that
nb(r) < dgw)(q) < 3nb(z), and

(5) vulnerable vertex: for each g € Qw, there is at most one
vertex v € R(q), called ¢'s vulnerable vertex, such
that N¢(v) NZ £ NB(W)(q).

Backdoors to
Satisfaction:
Parameterized
Complexity

Algorithm for
detecting strong
W;-backdoors

The Beast (3)

Backdoors to
Satisfaction:
Parameterized
Complexity

B, (O) is obtained by taking the union of all B(W), W € O.

B(0) is obtained from B,,(O) by merging vertices from
V(B,,(0)) \ Z with identical neighborhoods.

Algorithm for
detecting strong
W;-backdoors

42/47

Computing and Taming the Beast

Backdoors to
Satisfaction:
Parameterized
Complexity

@ To identify a small § C Z intersecting every valid strong
W,-backdoor, we need to find obstructions involving S and O
for at least one assignment to every candidate backdoor of
size k avoiding S.

Algorithm for
detecting strong
W;-backdoors

43/47

Computing and Taming the Beast

Backdoors to
Satisfaction:
Parameterized
Complexity

@ To identify a small § C Z intersecting every valid strong
W,-backdoor, we need to find obstructions involving S and O
for at least one assignment to every candidate backdoor of
size k avoiding S.

@ Valid obstruction-templates model various ways to
assemble such obstructions.

Algorithm for
detecting strong
W;-backdoors

43/47

Computing and Taming the Beast

Backdoors to
Satisfaction:
Parameterized
Complexity

@ To identify a small § C Z intersecting every valid strong
W,-backdoor, we need to find obstructions involving S and O
for at least one assignment to every candidate backdoor of
size k avoiding S.

@ Valid obstruction-templates model various ways to
assemble such obstructions.

@ A valid obstruction-template can be computed in O(n?) time.

Algorithm for
detecting strong
W;-backdoors

43/47

Computing and Taming the Beast

Backdoors to
Satisfaction:
Parameterized
Complexity

@ To identify a small § C Z intersecting every valid strong
W,-backdoor, we need to find obstructions involving S and O
for at least one assignment to every candidate backdoor of
size k avoiding S.

@ Valid obstruction-templates model various ways to
assemble such obstructions.
@ A valid obstruction-template can be computed in O(n?) time.

@ We prove that for a set S constructed by our rules, a valid
W,-backdoor contains a variable from S, otherwise at least
one assignment to the backdoor produces a formula whose
incidence graph has treewidth at least ¢ + 1.

Algorithm for
detecting strong
W;-backdoors

43/47

Results for Bounded Treewidth

Backdoors to
Satisfaction:
Parameterized
Complexity

There is an FPT algorithm with parameter k + ¢ that either
concludes that F has no strong W,-backdoor of size at most k or
finds a strong W,-backdoor of F of size at most 2.

Algorithm for
detecting strong
W;-backdoors

There is a cubic-time algorithm that, given a CNF formula F,
computes the number of satisfying assignments of F or
concludes that the smallest strong W;-backdoor of F is larger
than k, for any pair of constants k,t > 0.

44/4

Related Results

Backdoors to
Satisfaction:
Parameterized
Complexity

@ Faster and simpler randomized FPT algorithm for detecting
weak FOREST-backdoors for -CNF formulas
(based on [Fomin, Lokshtanov, Misra, Saurabh, FOCS 2012])

@ Also extends to the base class W, N r-CNF

Algorithm for
detecting strong
W;-backdoors

45/47

Conclusion

Backdoors to
Satisfaction:
Parameterized
Complexity

@ Aim at explaining the good running times of SAT solvers

@ |s there a strong correlation between
“the problem is FPT w.r.t. parameter k”
and
“heuristics work well if k is small”?

@ Need simpler algorithms (randomization?)
@ |s Strong FOREST/ W,-backdoor detection FPT?
@ Combination of base classes

Algorithm for
detecting strong
W;-backdoors

46/47

Backdoors to

Satisfaction:
Parameterized
Complexity

Thank you!

Algorithm for
detecting strong
W;-backdoors

Questions? Comments?

47/47

	Backdoors
	Parameterized Complexity
	Detecting Backdoors
	Tree-like SAT instances
	Algorithm for detecting strong Wt-backdoors

