

Distributed Algorithms

(Part 1)
RiSE Winter School 2012

Ulrich Schmid
Institute of Computer Engineering, TU Vienna
Embedded Computing Systems Group E182/2

s@ecs.tuwien.ac.at

Target: Fault-tolerant Distributed RT Systems

high pressure

t
p

q
close valve

Worst-case response time RT ≤ Tmax

Spatially distributed reactive computations

Real-time requirements Partial failures

Proc p Proc q Network
Valve

Pressure
Sensor

2 RiSE Winter School 2012 U. Schmid

 Proc p Proc q Network
Valve

Pressure
Sensor

Scattered Research

REAL-TIME
SYSTEMS

RESEARCH

EDF

jobs

deadlines

resources

response times

DISTRIBUTED
ALGORITHMS

RESEARCH

computing steps

VERIFICATION
RESEARCH

abstract interpretation

3 RiSE Winter School 2012 U. Schmid

RiSE Winter School 2012 4

Motivation:
Distributed Fault-Tolerant Clock Generation
in Systems-on-Chip

U. Schmid

Institut für
Technische Informatik

U. Schmid 5 RiSE Winter School 2012

Clocking in Systems-on-Chip (I)

Classic synchronous paradigm

 Concept: Common notion of time for entire chip

 Method: Single crystal oscillator
 Global, phase-accurate clock tree

Disadvantages

- Cumbersome clock tree design
 (physical limits!)
- High power consumption
- Clock is single point of failure!

DSP

WLAN

Video

GPRS

GPS

U. Schmid 6 RiSE Winter School 2012

Clocking in Systems-on-Chip (II)

Alternative: DARTS clocks

 Concept: Multiple synchronized tick generators

 Method: Distributed FT tick generation algorithm
 Implemented in (asynchronous) HW
 http://ti.tuwien.ac.at/ecs/research/projects/darts

Advantages

- Reasonable synchrony
- Uncritical clock distribution
- Clock is no single point of failure!

DSP

WLAN

Video

GPRS

GPS

U. Schmid 7 RiSE Winter School 2012

The DARTS Distributed Algorithm
For n ≥ 3f + 1 and up to f node failures,

with (small) e-t-e delays ∈[d,d+ε]:

• Suppose node p sends tick(C+1) at
time t

• Then, node q also sends tick(C+1) by
time t+d+2ε

⇒ Clock ticks occur approximately at
the same time

 On init
 → send tick(0) to all; C := 0;
 If got tick(l) from f +1 nodes and l > C
 → send tick(C+1),…, tick(l) to all;
 C := l;
 If got tick(C) from 2f +1 nodes
 → send tick(C+1) to all;
 C := C+1;

f + 1

 2f + 1

p at t any q’ at t+ε any q at t+d+2ε

≤ ε
≤ dmax = d+ε

U. Schmid 8 RiSE Winter School 2012

n ≥ 3f+1: Why do Failures hurt so much ?

Toy example:

A: 08:00
B: 10:00
C: 08:00

A: 10:00
B: 10:00
C: 08:00

 08:00 10:00

A (”Byzantine” faulty)

10:00

C (correct) B

08:00
10:00

08:00

10:00 08:00

 With this algorithm, B and C never get closer together
 Will prove: Majority n = 2f + 1 not enough for f Byz. failures!

U. Schmid 9 RiSE Winter School 2012

DARTS Correctness Proofs

U. Schmid 10 RiSE Winter School 2012

ack_ext ack_int

req_ext req_int

Remote Pipe

__
__

_
G

EQ
e

G
R

e

G
EQ

o

__
_

G
R

o

3f+1

1

= 2f+1 = 2f+1

= f+1 = f+1

...
...

...
...

Threshold Logic_____
GEQe

GRe

GEQo

GRo

cl
k_

ou
t

Pipeline 1

Node p

...

...

...

