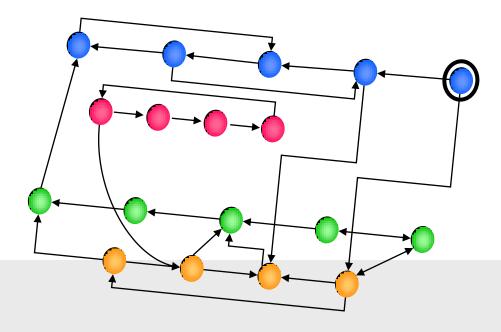
Branching Time Model Checking and Abstraction

Helmut Veith

Branching Time Logic

Kripke Structures



Kripke structures

K = (States, Transition Relation, Initial States, Labelling) = (S,R,I,L)

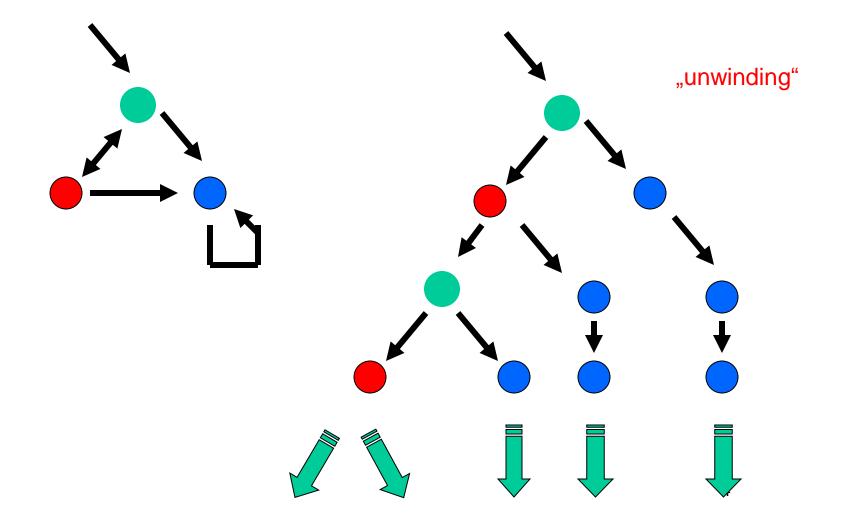
Specifications

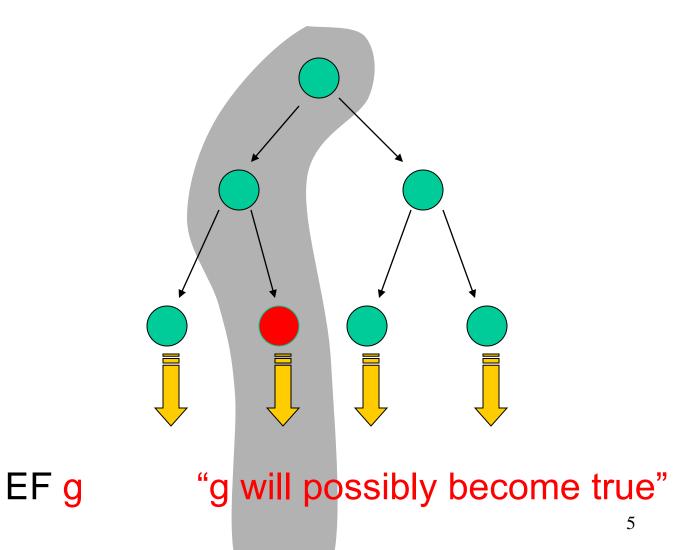
Temporal logic, e.g. CTL (branching time) and LTL (linear time)

