
On the complexity of querying
data through ontologies
Meghyn Bienvenu

CNRS, Université Paris Sud

Querying data through ontologies.
Idea: exploit semantic information from ontology when querying data

Example application: querying patient data
I ontology describes medical terms and relationships between terms

I Hodgkin’s lymphoma is a type of cancer
I hypertension and high blood pressure are synonyms

I user formulates query using vocabulary of ontology
I find patients suffering from cancer and high blood pressure

I system performs reasoning to find all (deducible) answers

In this talk:
I quick tour of the field

I focus on description logic (DL) ontologies
I some pointers to current research

2/39

Syntax.
Vocabulary

I atomic concepts (unary relations) Mother, Student
I atomic roles (binary relations) parentOf, partOf
I individuals (constants) marie, pierre

Complex concepts
I concept constructors: ⊤, ¬C, C ⊓ D, ∃r.C, ≥ n r.C, ...
I examples with translation to FOL:

I Person ⊓ ¬Student Person(x) ∧ ¬Student(x)
I ∃parentOf.Female ∃y.parentOf(x, y) ∧ Female(y)
I ≥ 2 parentOf.⊤ ∃y, z.parentOf(x, y) ∧ parentOf(x, z) ∧ y ̸= z

Complex roles:
I role constructors: − (inverse), ◦ (composition), ...

3/39

Semantics.
Interpretation I = (∆I , ·I)

I ∆I is a non-empty set (universe)
I ·I is a function

I individual a 7→ an element aI ∈ ∆I

I atomic concept A 7→ a unary relation AI ⊆ ∆I

I atomic role r 7→ a binary relation rI ⊆ ∆I × ∆I

Extension to complex concepts and roles:
I ⊤I = ∆I and ⊥I = ∅

I (C⊓D)I = CI ∩DI and (C⊔D)I = CI ∪DI and (¬C)I = ∆I \CI

I (∃r.C)I = {u | there exists v such that (u, v) ∈ rI and v ∈ CI}

I (≤ n r.C)I = {u | at most n v such that (u, v) ∈ rI and v ∈ CI}

I (r−)I = {(u, v) | (v, u) ∈ rI}
4/39

Knowledge bases.
DL knowledge base = TBox + ABox

TBox
(ontology)

ABox
(data)

Inclusions

Assertions

C � D CI ⊆ DI

RI ⊆ SIR � S

C(a) aI ∈ CI

Mother � Female �
∃parentOf.�

childOf− � parentOf

Mother(marie)

parentOf(pierre, marie)r(a, b) (aI , bI) ∈ rI

I is a model of K if I satisfies all assertions and axioms in K
5/39

Reasoning tasks.
Classical reasoning tasks:

subsumption does T |= C ⊑ D ?

classification find all A,B such that T |= A ⊑ B

satisfiability is K = (T ,A) satisfiable ?

instance checking does (T ,A) |= C(b) ?

Relationships among these tasks:

I T |= C ⊑ D iff (T , {C(a)}) |= D(a)

I K satisfiable iff K ̸|= B(a) (where B fresh concept, not in K)

Variants: subsumption without TBox, satisfiability of a concept, ...

6/39

Short history of DLs.
1985-1995 Negative results (undecidability, NP-hardness)

Tractable fragments (FL0,AL) based upon ⊓ and ∀R.C
Complexity: subsumption in PTIME (but no TBox!)
Algorithms: normalization + structural comparison

1995-2005 Expressive logics like SHOIQ which offers:
¬, ⊔, ∃R.C, ≥ n.C, ≤ n.C, r−, r ⊑ s, (trans r), {a}, ...

Complexity: subsumption ≥ EXPTIME (with TBox)
Algorithms: highly optimized tableaux reasoners
Despite very high complexity, good performance !

2005-present Lightweight description logics, motivated by applications
DL-Lite family (OWL 2 QL) and EL family (OWL 2 EL)
Algorithms: query rewriting and/or saturation

7/39

Short history of DLs.
1985-1995 Negative results (undecidability, NP-hardness)

Tractable fragments (FL0,AL) based upon ⊓ and ∀R.C
Complexity: subsumption in PTIME (but no TBox!)
Algorithms: normalization + structural comparison

1995-2005 Expressive logics like SHOIQ which offers:
¬, ⊔, ∃R.C, ≥ n.C, ≤ n.C, r−, r ⊑ s, (trans r), {a}, ...