Pipe Compare Signal Generators

C
C

C
C

C
C

C
C

C

Diff-Gate
CC

C

Local Pipe

re
m

ot
e

cl
k_

in

External Pipe

Pipeline 2

Local PipeDiff-
Gate

Pipe Compare Signal Gen.

External
Pipe

Pipeline 3

Local PipeDiff-
Gate

Pipe Compare Signal Gen.

Remote
Pipe

Pipeline 3f+1

Local
Pipe

Diff-
Gate

Pipe Compare Signal Gen.

...

DARTS Implementation

U. Schmid 11 RiSE Winter School 2012

RiSE Winter School 2012 12

 Introduction to Distributed Algorithms

U. Schmid

RiSE Winter School 2012 13

Content (Part 1)

Basics:
Distributed Computing Model
Synchrony and Fault-Tolerance
Correctness Proofs

 Some Appetizers:
Consistent Broadcasting
Consensus

 Food for Thoughts

U. Schmid

Classic Modeling and Analysis
• Processors/processes modeled as interacting state machines

• Zero-time atomic computing steps, usually time-triggered
– Message Passing (MP): [receive] + compute + [send]
– Shared Memory (SHM): [accessSHM] + compute

• System timing parameters:
– Operation durations modeled via inter-step times ϵ[μ-,μ+] (often μ- = 0)
– Message delays modeled as end-to-end delays ϵ[δ-, δ+] (often δ- = 0)

RiSE Winter School 2012 14

[μ-,μ+]

[δ-, δ+]

t
Process p

Process q

U. Schmid

Synchrony Models: 2 Extremes …
Asynchronous systems

• Computing step times:
– μ- = 0
– μ+ finite (but unbounded)

• Message delays
– δ- = 0
– δ+ finite (but unbounded)

Lock-step synchronous systems

• Computing step times:
μ- = μ+ = R

• Message delays
0 ≤ δ- ≤ δ+ ≤ R

• Perfectly synchronized rounds

 RiSE Winter School 2012 15

q

R R

t
p

δ+

U. Schmid

Failure Models

• „Deterministic“ failure models
– At most f of n processors in the system may fail
– Correct processes do not a priori know who has failed and when and how

• Failure semantics ranging from
– Crash failures: Processors stop operating, possibly within a step
– Byzantine failures [LSP82]: Processors can do what they want

• Real processors etc. fail probabilistically Coverage analysis

• Restrict our attention to message passing systems here:
– Typically fully connected, with dedicated links between every pair of

processors
– [Communication between correct processes typically considered reliable]

 RiSE Winter School 2012 16 U. Schmid

A Note on Message Passing vs. Shared Memory

• MP can always be simulated
in a SHM system

• The opposite is not generally
true:
– AsyncSHM can be simulated

in AsyncMP if a majority of
processes (n > 2f) is correct

– Not the case for n ≤ 2f
AsyncSHM more powerful
than AsyncMP

• MP is more elementary than
SHM!

• E.g.: Wait-free (f = n-1) event
ordering possible in AsyncSHM
but not in AsyncMP

 p knows by the time of its Read whether
q has already done its Write

RiSE Winter School 2012 17

q

p t Write R[p]

Read R[p]

Read R[q]

Write R[q]

U. Schmid

Correctness Proofs
• Global state transitions

– Configuration C = vector of processor local states [+ in-transit messages for MP]
– State transition = result of a single processor taking a step

• Algorithm vs. Adversary
– Adversary determines which and when events φ (like processor pi takes a step)

happen (Async. systems: Adv. subject to admissibility (fairness) conditions)
– Algorithm determines what actually happens in the corresponding step

• Executions and traces
– Execution E = sequence of configurations alternating with events

C0,φ1,C1,φ2,C2,φ3,C3, …
– Trace T = (sub-)sequence of „interesting“ events (or states)

• Correctness proofs: Set of generated traces satisfies
– Safety properties („something bad never happens“)
– Liveness properties („something good eventually happens“)

RiSE Winter School 2012 18 U. Schmid

RiSE Winter School 2012 19

 Some Appetizers

U. Schmid

RiSE Winter School 2012 20

 Consistent Broadcasting

U. Schmid

Consistent Broadcasting [ST87]
• Want to build authenticated reliable broadcasting:

– Any process ps may have some message ms to broadcast:
bcast(ps,ms)

– Every correct process shall eventually call accept(ps,ms), and
shall be sure that the received ms originates in ps

– Do not use real authentication (cryptography)!