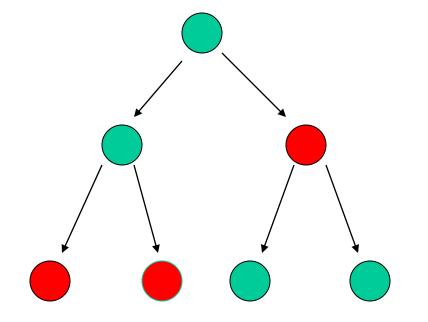
Model Relation

 $K \models f$ Specification f holds true in model K

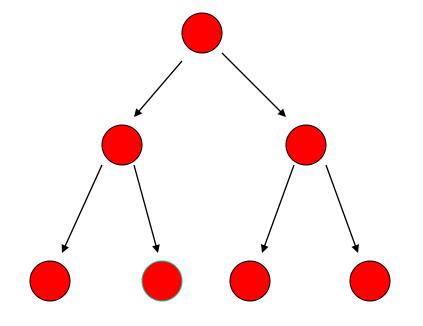
Branching Time Logic



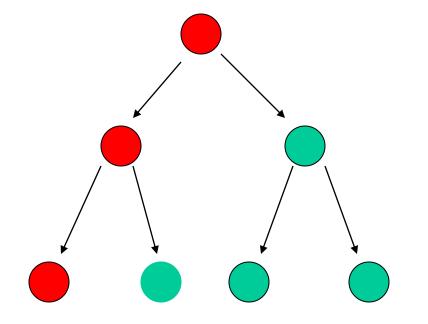




AF g "g will necessarily become true"



AG g "g is an invariant"

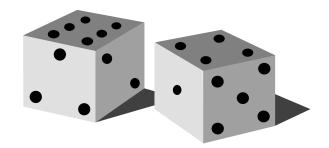


EG g "g is a potential invariant"

Computation Tree Logic Computation Tree Logic

Family of Temporal Logics

Simulation and Bisimulation



Simulation Game

Combinatorial two player game between Spoiler and Duplicator.

Spoiler wins if Duplicator gets stuck. Duplicator wins if game continues forever.

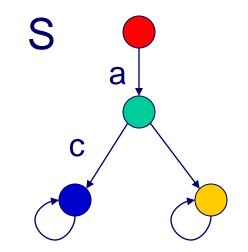
Example of a Combinatorial Game.
→ Ehrenfeucht-Fraissee Games, Pebble Games, Parity Games etc.

Simulation

I can be simulated by S step by step.

"S simulates I": $I \leq S$





The simulation preorder [Milner]

Given two models $M_1 = (S_1, I_1, R_1, L_1), M_2 = (S_2, I_2, R_2, L_2)$

$H \subseteq S_1 \times S_2$ is a simulation iff for every $(s_1, s_2) \in H$:

- s₁ and s₂ satisfy the same propositions
- For every successor t₁ of s₁ there is a successor
 t₂ of s₂ such that (t₁,t₂) ∈ H

Notation: $s_1 \le s_2$

The simulation preorder [Milner]

Given two models $M_1 = (S_1, I_1, R_1, L_1), M_2 = (S_2, I_2, R_2, L_2)$

- $H \subseteq S_1 \times S_2$ is a simulation iff for every $(s_1, s_2) \in H$:
- $\forall p \in AP$: $s_2 \models p \Rightarrow s_1 \models p$ $s_2 \models \neg p \Rightarrow s_1 \models \neg p$
- $\forall t_1 [(s_1, t_1) \in R_1 \Rightarrow \exists t_2 [(s_2, t_2) \in R_2 \land (t_1, t_2) \in H]]$

Notation: $s_1 \le s_2$

Simulation preorder (cont.)

 $\mathbf{H} \subseteq \mathbf{S}_1 \times \mathbf{S}_2$ is a simulation from \mathbf{M}_1 to \mathbf{M}_2 iff H is a simulation and for every $\mathbf{S}_1 \in \mathbf{I}_1$ there is $\mathbf{S}_2 \in \mathbf{I}_2$ s.t. $(\mathbf{S}_1, \mathbf{S}_2) \in \mathbf{H}$

Notation: $M_1 \le M_2$

Bisimulation relation [Park]

For models M_1 and M_2 , $H \subseteq S_1 \times S_2$ is a **bisimulation**

iff for every $(s_1, s_2) \in H$:

- $\forall p \in AP : p \in L(s_2) \Leftrightarrow p \in L(s_1)$
- $\forall t_1 [(s_1, t_1) \in R_1 \implies \exists t_2 [(s_2, t_2) \in R_2 \land (t_1, t_2) \in H]]$
- $\textbf{ } \forall t_2 \textbf{ [} (\textbf{s}_2, \textbf{t}_2) \in \textbf{R}_2 \ \Rightarrow \exists t_1 \textbf{ [} (\textbf{s}_1, \textbf{t}_1) \in \textbf{R}_1 \land (\textbf{t}_1, \textbf{t}_2) \in \textbf{H} \textbf{] } \textbf{] }$

Notation: $s_1 \equiv s_2$

Bisimulation relation (cont.)