Complexity: subsumption ≥ EXPTIME (with TBox)
Algorithms: highly optimized tableaux reasoners
Despite very high complexity, good performance !

2005-present Lightweight description logics, motivated by applications
DL-Lite family (OWL 2 QL) and EL family (OWL 2 EL)
Algorithms: query rewriting and/or saturation

7/39

Short history of DLs.
1985-1995 Negative results (undecidability, NP-hardness)

Tractable fragments (FL0,AL) based upon ⊓ and ∀R.C
Complexity: subsumption in PTIME (but no TBox!)
Algorithms: normalization + structural comparison

1995-2005 Expressive logics like SHOIQ which offers:
¬, ⊔, ∃R.C, ≥ n.C, ≤ n.C, r−, r ⊑ s, (trans r), {a}, ...

Complexity: subsumption ≥ EXPTIME (with TBox)
Algorithms: highly optimized tableaux reasoners
Despite very high complexity, good performance !

2005-present Lightweight description logics, motivated by applications
DL-Lite family (OWL 2 QL) and EL family (OWL 2 EL)
Algorithms: query rewriting and/or saturation

7/39

Motivations for lightweight DLs.

1. Applications requiring more expressive queries

I conjunctive queries (like in databases)

q(x, z) = Female(x)∧ childOf(x, y)∧ Female(y)∧ childOf(y, z)∧ Female(z)

I difficulty: not reducible to classical reasoning tasks

2. Applications involving large ontologies and lots of data

I scalability is crucial!

8/39

Conjunctive queries.

Conjunctive queries are an important subclass of first-order logic queries.

They correspond to select-project-join queries in relational DBs.

Formally: a conjunctive query (CQ) has the form

q(x1, . . . , xk) = ∃xk+1, . . . , xm α1 ∧ . . . ∧ αr

where α1, . . . , αr are atomic formulae over the variables x1, . . . , xm.

Semantics: a tuple (a1, . . . , ak) of constants is a (certain) answer to
q(x1, . . . , xk) w.r.t. K iff I |= q[a1, . . . , ak] for every model I of K.

9/39

Complexity landscape: expressive DLs.

instance queries conjunctive queries

ALC(H) EXP-complete EXP-complete coNP-complete
ALCI, SH, SHIQ EXP-complete 2EXP-complete coNP-complete

SHOIQ NEXP-complete open open
SROIQ (OWL 2) 2NEXP-complete open open

combined combined data

ALC : �,�,¬, ∃r.C,∀r.C S : (trans r)H : r � sI : r− O : {a} R : r ◦ t � s

I combined complexity: in terms of the TBox, ABox, and query
I data complexity: only in terms of the size of the ABox

I appropriate when |A| >> |T |

10/39

Disjunction yields coNP-hardness.

To illustrate the difficulty of answering CQs,
we show coNP-hardness in data complexity for DLs with disjunction.

For our reduction, we use the coNP-complete problem 2+2UNSAT:

Instance propositional formula φ = c1 ∧ . . . ∧ cn, where each
ci = vi1 ∨ vi2 ∨ ¬vi3 ∨ ¬vi4 (first two literals positive, last
two negative), possibly using truth constants true, false

Problem decide if the formula φ is satisfiable, return “yes” if not
satisfiable, “no” if satisfiable

11/39

Disjunction yields coNP-hardness.
Fixed TBox and query:

I T = {V ⊑ T ⊔ F}
I q = ∃c, v1, v2, v3, v4 P1(c, v1) ∧ P2(c, v2) ∧ N1(c, v3) ∧ N2(c, v4)

∧F(v1) ∧ F(v2) ∧ T(v3) ∧ T(v4)

Given a 2+2CNF φ = c1 ∧ . . . ∧ cn over x1, . . . , xm, true, false,
we use the following ABox Aφ

