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Motivation:    
Distributed Fault-Tolerant Clock Generation 
in Systems-on-Chip 

U. Schmid 



Institut für 
Technische Informatik

U. Schmid 5 RiSE Winter School 2012 



Clocking in Systems-on-Chip (I) 

Classic synchronous paradigm 
 

 Concept:  Common notion of time for entire chip 

 Method:  Single crystal oscillator 
   Global, phase-accurate clock tree 

Disadvantages 
 

- Cumbersome clock tree design 
   (physical limits!) 
- High power consumption 
- Clock is single point of failure! 
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Clocking in Systems-on-Chip (II) 

Alternative: DARTS clocks 
 

 Concept:  Multiple synchronized tick generators 

 Method:  Distributed FT tick generation algorithm 
   Implemented in (asynchronous) HW 
 http://ti.tuwien.ac.at/ecs/research/projects/darts  

Advantages 
 

- Reasonable synchrony 
- Uncritical clock distribution 
- Clock is no single point of failure! 
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The DARTS Distributed Algorithm 
For n ≥ 3f + 1 and up to f node failures, 

with (small) e-t-e delays ∈[d,d+ε]: 
 

• Suppose node p sends tick(C+1) at 
time t 

• Then, node q also sends tick(C+1) by 
time t+d+2ε 

⇒ Clock ticks occur approximately at 
the same time 

 On init 
        → send tick(0) to all; C := 0;  
 If got tick(l)  from f +1 nodes and l > C       
        → send tick(C+1),…, tick(l) to all;  
             C := l;  
 If got tick(C) from 2f +1 nodes        
        → send tick(C+1) to all;  
             C := C+1; 

f + 1 

 2f + 1 

p at t any q’ at t+ε any q at t+d+2ε 

≤ ε 
≤ dmax = d+ε 
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n ≥ 3f+1: Why do Failures hurt so much ? 

Toy example: 

A: 08:00 
B: 10:00 
C: 08:00 

A: 10:00 
B: 10:00 
C: 08:00 

  08:00    10:00 

A (”Byzantine” faulty) 

10:00 

C    (correct)   B 

08:00 
10:00 

08:00 

10:00 08:00 

 With this algorithm, B and C never get closer together 
 Will prove: Majority n = 2f + 1 not enough for f  Byz. failures! 
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DARTS Correctness Proofs  
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  Introduction to Distributed Algorithms 

U. Schmid 
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Content (Part 1) 

Basics: 
Distributed Computing Model 
Synchrony and Fault-Tolerance 
Correctness Proofs 

 Some Appetizers: 
Consistent Broadcasting 
Consensus 

 Food for Thoughts 

U. Schmid 



Classic Modeling and Analysis 
• Processors/processes modeled as interacting state machines 

• Zero-time atomic computing steps, usually time-triggered 
– Message Passing (MP): [receive] + compute + [send] 
– Shared Memory (SHM): [accessSHM] + compute 

 
 

 

 

• System timing parameters: 
– Operation durations modeled via inter-step times ϵ[μ-,μ+]      (often μ-  = 0)  
– Message delays modeled as end-to-end delays ϵ[δ-, δ+]           (often δ-  = 0) 
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Synchrony Models: 2 Extremes … 
Asynchronous systems 

• Computing step times:  
– μ-  = 0 
– μ+  finite (but unbounded) 

• Message delays  
– δ- = 0 
– δ+  finite (but unbounded)   

Lock-step synchronous systems 

• Computing step times:  
μ-  = μ+  = R 

• Message delays  
0  ≤ δ-  ≤ δ+ ≤ R   

• Perfectly synchronized rounds 
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Failure Models 

• „Deterministic“ failure models 
– At most f of n processors in the system may fail 
– Correct processes do not a priori know who has failed and when and how 

• Failure semantics ranging from 
– Crash failures: Processors stop operating, possibly within a step 
– Byzantine failures [LSP82]: Processors can do what they want 

• Real processors etc. fail probabilistically  Coverage analysis  

• Restrict our attention to message passing systems here: 
– Typically fully connected, with dedicated links between every pair of 

processors 
– [Communication between correct processes typically considered reliable] 
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A Note on Message Passing vs. Shared Memory 

• MP can always be simulated 
in a SHM system 

• The opposite is not generally 
true: 
– AsyncSHM can be simulated 

in AsyncMP if  a majority of 
processes   (n > 2f ) is correct 

– Not the case for n ≤ 2f  
AsyncSHM more powerful 
than AsyncMP 

• MP is more elementary than 
SHM! 