 $H \subseteq S_1 \times S_2$ is a **Bisimulation** between M_1 and M_2

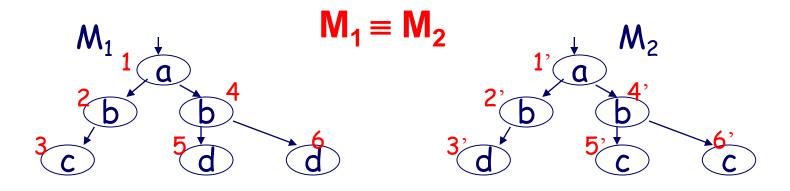
iff H is a bisimulation and

for every $\textbf{s_1} \in \textbf{I}_1$ there is $\textbf{s_2} \in \textbf{I}_2$ s.t. $(\textbf{s_1}, \textbf{s_2}) \in \textbf{H}$ and

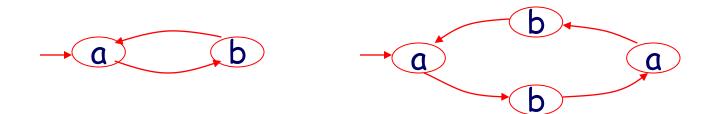
for every $s_2 \in I_2$ there is $s_1 \in I_1$ s.t. $(s_1, s_2) \in H$

Notation: $M_1 \equiv M_2$

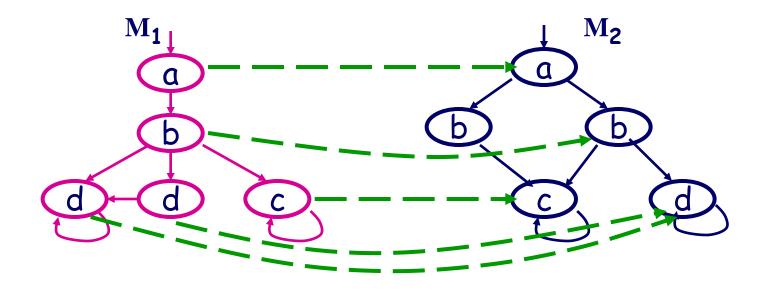
Bisimulation equivalence



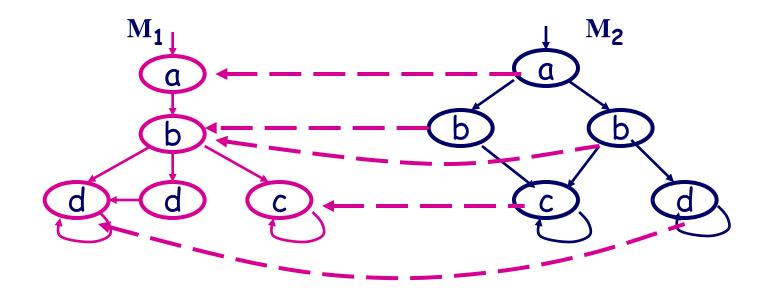
 $H=\{(1,1'), (2,4'), (4,2'), (3,5'), (3,6'), (5,3'), (6,3')\}$







$M_1 \leq M_2$



$M_1 \leq M_2$ and $M_1 \geq M_2$ but not $M_1 \equiv M_2$

(bi)simulation and logic preservation

Theorem

If $M_1 \equiv M_2$ then for every CTL* formula φ , $M_1 \models \varphi \iff M_2 \models \varphi$

If $M_2 \ge M_1$ then for every ACTL* formula φ , $M_2 \models \varphi \implies M_1 \models \varphi$