I for each clause ci = vi1 ∨ vi2 ∨ ¬vi3 ∨ ¬vi4 :
P1(ci, vi1), P2(ci, vi2), N1(c, vi3), N2(c, vi4)

I for each variable xj: V(xj)

I T(true), F(false)

Can show: T ,Aφ |= qφ if and only if φ is unsatisfiable

11/39

Short history of DLs.
1985-1995 Negative results (undecidability, NP-hardness)

Tractable fragments (e.g. AL) based upon ⊓ and ∀R.C
Complexity: subsumption in PTIME (without TBox)
Algorithms: normalization + structural comparison

1995-2005 Expressive logics like SHIQ which offers:
¬, ⊔, ∃R.C, ≥ n.C, ≤ n.C, r−, r ⊑ s, (trans r), ...

Complexity: subsumption ≥ EXPTIME (with TBox)
Algorithms: highly optimized tableaux reasoners
Despite very high complexity, good performance !

2005-present Lightweight description logics
DL-Lite family (OWL 2 QL) and EL family (OWL 2 EL)
Algorithms: query rewriting and/or saturation

12/39

The DL-Lite family.
Objective:
useful ontology language allowing efficient conjunctive query answering

Idea: exploit the efficiency of relational DB systems

General approach: query rewriting
I ABox is stored as a traditional database
I the input query is rewritten to integrate the relevant information

from the TBox
I the new query is evaluated over the database

TBox

query

T

q query q�

ABox
answer

13/39

Syntax of DL-Lite.
We present the dialect DL-LiteR (which underlies OWL2 QL).

Assertions: A(c), r(c, d)

Inclusions: B1 ⊑ B2, B1 ⊑ ¬B2, S1 ⊑ S2, S1 ⊑ ¬S2 où

B := ⊤ | A | ∃S S := r | r−

where A is an atomic concept and r an atomic role

Other DL-Lite dialects allow:
I functional roles (funct S)
I cardinality restrictions (≥ q S, ≤ q S)
I Horn inclusions (B1 ⊓ ... ⊓ Bn ⊑ (¬)Bn+1)
I roles which are symmetric, asymmetric, reflexive, or anti-reflexive

14/39

First-order rewritability.
In DL-Lite, satisfiability and CQ answering are both first-order rewritable:

I given a TBox T , we can compute a first-order query φT such that
for every ABox A, we have:

(T ,A) |= ⊥ iff IA |= φT

I given a TBox T and a CQ q, we can compute q′ such that for every
ABox A and tuple of constants a⃗, we have:

T ,A |= q[⃗a] iff IA |= q′ [⃗a]

where IA denotes the interpretation based upon A.

Result: both tasks are in AC0 ((LOGSPACE ⊆ P) for data complexity.
I same low data complexity as querying relational databases

15/39

Query rewriting by example.

T

A teaches(Paul, CS100)Professor(Sara)

Professor � TeachingStaff

Lecturer � ¬Professor

Lecturer � TeachingStaffTeachingStaff � ∃teaches

∃teaches � TeachingStaff

∃teaches− � Course

Lecturer(Alex)

q TeachingStaff(x)

16/39

Query rewriting by example.

T

A teaches(Paul, CS100)Professor(Sara)

Professor � TeachingStaff

Lecturer � ¬Professor

Lecturer � TeachingStaffTeachingStaff � ∃teaches

∃teaches � TeachingStaff

∃teaches− � Course

Lecturer(Alex)

q TeachingStaff(x)

q�
TeachingStaff(x) ∨ Professor(x) ∨ Lecturer(x) ∨ ∃y.teaches(x, y)

16/39

Query rewriting by example.

T

A teaches(Paul, CS100)Professor(Sara)

Professor � TeachingStaff

Lecturer � ¬Professor

Lecturer � TeachingStaffTeachingStaff � ∃teaches

∃teaches � TeachingStaff

∃teaches− � Course

Lecturer(Alex)

q TeachingStaff(x)

q�
TeachingStaff(x) ∨ Professor(x) ∨ Lecturer(x) ∨ ∃y.teaches(x, y)

Answers: Sara, Paul, Alex

16/39

Query rewriting in practice.

