Backdoors to Satisfaction: Parameterized Complexity

Serge Gaspers

The University of New South Wales, Sydney, Australia

National ICT Australia, Sydney, Australia

First Symposium on Structure in Hard Combinatorial Problems 16-May-2013 Vienna, Austria Backdoors to Satisfaction: Parameterized Complexity

Serge Gaspers

Backdoors

Parameterized Complexity

Detecting Backdoors

Tree-like SAT instances

Algorithm for detecting strong W_t -backdoors

Outline

- 2 Parameterized Complexity
- 3 Detecting Backdoors
- 4 Tree-like SAT instances
- 5 Algorithm for detecting strong *W*_t-backdoors

イロト イポト イヨト

3

Backdoors to Satisfaction: Parameterized Complexity

Serge Gaspers

Backdoors

Parameterized Complexity

Detecting Backdoors

Tree-like SAT instances

Algorithm for detecting strong \mathcal{W}_t -backdoors

SAT	
Input:	A propositional formula <i>F</i> in conjunctive normal form (CNF)
Question:	Is there an assignment to $var(F)$ satisfying all clauses of F ?

#SAT

Input: A CNF formula *F* Question: What is the number of assignments to var(*F*) satisfying all clauses of *F*?

Example:

$$(x_1 \lor x_2) \land (\neg x_2 \lor x_3 \lor \neg x_4) \land (x_1 \lor x_4) \land (\neg x_1 \lor \neg x_3 \lor \neg x_4)$$

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

Backdoors to Satisfaction: Parameterized Complexity

Serge Gaspers

Backdoors

Parameterized Complexity

Detecting Backdoors

Tree-like SAT instances

Algorithm for detecting strong W_t -backdoors

SAT: theory vs. practice

theory

- NP-complete
- ETH: SAT cannot be solved in time 2^{o(n)}
- Strong ETH: SAT cannot be solved in time $(2 - \epsilon)^n$ for any $\epsilon > 0$

practice

- Want to solve an NP-complete problem? Just encode into SAT and use a SAT solver
- Real-world instances with millions of variables and clauses

Backdoors to Satisfaction: Parameterized Complexity

Serge Gaspers

Backdoors

Parameterized Complexity

Detecting Backdoors

Tree-like SAT instances

Algorithm for detecting strong \mathcal{W}_t -backdoors

- Belief: real world instances have a "hidden structure" that makes them easy to solve
- Challenge: measure and identify this hidden structure
- One way: Backdoor = set of "key" variables that make it easy to solve the formula

Backdoors to Satisfaction: Parameterized Complexity

Serge Gaspers

Backdoors

Parameterized Complexity

Detecting Backdoors

Tree-like SAT instances

Algorithm for detecting strong W_t -backdoors

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

Backdoors

- CNF formula F
- Set of variables B ⊆ var(F)
- For a truth assignment *τ* to *B*, the reduced formula *F*[*τ*] is obtained from *F* by removing all clauses satisfied by *τ* and removing all remaining literals on *B* from the other clauses
- Base class C: class of poly-time solvable CNF formulas

Definition (Weak Backdoor [Williams, Gomes, Selman, 2003])

B is a weak *C*-backdoor for *F* if there is a truth assignment τ to *B* such that $F[\tau] \in C$ and $F[\tau]$ is satisfiable.

Definition (Strong Backdoor [Williams, Gomes, Selman, 2003])

B is a strong *C*-backdoor for *F* if for every truth assignment τ to *B* we have $F[\tau] \in C$.

Backdoors to Satisfaction: Parameterized Complexity

Serge Gaspers

Backdoors

Parameterized Complexity

Detecting Backdoors

Tree-like SAT instances

Algorithm for detecting strong W_t -backdoors

Backdoors

- CNF formula F
- Set of variables B ⊆ var(F)
- For a truth assignment *τ* to *B*, the reduced formula *F*[*τ*] is obtained from *F* by removing all clauses satisfied by *τ* and removing all remaining literals on *B* from the other clauses
- Base class C: class of poly-time solvable CNF formulas

Definition (Weak Backdoor [Williams, Gomes, Selman, 2003])

B is a weak *C*-backdoor for *F* if there is a truth assignment τ to *B* such that $F[\tau] \in C$ and $F[\tau]$ is satisfiable.

Definition (Strong Backdoor [Williams, Gomes, Selman, 2003])

B is a strong *C*-backdoor for *F* if for every truth assignment τ to *B* we have $F[\tau] \in C$.

Backdoors to Satisfaction: Parameterized Complexity

Serge Gaspers

Backdoors

Parameterized Complexity

Detecting Backdoors

Tree-like SAT instances

Algorithm for detecting strong \mathcal{W}_t -backdoors

Backdoors

- CNF formula F
- Set of variables B ⊆ var(F)
- For a truth assignment *τ* to *B*, the reduced formula *F*[*τ*] is obtained from *F* by removing all clauses satisfied by *τ* and removing all remaining literals on *B* from the other clauses
- Base class C: class of poly-time solvable CNF formulas

Definition (Weak Backdoor [Williams, Gomes, Selman, 2003])

B is a weak *C*-backdoor for *F* if there is a truth assignment τ to *B* such that $F[\tau] \in C$ and $F[\tau]$ is satisfiable.

Definition (Strong Backdoor [Williams, Gomes, Selman, 2003])

B is a strong *C*-backdoor for *F* if for every truth assignment τ to *B* we have $F[\tau] \in C$.