Simulation Relation

If M has partial behavior of N, we say that

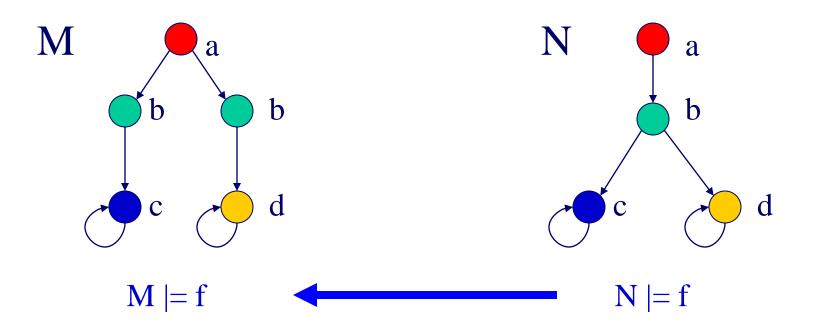
"N simulates M": $M \le N$

Let f be an ACTL specification. If $M \le N$ and $N \models f$ then $M \models f$.

Simulation and Abstraction

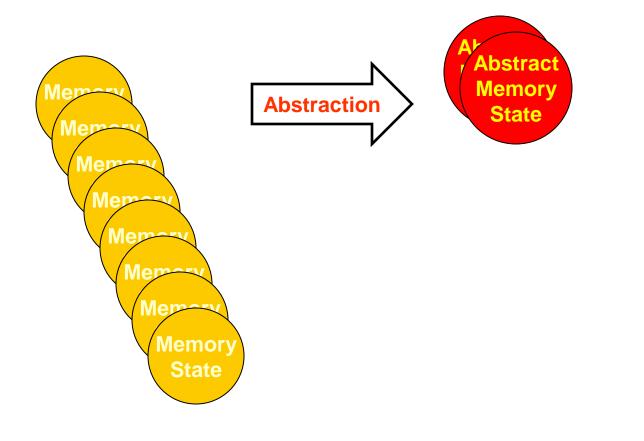
If M has partial behavior of N, we say that

"N simulates M": $M \le N$



Abstraction

Abstraction



Data Abstraction

Given a program P with variables $x_1, ..., x_n$, each over domain D, the **concrete model** of P is defined over states $(d_1,...,d_n) \in D \times ... \times D$

Choosing

- abstract domain A
- Abstraction mapping (surjection) h: D → A
 we get an abstract model over abstract states
 (a₁,...,a_n) ∈ A×...×A

Example

Given a program P with variable x over the integers

Abstraction 1:

 $A_{1} = \{ a_{-}, a_{0}, a_{+} \}$ $h_{1}(d) = \begin{cases} a_{+} & \text{if } d > 0 \\ a_{0} & \text{if } d = 0 \\ a_{-} & \text{if } d < 0 \end{cases}$

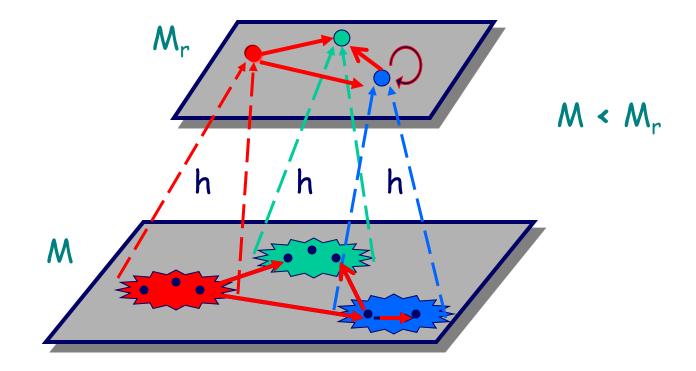
Abstraction 2:

Reduced abstract model Existential abstraction

Given M, A, h : D \rightarrow A the **reduced model** M_r = (S_r, I_r, R_r, L_r) is

$$\begin{split} \mathbf{S}_{r} &= A \times ... \times A \\ \mathbf{s}_{r} \in \mathbf{I}_{r} \Leftrightarrow \exists \ \mathbf{s} \in \mathbf{I} : h(\mathbf{s}) = \mathbf{s}_{r} \\ (\mathbf{s}_{r}, \mathbf{t}_{r}) \in \mathbf{R}_{r} \Leftrightarrow \\ &\exists \ \mathbf{s}, \mathbf{t} \ [h(\mathbf{s}) = \mathbf{s}_{r} \wedge h(\mathbf{t}) = \mathbf{t}_{r} \wedge (\mathbf{s}, \mathbf{t}) \in \mathbf{R}] \end{split}$$
For $\mathbf{s}_{r} = (a_{1}, ..., a_{n}), \ \mathbf{L}_{r}(\mathbf{s}_{r}) = \{ (\mathbf{x}_{i}^{A} = a_{i}) \mid i = 1, ..., n \}$

