Exercises on Branching Time Model Checking

Exercise 1 Simulation

Show that simulation is a transitive relation: Given any 3 Kripke structures $K_1 = (S_1, I_1, R_1, L_1), K_2 = (S_2, I_2, R_2, L_2)$ and $K_3 = (S_3, I_3, R_3, L_3)$ such that $K_1 \leq K_2$ and $K_2 \leq K_3$, it holds that $K_1 \leq K_3$.

Exercise 2 Simulation and Bisimulation

Let $M_1 = (S_1, I_1, R_1, L_1)$ and $M_2 = (S_2, I_2, R_2, L_2)$ be two Kripke structures. A relation $H' \subseteq S_1 \times S_2$ is a *bisimulation relation* if for each $(s, s') \in H'$ holds:

- $L_1(s) = L_2(s')$,
- for each $(s,t) \in R_1$ there is a $(s',t') \in R_2$ such that $(t,t') \in H'$, and
- for each $(s', t') \in R_2$ there is a $(s, t) \in R_1$ such that $(t, t') \in H'$.

 M_1 and M_2 are *bisimilar* if there is a bisimulation relation $H' \subseteq S_1 \times S_2$ such that

- for each initial state $s \in I_1$ there is an initial state $s' \in I_2$ with $(s, s') \in H'$, and
- for each initial state $s' \in I_2$ there is an initial state $s \in I_1$ with $(s, s') \in H'$.

In the following, we say that H' witnesses the bisimilarity of M_1 and M_2 in case H' is a bisimulation relation between M_1 and M_2 that satisfies the conditions stated above.

A Kripke structure M = (S, I, R, L) over a set of atomic predicates AP is called APdeterministic, if

- for all $A \subseteq AP$ we have $|I \cap \{s \mid L(s) = A\}| \le 1$, and
- for all $s \in S$ we have that $(s, t_1) \in R$, $(s, t_2) \in R$ and $L(t_1) = L(t_2)$ imply $t_1 = t_2$.

We define a sequence of relations H_n , for $n \ge 0$:

- $H_0 = \{(s, s') \mid s \in I_1, s' \in I_2, L_1(s) = L_2(s')\}$
- $H_{n+1} = H_n \cup \{(t,t') \mid \exists (s,s') \in H_n.(s,t) \in R_1, (s',t') \in R_2, L_1(t) = L_2(t')\}$

Finally, we define the relation H as follows:

$$H = \bigcup_{n \ge 0} H_n$$

(a) Assume that M_1 and M_2 are bisimilar and AP-deterministic Kripke structures. Prove that H is a bisimulation relation. Further prove that H is the smallest bisimulation relation that witnesses the bisimilarity of M_1 and M_2 .

Hint: Let H' be a bisimulation relation that witnesses the bisimilarity of M_1 and M_2 . Show that, for all $n \ge 0$, $H_n \subseteq H'$ holds and use this fact to show that H satisfies the conditions of a bisimulation relation.

- (b) Assume that M_1 and M_2 are bisimilar. Prove that, in general, H is not a bisimulation relation.
- (c) Let $M_1 = (S_1, I_1, R_1, L_1)$ and $M_2 = (S_2, I_2, R_2, L_2)$ be two models that are AP-deterministic. Show that

 $M_1 \leq M_2$ and $M_1 \geq M_2$ if and only if $M_1 \equiv M_2$.