• Very useful primitive:
– Clock synchronization
– Consensus
– etc.

RiSE Winter School 2012 21 U. Schmid

Properties Consistent Broadcasting

Time-free specification:

• Correctness: If a correct processor ps executes bcast(ps,ms), then
every correct processor eventually calls accept(ps,ms)

• Unforgeability: If a correct processor ps never executes
bcast(ps,ms), then no correct processor ever calls accept(ps,ms)

• Relay: If some correct processor calls accept(ps,ms), then every
other correct processor eventually also calls accept(ps,ms)

RiSE Winter School 2012 22 U. Schmid

U. Schmid RiSE Winter School 2012 23

Implementation

• At most f Byzantine
faulty processors

• n ≥ 3f + 1
• E-t-e delays ∈ [d,d+ε]:

• Message sent by correct proc at t got by
correct receiver proc within [t+d,t+d+ε]

• Every proc gets at most f faulty echo/init
messages from different procs

• At most f echo messages available at pi
by t could be missing at pj by t + ε

 if got (init,ps,ms) from ps
 → send (echo,ps,ms) to all [once]
 if got (echo,ps,ms) from f + 1
 → send (echo,ps,ms) to all [once]
 if got (echo,ps,ms) from 2f + 1
 → call accept(ps,ms)

 send (init,ps,ms) to all processors

accept(ps,ms) at every pi bcast(ps,ms) at ps

System model:

U. Schmid RiSE Winter School 2012 24

Correctness Proof (Time-dependent Version)
• Correctness: If a correct proc ps executes bcast(ps,ms) by t, then every correct

processor eventually calls accept(ps,ms) by t+2(d+ε)

• Unforgeability: If a correct proc ps does not execute bcast(ps,ms) by t, then no
correct processor calls accept(ps,ms) by t+2d

• Relay: If a correct processor calls accept(ps,ms) at t, then every other correct
processor also calls accept(ps,ms) by t+d+2ε

f + 1

 2f + 1

pi at t any pj’ at t+ε any pj at t+d+2ε

≤ ε
≤ d+ε Relay:

Verification Challenges

• Typical distributed algorithms proofs are „handwaving“,
compared to verification standards

• Try do make it rigorous is challenging, even for simple problems
like CB:
– Parameterization (n, f)
– Asynchronous systems
– Failures

• We are working on this in the context of RiSE …

RiSE Winter School 2012 25 U. Schmid

RiSE Winter School 2012 26

 Consensus

U. Schmid

A Classic Problem: Distributed Agreement
(Consensus)

Yes
Yes No

Yes

No No
Yes

All meet
None meet

No

27 RiSE Winter School 2012 U. Schmid

Consensus Properties

• Every process pi
– has initial value xi chosen from some finite set V
– shall irrevocably decide on output value yi

• Termination: Every correct processor eventually decides

• Agreement: Every two correct processors pi , pj decide on the
same value yi = yj

• Validity: If all correct processors have the same input value x,
then x is the only possible decision value

RiSE Winter School 2012 28 U. Schmid

“There is no deterministic algorithm
 for solving consensus in an

asynchronous distributed system
in the presence of a single crash failure.”

Fischer, Lynch and Paterson [FLP85]:

Key problem:
Distinguish slow from dead!
 29 RiSE Winter School 2012 U. Schmid

Asynchronous Consensus Impossibility

Yes
Yes No

Yes ?