• E.g.: Wait-free (f = n-1) event 
ordering possible in AsyncSHM 
but not in AsyncMP 

 

 

 
 

    

  p knows by the time of its Read whether 
q has already done its Write  
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Correctness Proofs 
• Global state transitions 

– Configuration C = vector of processor local states [+ in-transit messages for MP] 
– State transition = result of a single processor taking a step 

• Algorithm vs. Adversary  
– Adversary determines which and when events φ (like processor pi takes a step) 

happen ( Async. systems: Adv. subject to admissibility (fairness) conditions) 
– Algorithm determines what actually happens in the corresponding step 

• Executions and traces 
– Execution E = sequence of configurations alternating with events 

C0,φ1,C1,φ2,C2,φ3,C3, … 
– Trace T = (sub-)sequence of „interesting“ events (or states) 

• Correctness proofs: Set of generated traces satisfies 
– Safety properties („something bad never happens“) 
– Liveness properties („something good eventually happens“) 
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  Some Appetizers 

U. Schmid 
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  Consistent Broadcasting 
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Consistent Broadcasting [ST87] 
• Want to build authenticated reliable broadcasting: 

– Any process ps  may have some message ms to broadcast: 
bcast(ps,ms)  

– Every correct process shall eventually call accept(ps,ms),  and 
shall be sure that the received ms originates in ps 

– Do not use real authentication (cryptography)! 
 

• Very useful primitive: 
– Clock synchronization 
– Consensus 
– etc. 
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Properties Consistent Broadcasting 
 

Time-free specification: 
 

• Correctness: If a correct processor ps executes bcast(ps,ms), then 
every correct processor eventually calls accept(ps,ms)  

• Unforgeability: If a correct processor ps never executes 
bcast(ps,ms), then no correct processor ever calls accept(ps,ms)  

• Relay: If some correct processor calls accept(ps,ms), then every 
other correct processor eventually also calls accept(ps,ms)  

RiSE Winter School 2012 22 U. Schmid 
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Implementation 

• At most f Byzantine 
faulty processors 

• n ≥ 3f + 1  
• E-t-e delays ∈ [d,d+ε]: 

 

• Message sent by correct proc at t got by  
correct receiver proc within [t+d,t+d+ε]   

• Every proc gets at most f  faulty echo/init 
messages from different procs 

• At most f echo messages available at pi 
by t could be missing at pj by t + ε   

 

 if got (init,ps,ms)  from  ps 
        → send (echo,ps,ms) to all [once] 
 if got (echo,ps,ms) from  f + 1        
        → send (echo,ps,ms) to all [once] 
 if got (echo,ps,ms) from 2f + 1         
        → call accept(ps,ms) 

 send (init,ps,ms) to all processors  
         

accept(ps,ms) at every pi bcast(ps,ms) at ps 

System model: 
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Correctness Proof (Time-dependent Version) 
• Correctness: If a correct proc ps executes bcast(ps,ms) by t, then every correct 

processor eventually calls accept(ps,ms) by t+2(d+ε) 

• Unforgeability: If a correct proc ps does not execute bcast(ps,ms) by t, then no 
correct processor calls accept(ps,ms) by t+2d 

• Relay: If a correct processor calls accept(ps,ms) at t, then every other correct 
processor also calls accept(ps,ms) by t+d+2ε  

f + 1 

 2f + 1 

pi at t any pj’ at t+ε any pj at t+d+2ε 

≤ ε 
≤ d+ε Relay: 

 



Verification Challenges 

• Typical distributed algorithms proofs are „handwaving“, 
compared to verification standards 

• Try do make it rigorous is challenging, even for simple problems 
like CB: 
– Parameterization (n, f) 
– Asynchronous systems 
– Failures 

 

• We are working on this in the context of RiSE …  
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  Consensus 
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A Classic Problem: Distributed Agreement 
(Consensus) 

Yes 
Yes No 

Yes 

No No 
Yes 

All meet 
None meet 

No 
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Consensus Properties 

• Every process pi  
– has initial value xi chosen from some finite set V  
– shall irrevocably decide on output value yi 

 

 

• Termination: Every correct processor eventually decides 

• Agreement: Every two correct processors pi , pj decide on the 
same value yi = yj  

• Validity: If all correct processors have the same input value x, 
then x is the only possible decision value 
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“There is no deterministic algorithm 
 for solving consensus in an  

asynchronous distributed system  
in the presence of a single crash failure.” 