Backdoors to Satisfaction: Parameterized Complexity

Serge Gaspers

Backdoors

Parameterized Complexity

Detecting Backdoors

Tree-like SAT instances

Algorithm for detecting strong \mathcal{W}_t -backdoors

Experimental results

Table 4. Size, percentage, and number of small backdoors found by the local search algorithms within a cutoff of 3 hours when applied to real-world instances with n variables (n < 10,000) and m clauses.

			Kilby	ć	KilbyIn	мР	Tabu	
Instance	n	m	BD size $(\%)$	# BDs	BD size $(\%)$	# BDs	BD size (%)	# BDs
SAT Competition 2002								
apex7_gr_rcs_w5.shuffled	1500	11136	77 (5.13%)	1	47~(3.13%)	4	53 (3.53%)	42885
dp10s10.shuffled	8372	8557	9 (0.11%)	10520	9 (0.11%)	9573	9 (0.11%)	59399
bart11.shuffled	162	675	15 (9.26%)	4190	14 (8.64%)	2903	$14 \ (8.64\%)$	45044
SAT-Race 2005 and 2008	8							
grieu-vmpc-s05-24s	576	49478	3(0.52%)	143	3 (0.52%)	143	3(0.52%)	143
grieu-vmpc-s05-27r	729	71380	4 (0.55%)	710	4 (0.55%)	660	4 (0.55%)	3271
simon-mixed-s02bis-01	2424	13793	8 (0.33%)	566	8 (0.33%)	566	8 (0.33%)	10440
simon-s02b-r4b1k1.2	2424	13811	8 (0.33%)	394	7 (0.29%)	3	7 (0.29%)	16
Blocks world planning								
bw_large.c	3016	50237	4 (0.13%)	1934	3~(0.10%)	15	3 (0.10%)	15
bw_large.d	6325	131607	6 (0.10%)	790	5 (0.08%)	69	6 (0.10%)	640
Logistics planning								
logistics.a	828	3116	20 (2.42%)	147	20~(2.42%)	6675	24 (2.90%)	584257
logistics.b	843	3480	16(1.90%)	1688	15~(1.78%)	9789	16 (1.90%)	7634
logistics.c	1141	5867	26(2.28%)	18	25~(2.19%)	387	28 (2.45%)	424467
logistics.d	4713	16588	25~(0.53%)	39	22~(0.47%)	61	28 (0.59%)	36610

[Li, van Beek, 2011] weak backdoors to UP+2CNF+1-VAL+0-VAL

Weak (Strong) C-Backdoor Detection

Input: A CNF formula *F*, an integer *k* Question: Does *F* have a weak (strong) *C*-backdoor of size at most *k*?

Weak (Strong) C-Backdoor Evaluation

Input:	A CNF formula F , a weak (strong) C -backdoor
	В
Question:	Is F satisfiable?

Backdoors to Satisfaction: Parameterized Complexity

Serge Gaspers

Backdoors

Parameterized Complexity

Detecting Backdoors

Tree-like SAT instances

Algorithm for detecting strong W_t -backdoors

(日)

Outline

Backdoors

- 2 Parameterized Complexity
- 3 Detecting Backdoors
- 4 Tree-like SAT instances

5 Algorithm for detecting strong W_t-backdoors

イロト イポト イヨト

3

Backdoors to Satisfaction: Parameterized Complexity

Serge Gaspers

Backdoors

Parameterized Complexity

Detecting Backdoors

Tree-like SAT instances

Algorithm for detecting strong W_l -backdoors "complexity is not governed by the instance size alone"

Definition (Parameterized problem)

A parameterized decision problem is a subset of $\Sigma^* \times \mathbb{N}$ for some finite alphabet Σ . For an instance $(x, k) \in \Sigma^* \times \mathbb{N}$, *x* is the main part and *k* the parameter.

FPT: class of param. pbs that can be solved in time $f(k) \cdot n^{O(1)}$ W[·]: parameterized intractability classes XP: class of param. pbs that can be solved in time $f(k) \cdot n^{g(k)}$

 $\mathsf{FPT} \subseteq \mathsf{W}[1] \subseteq \mathsf{W}[2] \subseteq \dots \mathsf{XP}.$

All inclusions believed to be strict.

Backdoors to Satisfaction: Parameterized Complexity

Serge Gaspers

Backdoors

Parameterized Complexity

Detecting Backdoors

Tree-like SAT instances

Algorithm for detecting strong \mathcal{W}_t -backdoors

Parameterized Backdoor Problems

Weak (Strong)	C-Backdoor	Detection
--------	---------	------------	-----------

Input:A CNF formula F, an integer kParameter:kQuestion:Does F have a weak (strong) C-backdoor of
size at most k?

Weak (Strong) C-Backdoor Evaluation				
Input:	A CNF formula F, a weak (strong) C-backdoor			
	В			
Parameter:	k = B			
Question:	ls F satisfiable?			