Existential Abstraction



Preservation

Theorem:

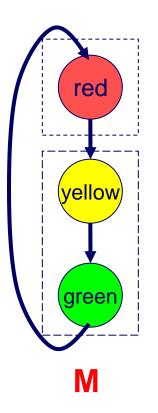
 $M_r \ge M$ by the simulation preorder

Corollary:

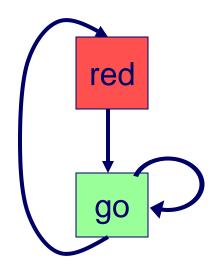
For every ACTL* formula φ : If M_r |= φ then M |= φ

Traffic Light Example

Property: φ =**AG AF** ¬ (state=red) Abstraction function h maps green, yellow to go.



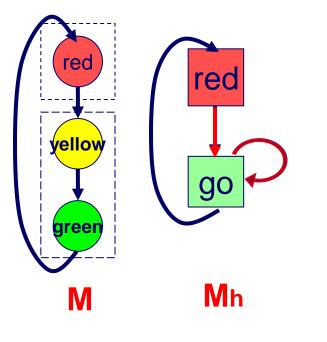
 $\mathbf{M} \models \varphi \Leftarrow \mathbf{M}_{\mathsf{h}} \models \varphi$



M

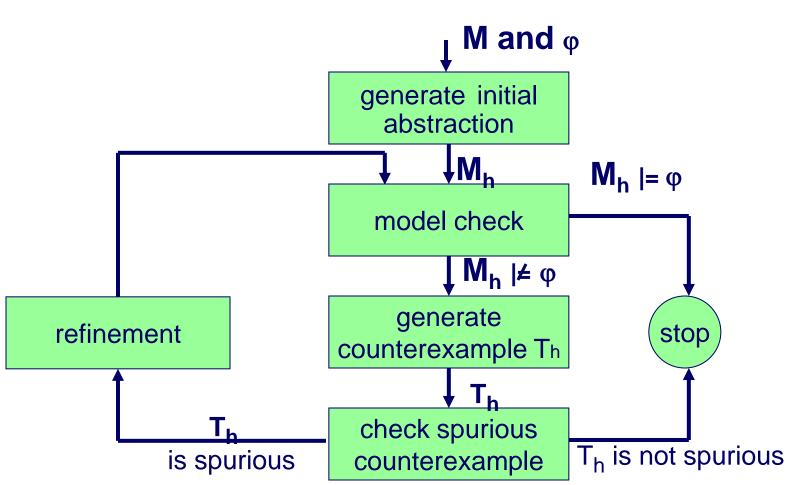
Traffic Light Example (Cont)

If the abstract model invalidates a specification, the actual model may still satisfy the specification.

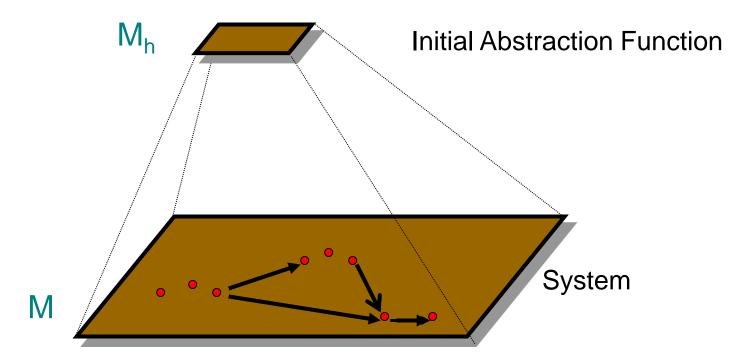


- Property:
 φ =AG AF (state=red)
- M |= ϕ but M_h |=/ ϕ
- Spurious Counterexample: (red,go,go, ...)