Nowadays, several different query rewriting algorithms exist:

I QuOnto, Requiem, Presto, Rapid, Nyaya, ...

All offer excellent theoretical guarantees (data complexity in AC0)...
but suffer from one major problem:

rewritten queries can be huge! (O(|T | · |q|)|q|)

Database systems handle poorly (if at all) such enormous queries.

Question: can this blowup be avoided?

17/39

Complexity of query rewriting.

For plain DL-Lite (no role inclusions):

I polytime procedure for query rewriting [Kikot et al., DL’11]

For DL-LiteR (underlying OWL 2 QL):

I no polytime procedure for FO query rewriting (unless P=NP)
[Kikot et al., DL’11]

I polynomial NR datalog rewriting possible (under some assumptions),
but resulting program complex [Gottlob & Schwentick, DL’11, KR’12]

I analysis of when polynomial FO rewritings are possible
[Kikot et al., KR’12]

18/39

The EL family.
The logic EL, and its extensions, are designed for applications requiring
very large ontologies.

This family of DLs is well-suited for biomedical applications.

Examples of large biomedical ontologies:
I GO (Gene Ontology), around 20,000 concepts
I NCI (cancer ontology), around 30,000 concepts
I SNOMED (medical ontology), over 300,000 concepts (!)

Pericarditis � Inflammation � ∃loc.Pericardium
Pericardium � Tissue � ∃partOf.Heart Inflammation � Disease

Disease � ∃loc.∃partOf.Heart � HeartDisease

19/39

Syntax of EL.

The basic logic EL allows complex concepts of the following form:

C := ⊤ | C1 ⊓ C2 | ∃R.C

Inclusions C1 ⊑ C2 and assertions A(c), R(c, d)

Possible extensions:
I ⊥ (to express disjoint classes)
I domain restrictions dom(R) ⊑ C
I range restrictions range(R) ⊑ C
I role inclusions R1 ◦ ... ◦ Rn ⊑ Rn+1 (transitivity: R ◦ R ⊑ R)

OWL 2 EL includes all these extensions.

20/39

Forward chaining and canonical models.

R(a, b) C(b)
D � ∃R.(A �D)

D � ∃S.(B �D)

∃R.E � D

C � EK =

R
a b

C

21/39

Forward chaining and canonical models.

R(a, b) C(b)
D � ∃R.(A �D)

D � ∃S.(B �D)

∃R.E � D

C � EK =

R
a b

C E

21/39

Forward chaining and canonical models.

R(a, b) C(b)
D � ∃R.(A �D)

D � ∃S.(B �D)

∃R.E � D

C � EK =

R
a b

C ED

21/39

Forward chaining and canonical models.

R(a, b) C(b)
D � ∃R.(A �D)

D � ∃S.(B �D)

∃R.E � D

C � EK =

R
a b

C ED

AD

R

21/39

Forward chaining and canonical models.

R(a, b) C(b)
D � ∃R.(A �D)

D � ∃S.(B �D)

∃R.E � D

C � EK =

R
a b

C ED

B D
S

AD

R

21/39

Forward chaining and canonical models.

R(a, b) C(b)
D � ∃R.(A �D)

D � ∃S.(B �D)

∃R.E � D

C � EK =

R
a b

C ED

AD

R

B D
S

21/39

Forward chaining and canonical models.

R(a, b) C(b)
D � ∃R.(A �D)

D � ∃S.(B �D)

∃R.E � D

C � EK =

R
a b

C ED

AD

R

B D
S

AD

R

B D
S

AD

R

B D
S

AD

R

B D
S

. .
.

. .
.

. .
.

. .
.

. .
.

21/39

Forward chaining and canonical models.

R(a, b) C(b)
D � ∃R.(A �D)

D � ∃S.(B �D)

∃R.E � D

C � EK =

R
a b

C ED

AD

R

B D
S

AD

R

B D
S

AD

R

B D
S

AD

R

B D
S

. .
.

. .
.

. .
.