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

Backdoors to Satisfaction: Parameterized Complexity

Serge Gaspers

Backdoors

Parameterized Complexity

Detecting Backdoors

Tree-like SAT instances

Algorithm for detecting strong \mathcal{W}_t -backdoors

Weak Backdoor Detection

Simple Weak C-Backdoor Detection Algorithm Input: A CNF formula F and an integer k. Output: YES if F has a weak C-backdoor of size k, and No otherwise.

```
foreach subset B \subseteq var(F) with |B| = k do
foreach assignment \tau : B \to \{0, 1\} do
if F[\tau] \in C then
if F[\tau] is satisfiable then
\bot return YES
return NO
```

• run time:
$$\binom{n}{k} \cdot 2^k \cdot n^{O(1)} = n^{k+O(1)}$$

XP-algorithm

Backdoors to Satisfaction: Parameterized Complexity

Serge Gaspers

Backdoors

Parameterized Complexity

Detecting Backdoors

Tree-like SAT instances

Algorithm for detecting strong *W*_t-backdoors

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ □臣 | のへで

Weak Backdoor Detection

Simple Weak C-Backdoor Detection Algorithm Input: A CNF formula F and an integer k. Output: YES if F has a weak C-backdoor of size k, and No otherwise.

return No

- run time: $\binom{n}{k} \cdot 2^k \cdot n^{O(1)} = n^{k+O(1)}$
- XP-algorithm

Backdoors to Satisfaction: Parameterized Complexity

Serge Gaspers

Backdoors

Parameterized Complexity

Detecting Backdoors

Tree-like SAT instances

Algorithm for detecting strong *W*_t-backdoors

▲□▶▲□▶▲□▶▲□▶ = ● のへの

```
Simple Strong C-Backdoor Detection Algorithm
Input: A CNF formula F and an integer k.
Output: YES if F has a strong C-backdoor of size k, and
        No otherwise.
foreach subset B \subset var(F) with |B| = k do
    valid ← true
    foreach assignment \tau : B \to \{0, 1\} do
         if F[\tau] \notin C then
          if valid then
     Feturn YES
return No
```

```
• run time: \binom{n}{k} \cdot 2^k \cdot n^{O(1)} = n^{k+O(1)}
```

```
• XP-algorithm
```

Backdoors to Satisfaction: Parameterized Complexity

Serge Gaspers

Backdoors

Parameterized Complexity

Detecting Backdoors

Tree-like SAT instances

Algorithm for detecting strong *W*_t-backdoors

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

```
Simple Strong C-Backdoor Detection Algorithm
Input: A CNF formula F and an integer k.
Output: YES if F has a strong C-backdoor of size k, and
        No otherwise.
foreach subset B \subset var(F) with |B| = k do
    valid ← true
    foreach assignment \tau : B \to \{0, 1\} do
         if F[\tau] \notin C then
          if valid then
     Feturn YES
return No
```

Backdoors to Satisfaction: Parameterized

Complexity

Parameterized Complexity

```
• run time: \binom{n}{k} \cdot 2^k \cdot n^{O(1)} = n^{k+O(1)}
```

```
• XP-algorithm
```

13/47

Backdoor Evaluation

Simple C-Backdoor Evaluation Algorithm **Input**: A CNF formula F and a weak or strong C-backdoor B of size k. **Output:** YES if F is satisfiable, and No otherwise. foreach assignment $\tau : B \to \{0, 1\}$ do if $F[\tau] \in \mathcal{C}$ then /* not necessary for strong */if $F[\tau]$ is satisfiable then **return** YES return No /* not possible for weak */

Backdoors to Satisfaction: Parameterized Complexity

Serge Gaspers

Backdoors

Parameterized Complexity

Detecting Backdoors

Tree-like SAT instances

Algorithm for detecting strong W_t -backdoors

```
• run time: 2^k \cdot n^{O(1)}
```

• FPT-algorithm

Backdoor Evaluation

Simple C-Backdoor Evaluation Algorithm **Input**: A CNF formula F and a weak or strong C-backdoor B of size k. **Output:** YES if F is satisfiable, and No otherwise. foreach assignment $\tau : B \to \{0, 1\}$ do if $F[\tau] \in \mathcal{C}$ then /* not necessary for strong */if $F[\tau]$ is satisfiable then **return** YES return No /* not possible for weak */

Backdoors to Satisfaction: Parameterized Complexity

Parameterized Complexity

- run time: $2^k \cdot n^{O(1)}$
- FPT-algorithm

Consequences for SAT

- The challenging part is Backdoor Detection.
- If Weak (Strong) *C*-Backdoor Detection is FPT, then SAT is FPT parameterized by the size of a smallest weak (strong) *C*-backdoor.

Backdoors to Satisfaction: Parameterized Complexity

Serge Gaspers

Backdoors

Parameterized Complexity

Detecting Backdoors

Tree-like SAT instances

Algorithm for detecting strong W_t -backdoors

Outline

Backdoors

- 2 Parameterized Complexity
- 3 Detecting Backdoors
- 4 Tree-like SAT instances

5 Algorithm for detecting strong W_t-backdoors

イロト イポト イヨト

3

Backdoors to Satisfaction: Parameterized Complexity

Serge Gaspers

Backdoors

Parameterized Complexity

Detecting Backdoors

Tree-like SAT instances

Algorithm for detecting strong \mathcal{W}_t -backdoors

Detecting backdoors to some base classes

	We	eak	Strong		
Base Class	CNF	<i>r</i> -CNF	CNF	<i>r</i> -CNF	
Horn 2CNF UP RHorn Clu	W[2]-h W[2]-h W[2]-h W[2]-h W[2]-h	FPT FPT W[<i>P</i>]-c W[2]-h FPT	FPT FPT W[<i>P</i>]-c W[2]-h W[2]-h	FPT FPT W[<i>P</i>]-c open FPT	

The parameterized complexity of finding weak and strong backdoor sets of CNF formulas and *r*-CNF formulas, where $r \ge 3$ is a fixed integer.