No No
Yes

All meet
None meet

No

?

30 RiSE Winter School 2012 U. Schmid

Distributed Agreement (Consensus) - FLP

Lamport, Shostak and Pease [LSP82]:

But:
It is impossible to solve consensus if n = 3f !

31 RiSE Winter School 2012 U. Schmid

Synchronous Consensus

“There is a deterministic algorithm for solving
consensus in a synchronous

distributed system of n ≥ 3f+1 processors
in the presence of at most f Byzantine failures.”

Impossibility of Consensus for f = 1, n = 3

• Suppose correct algorithm A = (A,B,C) for (p0,p1,p2)
existed

• Assume p0 faulty

• By Validity:
– x1 = x2 = 0 → y1 = y2 = 0
– x1 = x2 = 1 → y1 = y2 = 1

• By Agreement:
– x1 ≠ x2 → y1 = y2

RiSE Winter School 2012 32 U. Schmid

p0:A

0 [0]

p2:C p1:B

0 [0]

„Easy Impossibility Proofs“ [FLM86] (I)

RiSE Winter School 2012 33 U. Schmid

1 []

p5:C p4:B

1 []

0 []

p1:B p2:C

0 []

p0:A 0 [] p3:A 1 []

Arrange 6 correct
processors in a ring:

Resulting execution will
not solve consensus, but …

0 [0] 0 [0]

„Easy Impossibility Proofs“ [FLM86] (II)

RiSE Winter School 2012 34 U. Schmid

1 []

p5:C p4:B

1 []

0 []

p1:B p2:C

0 []

p0:A 0 [] p3:A 1 []

Local view of p1, p2:

By Validity: Decision
must be y1 = y2 = 0 …

p0/p3:A

0 [0] 0 [0]

„Easy Impossibility Proofs“ [FLM86] (III)

RiSE Winter School 2012 35 U. Schmid

1 []

p5:C p4:B

1 []

p1:B p2:C

p0:A 0 [] p3:A 1 []

Local view of p3, p4:

By Validity: Decision
must be y3 = y4 = 1 …

1 [1]

1 [1]

0 [0] 0 [0]

„Easy Impossibility Proofs“ [FLM86] (IV)

RiSE Winter School 2012 36 U. Schmid

1 [1]

p5:C p4:B

1 []

p1:B p2:C

p0:A 0 [] p3:A 1 [1]

Local view of p2, p3:

By Agreement: Decision
should be y2 = y3
Contracdicion

RiSE Winter School 2012 37

 Food for Thoughts

U. Schmid

U. Schmid RiS
E

38

Communcation Failures
• Link failure model:

1. Distinguish send and receive link
failures

2. Distinguish omission and
arbitrary link failures

3. Indep. for every send/rec to/from
all

• Known results:

– n > fl
r + fl

s necessary &
sufficient for solving consensus
with pure link omission failures

– n > fl
r + fl

ra + fl
s + fl

sa necessary
& sufficient for solving
consensus with link omission
and arbitrary failures

fl
s ≥ fl

sa

Send link failures

fl
ra ≤ fl

r

Rcv link failures

U. Schmid RiS
E

39

Exercises

Required number of procs:
• n ≥ S”fl

sa+R”fl
ra +3f + 1

Recall lower bound:
• n ≥ fl

r + fl
ra + fl

s + fl
sa +3f +1

 if got (init,ps,ms) from ps
 → send (echo,ps,ms) to all [once]
 if got (echo,ps,ms) from Sfl

sa + Rfl
ra +f + 1

 → send (echo,ps,ms) to all [once]
 if got (echo,ps,ms) from S’fl

sa+R’fl
ra+2f + 1

 → call accept(ps,ms)

1. Find the smallest values for S,R,S‘,R‘,S“,R“ in the CB implem.
below for arbitrary link failures (fl

r = fl
ra and fl

s = fl
sa):

2. Find an „easy impossibility proof“ that shows that n=4 processors

are not enough for solving consensus with fl
r = fl

ra = fl
s = fl

sa = 1
(and f =0)

RiSE Winter School 2012 40

The End
(Part 1)

U. Schmid

References
• [ADFT03] Marcos K. Aguilera, Carole Delporte-Gallet, Hugues Fauconnier, and Sam Toueg. On implementing Omega with weak

reliability and synchrony assumptions. In Proceeding of the 22nd Annual ACM Symposium on Principles of Distributed
Computing (PODC’03), pages 306–314, New York, NY, USA, 2003. ACM Press.