. .
.

. .
.

Exhaustive application of inclusions

Result: canonical model

- always gives the right answer to queries

IK

- may be infinite

- forest structure (ABox + attached trees)

IK |= q(�a) iff K |= q(�a)

21/39

Compact representation of the canonical model.

R(a, b) C(b)
D � ∃R.(A �D) ∃R.E � D

C � EK = D � ∃S.(B �D)

Idea: use the repetitions in
to find a finite representation

IK

22/39

Compact representation of the canonical model.

R(a, b) C(b)
D � ∃R.(A �D) ∃R.E � D

C � EK =

normalized TBox:
- only atomic concepts behind
- conjunction only on the left-hand-side

D � ∃R.(A �D) D � ∃R.F F � A F � D�

D � ∃S.(B �D) � D � ∃S.G G � B G � D

∃

D � ∃S.(B �D)

A �D � F

B �D � G

22/39

Compact representation of the canonical model.

R(a, b) C(b)
∃R.E � D

C � EK = D � ∃R.F
F � A F � D

D � ∃S.G G � B G � D

R
a b

C

wA

A

wB

B

wC

C

D wD

wE

wF

F

E
wG

A �D � FB �D � G

G

At the start:

• ABox assertions

• an individual wA with A(wA) for
each atomic concept A

Application of an inclusion on x:

• if C(x) and C � A: add A(x)

• if C(x) and C � ∃R.A: add R(x, wA)

• if C(x), D(x) and C �D � A: add A(x)

22/39

Compact representation of the canonical model.

R(a, b) C(b)K =

R
a b

C

wA

A

wB

B

wC

C

D wD

wE

wF

F

E
wG

R

R R

R

S

S
S

S E

ED Result: CK

K |= A1 � A2 ssi CK |= A2(wA1)

Subsumption

K |= A1(c) ssi CK |= A1(c)

Instance queries

Terminates in
polynomial time

∃R.E � D

C � E
D � ∃R.F

F � A F � D

D � ∃S.G G � B G � D
A �D � FB �D � G

!

!

A

GB
D

D

22/39

Compact representation of the canonical model.

R(a, b) C(b)K =

R
a b

C

wA

A

wB

B

wC

C

D wD

wE

wF

F

E
wG

R

R R

R

S

S
S

S E

ED Result: CK

K |= A1 � A2 ssi CK |= A2(wA1)

Subsumption

K |= A1(c) ssi CK |= A1(c)

Instance queries

Terminates in
polynomial time

∃R.E � D

C � E
D � ∃R.F

F � A F � D

D � ∃S.G G � B G � D
A �D � FB �D � G

!

!

A

GB
D

D

can classify SNOMED
in a few seconds !

22/39

Compact representation of the canonical model.

R(a, b) C(b)K =

R
a b

C

wA

A

wB

B

wC

C

D wD

wE

wF

F

E
wG

R

R R

R

S

S
S

S E

ED Result: CK

K |= A1 � A2 ssi CK |= A2(wA1)

Subsumption

K |= A1(c) ssi CK |= A1(c)

Instance queries

Terminates in
polynomial time

∃R.E � D

C � E
D � ∃R.F

F � A F � D

D � ∃S.G G � B G � D
A �D � FB �D � G

!

!

A

GB
D

D

What about conjunctive queries ?

22/39

Answering conjunctive queries.

R(a, b) C(b)
∃R.E � D

C � EK =
D � ∃R.F F � A F � D

D � ∃S.G G � B G � D

R
a b

C ED

AD

R

B D
S

AD

R

B D
S

AD

R

B D
S. .

.

. .
.

. .
.

. .
.