Results by: [Nishimura, Ragde, Szeider, 2004] [Szeider, 2005] [Nishimura, Ragde, Szeider, 2007] [Gaspers, Szeider, 2012] See [Gaspers, Szeider, 2012] for a survey. Backdoors to Satisfaction: Parameterized Complexity

Serge Gaspers

Backdoors

Parameterized Complexity

Detecting Backdoors

Tree-like SAT instances

Algorithm for detecting strong \mathcal{W}_t -backdoors

What does this tell us?

FPT cases

- There is an algorithm with running time $f(k) \cdot n^{O(1)}$ that either finds a backdoor of size k, or determines that no such backdoor exists
- If the instance has a small backdoor, there is at least one efficient way to find it (maybe many efficient ways)

• W[·]-hard cases

- There is probably no algorithm with running time $f(k) \cdot n^{O(1)}$ that either finds a backdoor of size k, or determines that no such backdoor exists
- There are instances with small backdoors of size *k*, but probably no efficient way to find these backdoors
- Maybe a backdoor of size k + 1 can still be found efficiently
 ... or one of size 2^k?

Backdoors to Satisfaction: Parameterized Complexity

Serge Gaspers

Backdoors

Parameterized Complexity

Detecting Backdoors

Tree-like SAT instances

Algorithm for detecting strong W_t -backdoors

FPT Approximation

Definition ([Downey, Fellows, McCartin, 2006])

A parameterized algorithm is an FPT-approximation algorithm for a minimization problem if there exist functions f, g such that on input (x, k), the algorithm has running time $f(k) \cdot n^{O(1)}$ and it either

- determines that (x, k) is a No-instance, or
- determines that (x, k') is a YES-instance for some $k' \leq g(k)$

(ロ)、(型)、(型)、(型)、(型)、(Q)()

Backdoors to Satisfaction: Parameterized Complexity

Serge Gaspers

Backdoors

Parameterized Complexity

Detecting Backdoors

Tree-like SAT instances

Algorithm for detecting strong W_l -backdoors

Outline

Backdoors

- 2 Parameterized Complexity
- 3 Detecting Backdoors
- 4 Tree-like SAT instances

5 Algorithm for detecting strong *W*_t-backdoors

Backdoors to Satisfaction: Parameterized Complexity

Serge Gaspers

Backdoors

Parameterized Complexity

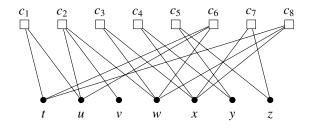
Detecting Backdoors

Tree-like SAT instances

Algorithm for detecting strong \mathcal{W}_t -backdoors

(日)

Incidence graph



Incidence graph of the formula $F = \bigwedge_{i=1}^{8} c_i$ with

$$c_1 = t \lor \neg u, \quad c_2 = u \lor v \lor w, \quad c_3 = w \lor x, \quad c_4 = x \lor \neg y, \\ c_5 = y \lor \neg z, \quad c_6 = t \lor u \lor \neg w, \quad c_7 = \neg x \lor z, \quad c_8 = \neg t \lor w \lor x$$

Backdoors to Satisfaction: Parameterized Complexity

Serge Gaspers

Backdoors

Parameterized Complexity

Detecting Backdoors

Tree-like SAT instances

Algorithm for detecting strong W_t -backdoors

◆□ > ◆□ > ◆ Ξ > ◆ Ξ > → Ξ → のへで

Acyclic SAT formulas

Definition

A SAT formula is acyclic if its incidence graph has no cycle.

Definition

FOREST denotes the class of all acyclic SAT formulas

Backdoors to Satisfaction: Parameterized Complexity

Serge Gaspers

Backdoors

Parameterizec Complexity

Detecting Backdoors

Tree-like SAT instances

Algorithm for detecting strong W_t -backdoors

(日)

Results for FOREST-backdoors

Theorem ([Gaspers, Szeider, ICALP 2012])

Weak FOREST-Backdoor Detection is W[2]-hard.

Theorem ([Gaspers, Szeider, ICALP 2012])

For every constant $r \ge 3$, Weak FOREST-Backdoor Detection is FPT for *r*-CNF formulas.

Theorem ([Gaspers, Szeider, ICALP 2012])

There is an FPT*-approximation algorithm for Strong* FOREST*-Backdoor Detection.*

Backdoors to Satisfaction: Parameterized Complexity

Serge Gaspers

Backdoors

Parameterized Complexity

Detecting Backdoors

Tree-like SAT instances

Algorithm for detecting strong W_t -backdoors

Consequences for SAT

Corollary ([Gaspers, Szeider, ICALP 2012])

r-SAT and *r-*#SATare FPT parameterized by the size of a smallest weak FOREST-backdoor.

Corollary ([Gaspers, Szeider, ICALP 2012])

SAT and #SAT are FPT parameterized by the size of a smallest strong FOREST-backdoor.

Backdoors to Satisfaction: Parameterized Complexity

Serge Gaspers

Backdoors

Parameterized Complexity

Detecting Backdoors

Tree-like SAT instances

Algorithm for detecting strong W_t -backdoors

 Are there larger base classes with an FPT-approximation for Strong Backdoor Detection? Backdoors to Satisfaction: Parameterized Complexity