CEGAR Methodology

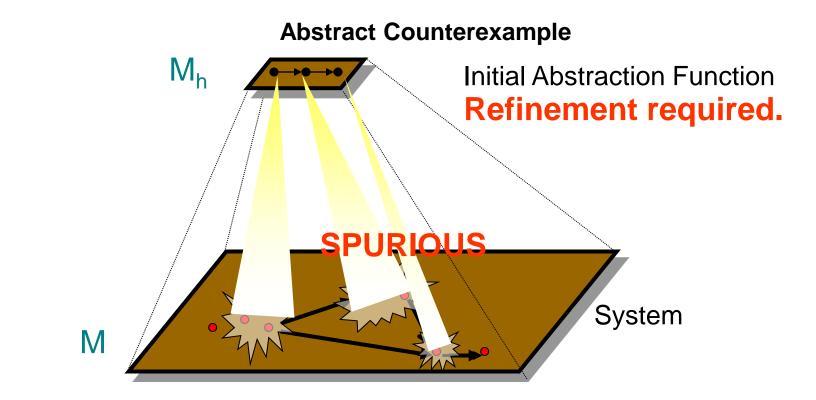


CEGAR (Counterexample-Guided Abstraction Refinement) Adaptive Strategy



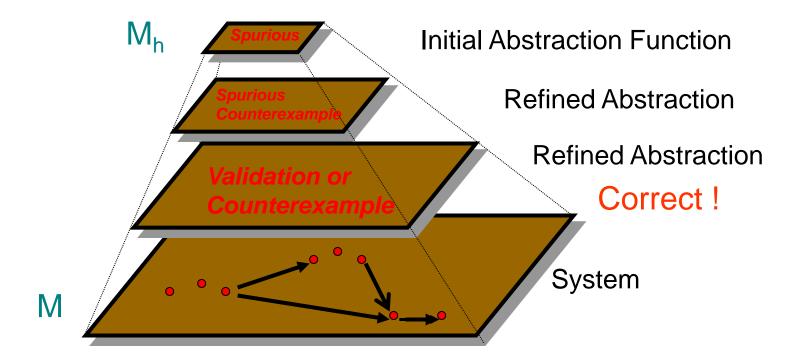
Counterexample-Guided Abstraction Refinement Clarke, Grumberg, Jha, Lu, Veith'00

CEGAR (Counterexample-Guided Abstraction Refinement) Adaptive Strategy



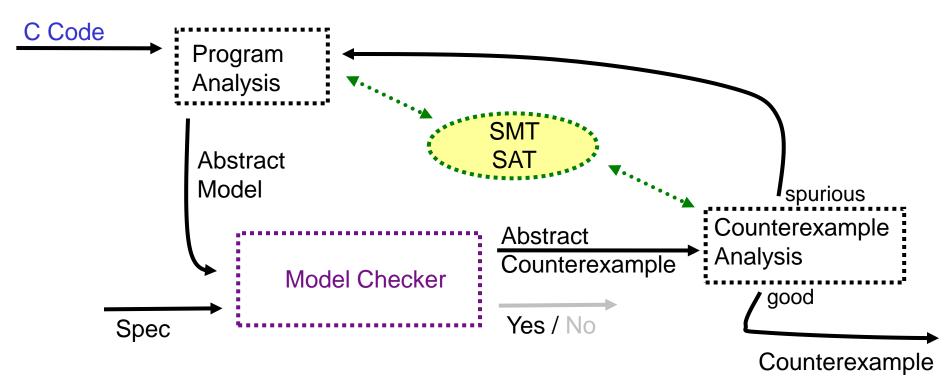
Counterexample-Guided Abstraction Refinement Clarke, Grumberg, Jha, Lu, Veith'00

CEGAR (Counterexample-Guided Abstraction Refinement) Adaptive Strategy



Counterexample-Guided Abstraction Refinement Clarke, Grumberg, Jha, Lu, Veith'00

Software Model Checking



CEGAR + Predicate Abstraction Integration of Theorem Proving / Decision Procedures / SMT SIGSOFT Distinguished Paper Award (ICSE 2003)