• [ADFT04] Marcos Kawazoe Aguilera, Carole Delporte-Gallet, Hugues Fauconnier, and Sam Toueg. Communication-efficient
leader election and consensus with limited link synchrony. In Proceedings of the 23th ACM Symposium on Principles of
Distributed Computing (PODC’04), pages 328–337, St. John’s, Newfoundland, Canada, 2004. ACM Press.

• [ADLS94] Hagit Attiya, Cynthia Dwork, Nancy Lynch, and Larry Stockmeyer. Bounds on the time to reach agreement in the
presence of timing uncertainty. Journal of the ACM (JACM), 41(1):122–152, 1994.

• [BRS09] M. Biely, P. Robinson, and U. Schmid, Weak synchrony models and failure detectors for message passing k-set
agreement,”in Proceedings of the International Conference on Principles of Distributed Systems (OPODIS’09), ser. LNCS. Nimes,
France: Springer Verlag, Dec 2009.

• [Cha93] S. Chaudhuri, “More choices allow more faults: set consensus problems in totally asynchronous systems,” Inf. Comput.,
vol. 105, no. 1, pp. 132–158, 1993.

• [CT96] Tushar Deepak Chandra and Sam Toueg. Unreliable failure detectors for reliable distributed systems. Journal of the ACM,
43(2):225–267, March 1996.

• [CF99] Flaviu Cristian and Christof Fetzer. The timed asynchronous distributed system model. IEEE Transactions on Parallel and
Distributed Systems, 10(6):642–657, 1999.

• [DDS87] Danny Dolev, Cynthia Dwork, and Larry Stockmeyer. On the minimal synchronism needed for distributed consensus.
Journal of the ACM, 34(1):77–97, January 1987.

• [DHS86] Danny Dolev, Joseph Y. Halpern and H. Raymond Strong. On the Possibility and Impossibility of Achieving Clock
Synchronization 32:230-250, 1986.

• [DLS88] Cynthia Dwork, Nancy Lynch, and Larry Stockmeyer. Consensus in the presence of partial synchrony. Journal of the
ACM, 35(2):288–323, April 1988.

RiSE Winter School 2012 41 U. Schmid

References
• [FC97b] Christof Fetzer and Flaviu Cristian. Integrating external and internal clock synchronization. J. Real-Time Systems,

12(2):123--172, March 1997.

• [FSS05] Christof Fetzer, Ulrich Schmid, and Martin Süßkraut. On the possibility of consensus in asynchronous systems with finite
average response times. In Proceedings of the 25th International Conference on Distributed Computing Systems (ICDCS’05),
pages 271–280, Washington, DC, USA, June 2005. IEEE Computer Society.

• [FML86]] Michael J. Fischer, Nancy A. Lynch, and Michael Merritt. Easy Impossibility Proofs for Distributed Consensus
Problems, Distributed Computing 1(1), 1986, p. 26—39.

• [FLP85] Michael J. Fischer, Nancy A. Lynch, and M. S. Paterson. Impossibility of distributed consensus with one faulty process.
Journal of the ACM, 32(2):374–382, April 1985.

• [FSFK06] Matthias Fuegger, Ulrich Schmid, Gottfried Fuchs, and Gerald Kempf. Fault-Tolerant Distributed Clock Generation in
VLSI Systems-on-Chip. In Proceedings of the Sixth European Dependable Computing Conference (EDCC-6), pages 87–96. IEEE
Computer Society Press, October 2006.