Serge Gaspers

Backdoors

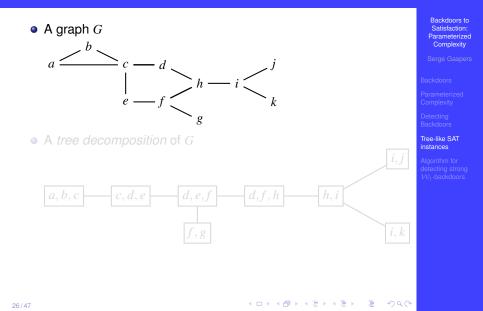
Parameterized Complexity

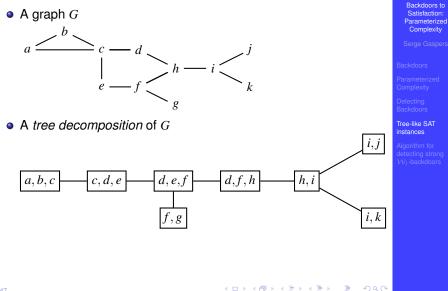
Detecting Backdoors

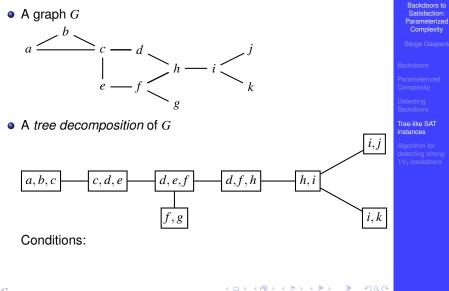
Tree-like SAT instances

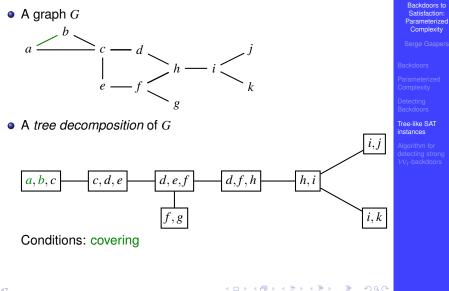
Algorithm for detecting strong \mathcal{W}_t -backdoors

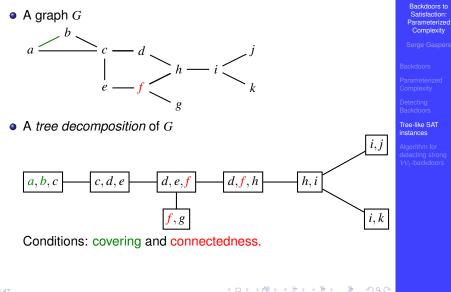
▲□▶▲□▶▲□▶▲□▶ □ のQ@











Tree decomposition (more formally)

- Let G be a graph, T a tree, and χ a labeling of the nodes of T by subsets of V(G).
- We refer to the sets $\chi(t)$ as "bags".
- The pair (*T*, *χ*) is a tree decomposition of *G* if the following two conditions hold:
 - For every edge $vw \in E(G)$ there exists a node *t* of *T* such that $v, w \in \chi(t)$ ("covering").

 For every vertex v of G, the graph T[t ∈ V(T) : v ∈ χ(t)] is a non-empty (connected) tree ("connectedness"). Backdoors to Satisfaction: Parameterized Complexity

Serge Gaspers

Backdoors

Parameterized Complexity

Detecting Backdoors

Tree-like SAT instances

Algorithm for detecting strong W_t -backdoors

- The width of a tree decomposition (*T*, χ) is defined as the maximum |χ(t)| − 1 over all nodes t of T.
- The treewidth tw(*G*) of a graph *G* is the minimum width over all its tree decompositions.

Backdoors to Satisfaction: Parameterized Complexity

Serge Gaspers

Backdoors

Parameterized Complexity

Detecting Backdoors

Tree-like SAT instances

Algorithm for detecting strong W_t -backdoors

(日)

Treewidth of some graphs

- Trees have treewidth 1.
- Cycles have treewidth 2.
- The complete graph on n vertices has treewidth n 1.

・ロト ・ (理 ト ・ ヨ ト ・ ヨ ト ・ ヨ ・

Backdoors to Satisfaction: Parameterized Complexity

Serge Gaspers

Backdoors

Parameterized Complexity

Detecting Backdoors

Tree-like SAT instances

Treewidth of SAT formulas

- A CNF formula has treewidth *t* if its incidence graph has treewidth *t*.
- *W_t* denotes the class of all CNF formulas with treewidth at most *t*.

Backdoors to Satisfaction: Parameterized Complexity

Serge Gaspers

Backdoors

Parameterized Complexity

Detecting Backdoors

Tree-like SAT instances

Algorithm for detecting strong W_t -backdoors

▲□▶▲□▶▲□▶▲□▶ □ のQ@

Outline

Backdoors

- 2 Parameterized Complexity
- 3 Detecting Backdoors
- 4 Tree-like SAT instances

5 Algorithm for detecting strong *W*_t-backdoors

Backdoors to Satisfaction: Parameterized Complexity

Serge Gaspers

Backdoors

Parameterized Complexity

Detecting Backdoors

Tree-like SAT instances

Algorithm for detecting strong W_t -backdoors

- 日本 - 4 日本 - 4 日本 - 日本

Algorithm TW-backdoor

Input: A CNF formula *F* and integers $k, t \ge 0$. **Output**: A strong W_t -backdoor of *F* of size $\le 2^k$, or No if *F* has no strong W_t -backdoor of size *k*.

if *F* has "small" treewidth [Bodlaender, 1996] then Express the problem in MSO₂ using [Adler, Grohe, Kreutzer, 2008] [Lagergren, 1998] Use Courcelle's theorem [Courcelle, 1990] [Arnborg, Lagergren, Seese, 1991]

・ロト ・ 母 ト ・ ヨ ト ・ ヨ ト

else

_ ···

Backdoors to Satisfaction: Parameterized Complexity

Serge Gaspers

Backdoors

Parameterized Complexity

Detecting Backdoors

Tree-like SAT instances

Outline of the FPT approximation algorithm

Algorithm TW-backdoor

Input: A CNF formula *F* and integers $k, t \ge 0$. **Output**: A strong W_t -backdoor of *F* of size $\le 2^k$, or No if *F* has no strong W_t -backdoor of size *k*.

else

Backdoors to Satisfaction: Parameterized Complexity

Serge Gaspers

Backdoors

Parameterized Complexity

Detecting Backdoors

Tree-like SAT instances

Algorithm for detecting strong \mathcal{W}_t -backdoors

(Topological) Minors

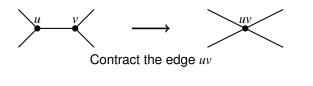
Definition ((Topological) Minor)

Let H, G be two graphs.