IK

R(a, b) C(b)
∃R.E � D

C � E

D � ∃R.F F � A F � D

D � ∃S.G G � B G � D
R(a, b) C(b)

∃R.E � D

C � E
D � ∃R.F

F � A F � D

D � ∃S.G G � B G � D
A �D � FB �D � G

R
a b

C

D wD

wF

F
wG

R

R R

R

S

S
S

S

ED
CK C

A

GB
D

D

q = ∃xR(x, x)

≠
answer: yes answer: no

wA

A

wB

B

wC

C
wE

EE

Problem: false positives - query matches in CK that do not exist in IK
Solution: modify q to prevent such matches

For our examples:

∃x R(x, x) ; ∃x R(x, x) ∧
∧
A

(x ̸= wA)

D(x) ∧ R(x, y) ; D(x) ∧ R(x, y) ∧
∧
A

(x ̸= wA ∧ y ̸= wA)

Remark: rewriting of q is independent of both T and A

23/39

Answering conjunctive queries.

R(a, b) C(b)
∃R.E � D

C � EK =
D � ∃R.F F � A F � D

D � ∃S.G G � B G � D

R
a b

C ED

AD

R

B D
S

AD

R

B D
S

AD

R

B D
S. .

.

. .
.

. .
.

. .
.

IK

R(a, b) C(b)
∃R.E � D

C � E

D � ∃R.F F � A F � D

D � ∃S.G G � B G � D
R(a, b) C(b)

∃R.E � D

C � E
D � ∃R.F

F � A F � D

D � ∃S.G G � B G � D
A �D � FB �D � G

R
a b

C

D wD

wF

F
wG

R

R R

R

S

S
S

S

ED
CK C

A

GB
D

D

q(x, y) = D(x) ∧R(x, y)
(wD, wF)
(wG, wF),
(wF , wF), ≠answers: (a, b), (a, wF),

answers: (a, b)

Problem: false positives - query matches in CK that do not exist in IK
Solution: modify q to prevent such matches

For our examples:

∃x R(x, x) ; ∃x R(x, x) ∧
∧
A

(x ̸= wA)

D(x) ∧ R(x, y) ; D(x) ∧ R(x, y) ∧
∧
A

(x ̸= wA ∧ y ̸= wA)

Remark: rewriting of q is independent of both T and A

23/39

Answering conjunctive queries.

Problem: false positives - query matches in CK that do not exist in IK
Solution: modify q to prevent such matches

For our examples:

∃x R(x, x) ; ∃x R(x, x) ∧
∧
A

(x ̸= wA)

D(x) ∧ R(x, y) ; D(x) ∧ R(x, y) ∧
∧
A

(x ̸= wA ∧ y ̸= wA)

Remark: rewriting of q is independent of both T and A

23/39

Combined rewriting.
The approach we have just seen is called “combined rewriting”.

query q query q�

ABox

answer
TBox T A�

ABoxA
polynomial in |A|

This approach guarantees polynomial data complexity.
Advantage: more widely applicable than “pure” rewriting
Disadvantage: uses more space (if |A| is big...), modifies the data
Note: combined rewriting also interesting for DL-Lite

24/39

First-order rewritability in EL.
Combined approach requires ability to modify the data

I not always possible / desirable ! (e.g. information integration)

Question: can we identify queries which are FO-rewritable ?

Some first results in this direction [Bienvenu et al., DL’12] for IQs:

I always possible if TBox is acyclic

I for general TBoxes: the problem of deciding FO-rewritability is
PSPACE-hard, in EXPTIME

I EXPTIME-hard if ABoxes have restricted signature

Non-uniform complexity analysis: consider specific TBox, query
(see [Lutz and Wolter, KR’12] for more on this).

25/39

Expressive “lightweight” DLs.

Interestingly, much more expressive DLs have polynomial data complexity.

Horn-SHIQ: extends both DL-Lite and EL
I classical reasoning is EXPTIME-complete in combined complexity

(like for full SHIQ)
I conjunctive query answering is P-complete in data complexity

(like for EL)

New querying algorithm for Horn-SHIQ [Eiter et. al, AAAI’12] based
upon datalog:

I can be seen as rewriting the query using the TBox,
then evaluating it over completed ABox

26/39

Recap of complexity landscape.