• [Gaf98] Eli Gafni. Round-by-round fault detectors (extended abstract): unifying synchrony and asynchrony. In Proceedings of the
Seventeenth Annual ACM Symposium on Principles of Distributed Computing, pages 143–152, Puerto Vallarta, Mexico, 1998.
ACM Press.

• [GK09] E. Gafni and P. Kuznetsov, “The weakest failure detector for solving ksetagreement,” in 28th ACM SIGACT-SIGOPS
Symposium on Principles of Distributed Computing (PODC 2009), 2009.

• [HL02] Jean-Francois Hermant and Gerard Le Lann. Fast asynchronous uniform consensus in real-time distributed systems. IEEE
Transactions on Computers, 51(8):931–944, August 2002.

• [HW05] Jean-Francois Hermant and Josef Widder. Implementing reliable distributed real-time systems with the Θ-model. In
Proceedings of the 9th International Conference on Principles of Distributed Systems (OPODIS 2005), volume 3974 of LNCS,
pages 334–350, Pisa, Italy, December 2005. Springer Verlag.

• [HMSZ09] Martin Hutle, Dahlia Malkhi, Ulrich Schmid, and Lidong Zhou. Chasing the weakest system model for implementing
Omega and consensus. IEEE Transactions on Dependable and Secure Computing 6(4), 2009

RiSE Winter School 2012 42 U. Schmid

References
• [HS97] Dieter Hoechtl and Ulrich Schmid. Long-term evaluation of GPS timing receiver failures. In Proceedings of the 29th IEEE

Precise Time and Time Interval Systems and Application Meeting (PTTI'97), pages 165--180, Long Beach, California,
December 1997.

• [Lam84] Leslie Lamport. Using Time Instead of Timeout for Fault-Tolerant Distributed Systems. ACM Transactions on
Programming Languages and Systems 6(2), April 1984, p. 254-280

• [LSP82] Leslie Lamport, Robert Shostak, and Marshall Pease. The Byzantine generals problem. ACM Transactions on
Programming Languages and Systems, 4(3):382–401, July 1982.

• [LS03] Gerard LeLann and Ulrich Schmid. How to implement a timer-free perfect failure detector in partially synchronous
systems. Technical Report 183/1-127, Department of Automation, Technische Universit¨at Wien, January 2003. (Replaced by
Research Report 28/2005, Institut f¨ur Technische Informatik, TU Wien, 2005.).

• [LWL88] Jennifer Lundelius-Welch and Nancy A. Lynch. A new fault-tolerant algorithm for clock synchronization. Information
and Computation, 77(1):1--36, 1988.

• [Mil95] David L. Mills. Improved algorithms for synchronizing computer network clocks. IEEE Transactions on Networks, pages
245--254, June 1995.

• [MMR03] Achour Mostefaoui, Eric Mourgaya, and Michel Raynal. Asynchronous implementation of failure detectors. In
Proceedings of the International Conference on Dependable Systems and Networks (DSN’03), San Francisco, CA, June 22–25,
2003.

• [Mos09] Heinrich Moser, Towards a real-time distributed computing model, Theoretical Computer Science, vol. 410, no. 6–7, pp.
629–659, Feb 2009.

• [MS06] Heinrich Moser and U. Schmid, Optimal clock synchronization revisited: Upper and lower bounds in real-time systems,
in Proceedings of the International Conference on Principles of Distributed Systems (OPODIS), ser. LNCS 4305. Bordeaux &
Saint-Emilion, France: Springer Verlag, Dec 2006, pp. 95–109.

• [MS08] Heinrich Moser and Ulrich Schmid. Optimal deterministic remote clock estimation in real-time systems. In Proceedings
of the International Conference on Principles of Distributed Systems (OPODIS), pages 363–387, Luxor, Egypt, December 2008.