H is a (topological) minor of *G* if a graph isomorphic to *H* can be obtained from G by a sequence of the following operations:

- o delete a vertex
- delete an edge

contract an edge (incident to a vertex of degree 2)



Backdoors to Satisfaction: Parameterized Complexity

Serge Gaspers

Backdoors

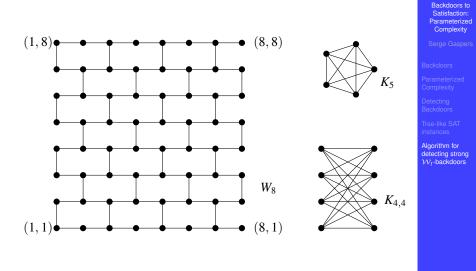
Parameterized Complexity

Detecting Backdoors

Tree-like SAT instances

Algorithm for detecting strong \mathcal{W}_t -backdoors

Obstructions for \mathcal{W}_3



・ロト ・四ト ・ヨト ・ヨト ・ヨ

35/47

Using the Topological Wall Minor

- \bullet Large wall as a topological minor \rightarrow many disjoint wall obstructions
- Each obstruction needs to be killed

Backdoors to Satisfaction: Parameterized Complexity

Serge Gaspers

Backdoors

Parameterized Complexity

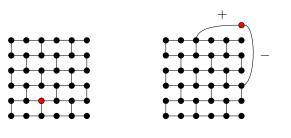
Detecting Backdoors

Tree-like SAT instances

Algorithm for detecting strong W_t -backdoors

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

Internal and External Killers



An internal killer

An external killer

- At most k wall obstructions are killed internally.
- \Rightarrow "Guess" them and discard them
- All remaining obstructions are killed externally

Backdoors to Satisfaction: Parameterized Complexity

Serge Gaspers

Backdoors

Parameterized Complexity

Detecting Backdoors

Tree-like SAT instances

Recall: we have many disjoint wall obstructions, and all of them need to be killed externally.

- $\geq 1/2^k$ -th of all wall obstructions are killed externally by the same backdoor variables
- ⇒ "Guess" this subset O of wall obstructions and the number ℓ of backdoor variables that kill them externally
- Denote by Z the set of common external killers of the wall obstructions in O

Aim: Find a small subset $S \subseteq Z$ such that every valid (i.e., respecting our guesses) strong W_t -backdoor contains a vertex from *S*. Then, *S* can be used for branching.

Backdoors to Satisfaction: Parameterized Complexity

Serge Gaspers

Backdoors

Parameterized Complexity

Detecting Backdoors

Tree-like SAT instances

Algorithm for detecting strong \mathcal{W}_t -backdoors

Recall: we have many disjoint wall obstructions, and all of them need to be killed externally.

- $\geq 1/2^k$ -th of all wall obstructions are killed externally by the same backdoor variables
- ⇒ "Guess" this subset O of wall obstructions and the number ℓ of backdoor variables that kill them externally
- Denote by Z the set of common external killers of the wall obstructions in O

Aim: Find a small subset $S \subseteq Z$ such that every valid (i.e., respecting our guesses) strong W_t -backdoor contains a vertex from *S*. Then, *S* can be used for branching.

Backdoors to Satisfaction: Parameterized Complexity

Serge Gaspers

Backdoors

Parameterized Complexity

Detecting Backdoors

Tree-like SAT instances

Rule 1 (Few Common Killers). If $|Z| \le 6knb(t)$, then set S := Z. ($nb(t) = \lceil 16(t+2)log(t+2) \rceil$)

Rule 2 (Multiple Neighborhoods). If there is a subset $L \subseteq Z$ such that *L* is the neighborhood of at least $t2^{\ell} + 1$ vertices in $\mathcal{B}_m(\mathcal{O})$, then set S := L.

Rule 3 (No Multiple Neighborhoods). Set *S* to be the 6knb(t) vertices from *Z* of highest degree in $\mathcal{B}(\mathcal{O})$ (ties are broken arbitrarily).

But what are $\mathcal{B}_m(\mathcal{O})$ and $\mathcal{B}(\mathcal{O})$?

・ロト ・ (理 ト ・ ヨ ト ・ ヨ ト ・ ヨ ・

Backdoors to Satisfaction: Parameterized Complexity

Serge Gaspers

Backdoors

Parameterized Complexity

Detecting Backdoors

Tree-like SAT instances

Rule 1 (Few Common Killers). If $|Z| \le 6knb(t)$, then set S := Z. (nb(t) = $\lceil 16(t+2)log(t+2) \rceil$)

Rule 2 (Multiple Neighborhoods). If there is a subset $L \subseteq Z$ such that L is the neighborhood of at least $t2^{\ell} + 1$ vertices in $\mathcal{B}_m(\mathcal{O})$, then set S := L.