Plain database NP-complete in AC0

DL-Lite in P NP-complete in AC0

EL P-complete NP-complete P-complete
ELI, Horn-SH(O)IQ EXP-complete EXP-complete P-complete
Horn-SR(O)IQ 2EXP-complete 2EXP-complete P-complete

ALC(H) EXP-complete EXP-complete coNP-complete
ALCI / SH / SHIQ EXP-complete 2EXP-complete coNP-complete

SHOIQ NEXP-complete open open
SROIQ (OWL 2) 2NEXP-complete open open

instance queries conjunctive queries
combined combined data

27/39

Conclusion.
Research in DLs has undergone big changes in recent years:

I new application: using ontologies to access data
I conjunctive query answering now a central reasoning task
I focus on new families of tractable DLs (DL-Lite, EL)

Nowadays, complexity landscape quite well understood

I two measures: combined complexity and data complexity

I landscape for CQs more nuanced than for traditional reasoning tasks

Two main techniques used for lightweight DLs:

I query rewriting

I saturation (aka forward-chaining, chase)

28/39

Current work and future directions.
Remains a lot of do in order to make query answering really practicable:

I more refined complexity analysis (beyond data complexity)
I complexity of query rewriting [Kikot et al., DL’11, KR’12],

non-uniform complexity [Lutz & Wolter, KR’12]

I database-style optimizations
I semantic indexing - Quest [Rodriguez-Muro & Calvanese, ISWC’11,

KR’12], query minimization [Bienvenu et al., KR’12]

I benchmarks for testing algorithms sorely lacking !

I what about more expressive query languages?
I regular path queries [Bienvenu et al., DL’12],

CQs extended with negation or inequalities (cf. [Rosati ’07])
I querying inconsistent data, cf. [Rosati, IJCAI’11] [Bienvenu, AAAI’12]

29/39

Bibliography

References: Intro to DLs.

Textbook

The Description Logic Handbook: Theory, Implementation and
Applications. Edited by Franz Baader, Diego Calvanese, Deborah
McGuinness, Daniele Nardi, and Peter Patel-Schneider.
Cambridge University Press (2003).

However, most of what was covered in the talk isn’t in this book.

31/39

References: DL-Lite family.

I Diego Calvanese, Giuseppe De Giacomo, Domenico Lembo, Maurizio
Lenzerini, Riccardo Rosati. Tractable Reasoning and Efficient
Query Answering in Description Logics: The DL-Lite Family.
Journal of Automated Reasoning 39(3): 385-429 (2007).

I Alessandro Artale, Diego Calvanese, Roman Kontchakov, Michael
Zakharyaschev. The DL-Lite Family and Relations. Journal of
Artificial Intelligence Research 36: 1-69 (2009).

I Roman Kontchakov, Carsten Lutz, David Toman, Frank Wolter,
Michael Zakharyaschev. The Combined Approach to Query
Answering in DL-Lite. Proceedings of KR (2010).

32/39

References: DL-Lite family.
I QuOnto A. Acciarri, D. Calvanese, G. De Giacomo, D. Lembo, M.

Lenzerini, M. Palmieri, and R. Rosati: QuOnto: Querying
ontologies. Proceedings of AAAI (2005).

I Requiem H. Perez-Urbina, B. Motik, and I. Horrocks: Tractable
query answering and rewriting under description logic constraints.
Journal of Applied Logic (2010).

I Presto R. Rosati and A. Almatelli: Improving query answering over
DL-Lite ontologies. Proceedings of KR (2010).

I Rapid Alexandros Chortaras, Despoina Trivela, Giorgos B. Stamou:
Optimized Query Rewriting for OWL 2 QL. Proceedings of CADE
(2011).

I Nyaya G. Gottlob, G. Orsi, and A. Pieris: Ontological queries:
Rewriting and optimization. Proceedings of ICDE (2011).
[Note: for Datalog +/-]

33/39

References: DL-Lite family.

I S. Kikot, R. Kontchakov, and M. Zakharyaschev: On
(In)Tractability of OBDA with OWL 2 QL. Proceedings of DL
(2011).

I Stanislav Kikot, Roman Kontchakov and Michael Zakharyaschev:
Conjunctive Query Answering with OWL 2 QL. To appear in KR
2012.

I Georg Gottlob and Thomas Schwentick: Rewriting Ontological
Queries into Small Nonrecursive Datalog Programs. To appear in
KR 2012.