Fischer, Lynch and Paterson [FLP85]: 

Key problem:  
Distinguish slow from dead! 
 29 RiSE Winter School 2012 U. Schmid 

Asynchronous Consensus Impossibility 



Yes 
Yes No 

Yes ? 

No No 
Yes 

All meet 
None meet 

No 

? 
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Distributed Agreement (Consensus) - FLP 



Lamport, Shostak and Pease [LSP82]: 

But:  
It is impossible to solve consensus if n = 3f ! 
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Synchronous Consensus  

“There is a deterministic algorithm for solving  
consensus in a synchronous  

distributed system of n ≥ 3f+1 processors  
in the presence of at most f Byzantine failures.” 



Impossibility of Consensus for f = 1, n = 3 

• Suppose correct algorithm A = (A,B,C) for (p0,p1,p2) 
existed 
 

• Assume p0 faulty 

• By Validity: 
– x1 = x2 = 0 → y1 = y2 = 0  
– x1 = x2 = 1 → y1 = y2 = 1  

• By Agreement: 
– x1 ≠ x2 → y1 = y2 
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p0:A 

0 [0] 

p2:C       p1:B 

0 [0] 



„Easy Impossibility Proofs“ [FLM86] (I) 
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1 [ ] 

p5:C       p4:B 

1 [ ] 

0 [ ] 

p1:B       p2:C 

0 [ ] 

p0:A       0 [ ] p3:A       1 [ ] 

Arrange 6 correct 
processors in a ring: 
 
 
 
 
 
 
 
Resulting execution will 
not solve consensus, but … 



0 [0] 0 [0] 

„Easy Impossibility Proofs“ [FLM86] (II) 

RiSE Winter School 2012 34 U. Schmid 

1 [ ] 

p5:C       p4:B 

1 [ ] 

0 [ ] 

p1:B       p2:C 

0 [ ] 

p0:A       0 [ ] p3:A       1 [ ] 

Local view of p1, p2: 
 
 
 
 
 
 
 
 
By Validity: Decision 
must be y1 = y2 = 0 … 

p0/p3:A       



0 [0] 0 [0] 

„Easy Impossibility Proofs“ [FLM86] (III) 
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1 [ ] 

p5:C       p4:B 

1 [ ] 

p1:B       p2:C 

p0:A       0 [ ] p3:A       1 [ ] 

Local view of p3, p4: 
 
 
 
 
 
 
 
 
By Validity: Decision 
must be y3 = y4 = 1 … 

1 [1] 

1 [1] 



0 [0] 0 [0] 

„Easy Impossibility Proofs“ [FLM86] (IV) 
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1 [1] 

p5:C       p4:B 

1 [ ] 

p1:B       p2:C 

p0:A       0 [ ] p3:A       1 [1] 

Local view of p2, p3: 
 
 
 
 
 
 
 
By Agreement: Decision 
should be y2 = y3  
Contracdicion  
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  Food for Thoughts 
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Communcation Failures 
• Link failure model: 

1. Distinguish send and receive link 
failures 

2. Distinguish omission and 
arbitrary link failures 

3. Indep. for every send/rec to/from 
all 

 
• Known results: 

– n > fl
r + fl

s necessary & 
sufficient for solving consensus 
with pure link omission failures 

– n > fl
r + fl

ra + fl
s + fl

sa necessary 
& sufficient for solving 
consensus with link omission 
and arbitrary failures 

 

fl
s ≥ fl

sa 

Send link failures 

fl
ra ≤ fl

r 

Rcv link failures 



U. Schmid RiS
E 

39 

Exercises 

Required number of procs: 
• n ≥ S”fl

sa+R”fl
ra +3f + 1 

Recall lower bound:  
• n ≥  fl

r + fl
ra + fl

s + fl
sa +3f +1 

 if got (init,ps,ms)  from  ps 
        → send (echo,ps,ms) to all [once] 
 if got (echo,ps,ms) from Sfl

sa + Rfl
ra +f + 1        

        → send (echo,ps,ms) to all [once] 
 if got (echo,ps,ms) from S’fl

sa+R’fl
ra+2f + 1         

        → call accept(ps,ms) 

1. Find the smallest values for S,R,S‘,R‘,S“,R“ in the CB implem. 
below for arbitrary link failures (fl

r = fl
ra  and fl

s = fl
sa): 

 

 

 

 

 
2. Find an „easy impossibility proof“ that shows that n=4 processors 

are not enough for solving consensus with fl
r = fl

ra = fl
s = fl

sa = 1 
(and f =0) 
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The End  
(Part 1) 
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