Rule 3 (No Multiple Neighborhoods). Set *S* to be the 6knb(t) vertices from *Z* of highest degree in $\mathcal{B}(\mathcal{O})$ (ties are broken arbitrarily).

But what are $\mathcal{B}_m(\mathcal{O})$ and $\mathcal{B}(\mathcal{O})$?

・ロト ・ 母 ト ・ ヨ ト ・ ヨ ト

Backdoors to Satisfaction: Parameterized Complexity

Serge Gaspers

Backdoors

Parameterized Complexity

Detecting Backdoors

Tree-like SAT instances

Rule 1 (Few Common Killers). If $|Z| \le 6knb(t)$, then set S := Z. (nb(t) = $\lceil 16(t+2)log(t+2) \rceil$)

Rule 2 (Multiple Neighborhoods). If there is a subset $L \subseteq Z$ such that L is the neighborhood of at least $t2^{\ell} + 1$ vertices in $\mathcal{B}_m(\mathcal{O})$, then set S := L.

Rule 3 (No Multiple Neighborhoods). Set *S* to be the 6knb(t) vertices from *Z* of highest degree in $\mathcal{B}(\mathcal{O})$ (ties are broken arbitrarily).

But what are $\mathcal{B}_m(\mathcal{O})$ and $\mathcal{B}(\mathcal{O})$?

Backdoors to Satisfaction: Parameterized Complexity

Serge Gaspers

Backdoors

Parameterized Complexity

Detecting Backdoors

Tree-like SAT instances

Rule 1 (Few Common Killers). If $|Z| \le 6knb(t)$, then set S := Z. (nb(t) = $\lceil 16(t+2)log(t+2) \rceil$)

Rule 2 (Multiple Neighborhoods). If there is a subset $L \subseteq Z$ such that L is the neighborhood of at least $t2^{\ell} + 1$ vertices in $\mathcal{B}_m(\mathcal{O})$, then set S := L.

Rule 3 (No Multiple Neighborhoods). Set *S* to be the 6knb(t) vertices from *Z* of highest degree in $\mathcal{B}(\mathcal{O})$ (ties are broken arbitrarily).

But what are $\mathcal{B}_m(\mathcal{O})$ and $\mathcal{B}(\mathcal{O})$?

Backdoors to Satisfaction: Parameterized Complexity

Serge Gaspers

Backdoors

Parameterized Complexity

Detecting Backdoors

Tree-like SAT instances

Rule 1 (Few Common Killers). If $|Z| \le 6knb(t)$, then set S := Z. (nb(t) = $\lceil 16(t+2)log(t+2) \rceil$)

Rule 2 (Multiple Neighborhoods). If there is a subset $L \subseteq Z$ such that L is the neighborhood of at least $t2^{\ell} + 1$ vertices in $\mathcal{B}_m(\mathcal{O})$, then set S := L.

Rule 3 (No Multiple Neighborhoods). Set *S* to be the 6knb(t) vertices from *Z* of highest degree in $\mathcal{B}(\mathcal{O})$ (ties are broken arbitrarily).

But what are $\mathcal{B}_m(\mathcal{O})$ and $\mathcal{B}(\mathcal{O})$?

Backdoors to Satisfaction: Parameterized Complexity

Serge Gaspers

Backdoors

Parameterized Complexity

Detecting Backdoors

Tree-like SAT instances

Definition (obstruction-template)

An obstruction-template OT(W) of a wall-obstruction $W \in O$ is a triple $(\mathcal{B}(W), P, R)$, where

- $\mathcal{B}(W)$ is a bipartite graph whose vertex set is bipartitioned into the two independent sets *Z* and *Q*_W, where *Q*_W is a set of new vertices,
- *P* is a partition of *V*(*W*) into *regions* such that for each region *A* ∈ *P*, we have that *W*[*A*] is connected, and
- *R* : *Q_W* → *P* is a function associating a region of *P* with each vertex in *Q_W*.

Backdoors to Satisfaction: Parameterized Complexity

Serge Gaspers

Backdoors

Parameterized Complexity

Detecting Backdoors

Tree-like SAT instances

Algorithm for detecting strong \mathcal{W}_t -backdoors

The Beast (2)

Definition (valid obstruction-template)

An obstruction-template $OT(W) = (\mathcal{B}(W), P, R)$ of a wall-obstruction $W \in \mathcal{O}_s$ is *valid* if it satisfies the following properties:

(1) only existing edges: for each $q \in Q_W$ we have that $N_{\mathcal{B}(W)}(q) \subseteq N_G(R(q)),$

(2) private neighbor: for each $q \in Q_W$, there is a vertex $z \in N_{\mathcal{B}(W)}(q)$, called *q*'s *private neighbor*, such that there is no other $q' \in N_{\mathcal{B}(W)}(z)$ with R(q') = R(q),

(3) degree-*Z*: for each $z \in Z$ we have that $d_{\mathcal{B}(W)}(z) \ge 1$,

(4) degree-
$$Q_W$$
: for each $q \in Q_W$ we have that $\mathsf{nb}(t) \le d_{\mathcal{B}(W)}(q) \le 3\mathsf{nb}(t)$, and

(5) vulnerable vertex: for each $q \in Q_W$, there is at most one vertex $v \in R(q)$, called *q*'s *vulnerable vertex*, such that $N_G(v) \cap Z \not\subseteq N_{\mathcal{B}(W)}(q)$.