I Mariano Rodriguez-Muro and Diego Calvanese: High Performance
Query Answering over DL-Lite Ontologies. To appear in KR 2012.

34/39

References: EL family.

I Franz Baader, Sebastian Brandt, Carsten Lutz. Pushing the EL
Envelope. Proceedings of IJCAI (2005).

I Franz Baader, Sebastian Brandt, Carsten Lutz. Pushing the EL
Envelope Further. Proceedings of OWLED (2008).

I Carsten Lutz, David Toman, Frank Wolter. Conjunctive Query
Answering in the Description Logic EL Using a Relational Database
System. Proceedings of IJCAI (2009).

I Jing Mei, Shengping Liu, Guo Tong Xie, Aditya Kalyanpur, Achille
Fokoue, Yuan Ni, Hanyu Li, Yue Pan: A Practical Approach for
Scalable Conjunctive Query Answering on Acyclic EL+ Knowledge
Base. Proceedings of ISWC (2009).

35/39

References: Horn-SHIQ.

I Thomas Eiter, Georg Gottlob, Magdalena Ortiz, Mantas Simkus:
Query Answering in the Description Logic Horn-SHIQ. Proceedings
of JELIA (2008).

I Yevgeny Kazakov: Consequence-Driven Reasoning for Horn-SHIQ
Ontologies. Proceedings of IJCAI (2009).

I Thomas Eiter, Magdalena Ortiz, Mantas Simkus, TrungKien Tran,
Guohui Xiao: Query Rewriting for Horn-SHIQ plus Rules. To
appear in AAAI 2012.

36/39

References: Expressive DLs.

I Magdalena Ortiz, Diego Calvanese, Thomas Eiter: Characterizing
Data Complexity for Conjunctive Query Answering in Expressive
Description Logics. Proceedings of AAAI (2006).

I Birte Glimm, Carsten Lutz, Ian Horrocks, Ulrike Sattler: Conjunctive
Query Answering for the Description Logic SHIQ. Journal of
Artificial Intelligence Research (2008).

I Yevgeny Kazakov: RIQ and SROIQ Are Harder than SHOIQ.
Proceedings of KR (2008).

I Birte Glimm, Sebastian Rudolph: Status QIO: Conjunctive Query
Entailment Is Decidable. Proceedings of KR (2010).

37/39

Miscellaneous references.
Non-uniform complexity of query answering:

I Carsten Lutz and Frank Wolter: Non-Uniform Data Complexity of
Query Answering in Description Logics. To appear in KR 2012.

I Meghyn Bienvenu, Carsten Lutz, and Frank Wolter:
FO-Rewritability in EL: Preliminary Results. To appear in DL 2012.

Semantic indexing:
I M. Rodriguez-Muro and D. Calvanese: Semantic index: Scalable

query answering without forward chaining or exponential rewritings.
Proceedings of ISWC (2011). Note: also see their KR’12 paper.

Query containment and minimization in DLs:
I Meghyn Bienvenu, Carsten Lutz, and Frank Wolter: Query

Containment in Description Logics Reconsidered. To appear in KR
2012.

38/39

Miscellaneous references.
Path queries:

I Meghyn Bienvenu, Magdalena Ortiz, and Mantas Simkus:
Answering expressive path queries over lightweight DL knowledge
bases. To appear in DL 2012.

Negative results for richer query languages:
I Riccardo Rosati: The Limits of Querying Ontologies. Proceedings of

ICDT (2007).

Inconsistency-tolerant query answering:
I Meghyn Bienvenu: On the Complexity of Consistent Query

Answering in the Presence of Simple Ontologies. AAAI 2012.
I Riccardo Rosati: On the Complexity of Dealing with Inconsistency in

Description Logic Ontologies. Proceedings of IJCAI (2011).
I Domenico Lembo, Maurizio Lenzerini, Riccardo Rosati, Marco Ruzzi,

Domenico Fabio Savo: Inconsistency-Tolerant Semantics for
Description Logics. Proceedings of RR (2010).

39/39

	Bibliography

