Exercise Sheet Quantified Boolean Formulas

Uwe Egly

February 6, 2012

- 1. Let A be a propositional formula. For simplicity, assume that each variable of A is among the free variables of $\exists p \ \Psi(p)$. Prove the following: $\Psi(A) \to \exists p \ \Psi(p)$.
- 2. Reconsider trick 1 from the lecture slides and the propositional formula Φ :

$$(A \lor \neg B \lor C) \land (A \lor \neg B \lor \neg D) \land (A \lor \neg B \lor E)$$

Show that Ψ :

$$\exists y (y \leftrightarrow A \lor \neg B) \land (y \lor C) \land (y \lor \neg D) \land (y \lor E)$$

is logically equivalent to Φ .

3. Let Ψ be the following true formula:

 $\forall x \exists y \exists z \; ((x \lor y \lor z) \land (x \lor \neg y \lor z) \land (\neg x \lor y \lor z) \land (x \lor z) \land (\neg x \lor \neg z)).$

Provide witness formulas for the existential quantifiers and a tree-like strategy which certify that Ψ is true.

4. Translate $\forall x (\exists y (x \leftrightarrow y) \land \forall z (x \oplus z))$ into PCNF by prenexing and Tseitin translation. Try to keep the number of quantifier alternations low!