Backdoors to Satisfaction: Parameterized Complexity

Serge Gaspers

Backdoors

Parameterized Complexity

Detecting Backdoors

Tree-like SAT instances

Algorithm for detecting strong \mathcal{W}_t -backdoors

$\mathcal{B}_m(\mathcal{O})$ is obtained by taking the union of all $\mathcal{B}(W), W \in \mathcal{O}$.

 $\mathcal{B}(\mathcal{O})$ is obtained from $\mathcal{B}_m(\mathcal{O})$ by merging vertices from $V(\mathcal{B}_m(\mathcal{O})) \setminus Z$ with identical neighborhoods.

Backdoors to Satisfaction: Parameterized Complexity

Serge Gaspers

Backdoors

Parameterized Complexity

Detecting Backdoors

Tree-like SAT instances

Algorithm for detecting strong W_t -backdoors

(日)

- To identify a small S ⊆ Z intersecting every valid strong W_t-backdoor, we need to find obstructions involving S and O for at least one assignment to every candidate backdoor of size k avoiding S.
- Valid obstruction-templates model various ways to assemble such obstructions.
- A valid obstruction-template can be computed in $O(n^2)$ time.
- We prove that for a set *S* constructed by our rules, a valid W_r -backdoor contains a variable from *S*, otherwise at least one assignment to the backdoor produces a formula whose incidence graph has treewidth at least t + 1.

Backdoors to Satisfaction: Parameterized Complexity

Serge Gaspers

Backdoors

Parameterized Complexity

Detecting Backdoors

Tree-like SAT instances

- To identify a small S ⊆ Z intersecting every valid strong W_t-backdoor, we need to find obstructions involving S and O for at least one assignment to every candidate backdoor of size k avoiding S.
- Valid obstruction-templates model various ways to assemble such obstructions.
- A valid obstruction-template can be computed in $O(n^2)$ time.
- We prove that for a set *S* constructed by our rules, a valid W_t -backdoor contains a variable from *S*, otherwise at least one assignment to the backdoor produces a formula whose incidence graph has treewidth at least t + 1.

Backdoors to Satisfaction: Parameterized Complexity

Serge Gaspers

Backdoors

Parameterized Complexity

Detecting Backdoors

Tree-like SAT instances

- To identify a small S ⊆ Z intersecting every valid strong W_t-backdoor, we need to find obstructions involving S and O for at least one assignment to every candidate backdoor of size k avoiding S.
- Valid obstruction-templates model various ways to assemble such obstructions.
- A valid obstruction-template can be computed in $O(n^2)$ time.
- We prove that for a set *S* constructed by our rules, a valid W_t -backdoor contains a variable from *S*, otherwise at least one assignment to the backdoor produces a formula whose incidence graph has treewidth at least t + 1.

Backdoors to Satisfaction: Parameterized Complexity

Serge Gaspers

Backdoors

Parameterized Complexity

Detecting Backdoors

Tree-like SAT instances

- To identify a small S ⊆ Z intersecting every valid strong W_t-backdoor, we need to find obstructions involving S and O for at least one assignment to every candidate backdoor of size k avoiding S.
- Valid obstruction-templates model various ways to assemble such obstructions.
- A valid obstruction-template can be computed in $O(n^2)$ time.
- We prove that for a set *S* constructed by our rules, a valid W_t -backdoor contains a variable from *S*, otherwise at least one assignment to the backdoor produces a formula whose incidence graph has treewidth at least t + 1.

Backdoors to Satisfaction: Parameterized Complexity

Serge Gaspers

Backdoors

Parameterized Complexity

Detecting Backdoors

Tree-like SAT instances

Results for Bounded Treewidth

Theorem ([Gaspers, Szeider, 2012])

There is an FPT algorithm with parameter k + t that either concludes that F has no strong W_t -backdoor of size at most k or finds a strong W_t -backdoor of F of size at most 2^k .

Corollary ([Gaspers, Szeider, 2012])

There is a cubic-time algorithm that, given a CNF formula F, computes the number of satisfying assignments of F or concludes that the smallest strong W_t -backdoor of F is larger than k, for any pair of constants $k, t \ge 0$.

Backdoors to Satisfaction: Parameterized Complexity

Serge Gaspers

Backdoors

Parameterized Complexity

Detecting Backdoors

Tree-like SAT instances

- Faster and simpler randomized FPT algorithm for detecting weak FOREST-backdoors for *r*-CNF formulas (based on [Fomin, Lokshtanov, Misra, Saurabh, FOCS 2012])
- Also extends to the base class W_t ∩ r-CNF

Backdoors to Satisfaction: Parameterized Complexity

Serge Gaspers

Backdoors

Parameterized Complexity

Detecting Backdoors

Tree-like SAT instances

Algorithm for detecting strong W_t -backdoors

Conclusion

- Aim at explaining the good running times of SAT solvers
- Is there a strong correlation between "the problem is FPT w.r.t. parameter k" and
 "bouristics work well if k is small"?
 - "heuristics work well if k is small"?
- Need simpler algorithms (randomization?)
- Is Strong FOREST/ *W*_t-backdoor detection FPT?
- Combination of base classes

Backdoors to Satisfaction: Parameterized Complexity

Serge Gaspers

Backdoors

Parameterized Complexity

Detecting Backdoors

Tree-like SAT instances

Algorithm for detecting strong W_t -backdoors

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

Thank you!

Questions?

Comments?

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● のへで

Backdoors to Satisfaction: Parameterized Complexity

Serge Gaspers

Backdoors

Parameterized Complexity

Detecting Backdoors

Tree-like SAT instances