• [NT93] Gil Neiger and Sam Toueg. Simulating Synchronized Clocks and Common Knowledge in Distributed Systems. JACM
40(3), April 1993, p. 334-367.

RiSE Winter School 2012 43 U. Schmid

References
• [PS92] Stephen Ponzio and Ray Strong. Semisynchrony and real time. In Proceedings of the 6th International Workshop on

Distributed Algorithms (WDAG’92), pages 120–135, Haifa, Israel, November 1992.
• [RS08] Peter Robinson and Ulrich Schmid. The Aynchronous Bounded Cycle Model. Proceedings of the 10th Internlation

Symposium on Stailization, Safety and Security of Distribted Systems (SSS‘08), Detroit, USA. Springer LNCS 5340, p. 246-262.
• [SAACBBBCLM04] L. Sha, T. Abdelzaher, K.-E. Arzen, A. Cervin, T. Baker, A. Burns, G. Buttazzo, M. Caccamo, J. Lehoczky,

and A. K. Mok, “Real time scheduling theory: A historical perspective,” Real-Time Systems Journal, vol. 28, no. 2/3, pp. 101–155,
2004.

• [Sch86] Fred B. Schneider. A paradigm for reliable clock synchronization. In Proceedings Advanced Seminar of Local Area
Networks, pages 85--104, Bandol, France, April 1986.

• [SKMNCK99] Ulrich Schmid, Johann Klasek, Thomas Mandl, Herbert Nachtnebel, Gerhard R. Cadek, and Nikolaus Keroe. A
Network Time Interface M-Module for distributing GPS-time over LANs. J. Real-Time Systems, 18(1), 2000, p. 24-57.

• [SS97] Ulrich Schmid and Klaus Schossmaier. Interval-based clock synchronization. J. Real-Time Systems, 12(2):173--228,
March 1997.

• [SS99] Ulrich Schmid and Klaus Schossmaier. How to reconcile fault-tolerant interval intersection with the Lipschitz condition.
Distributed Computing 14(2):101-111. 2001.

• [ST87] T. K. Srikanth and Sam Toueg. Optimal clock synchronization. Journal of the ACM, 34(3):626--645, July 1987.

• [Vit84] Paul M.B. Vitányi. Distributed elections in an Archimedean ring of processors. In proceedings of the sixteenth annual
ACM symposium on theory of computing, pages 542-547. ACM Press, 1984.

• [WLS95] Josef Widder, Gerard Le Lann, and Ulrich Schmid. Failure detection with booting in partially synchronous systems. In
Proceedings of the 5th European Dependable Computing Conference (EDCC-5), volume 3463 of LNCS, pages 20–37, Budapest,
Hungary, April 2005. Springer Verlag.

• [WS09] Josef Widder and Ulrich Schmid. The Theta-Model: Achieving Synchrony without Clocks. Distributed Computing 22(19;
2009, p. 29-47

RiSE Winter School 2012 44 U. Schmid

	�Distributed Algorithms �(Part 1)�RiSE Winter School 2012�
	Target: Fault-tolerant Distributed RT Systems
	Scattered Research
	Motivation: �Distributed Fault-Tolerant Clock Generation in Systems-on-Chip
	Slide Number 5
	Clocking in Systems-on-Chip (I)
	Clocking in Systems-on-Chip (II)
	The DARTS Distributed Algorithm
	n ≥ 3f+1: Why do Failures hurt so much ?
	DARTS Correctness Proofs
	DARTS Implementation
	 Introduction to Distributed Algorithms
	Content (Part 1)
	Classic Modeling and Analysis
	Synchrony Models: 2 Extremes …
	Failure Models
	A Note on Message Passing vs. Shared Memory
	Correctness Proofs
	 Some Appetizers
	 Consistent Broadcasting
	Consistent Broadcasting [ST87]
	Properties Consistent Broadcasting
	Implementation
	Correctness Proof (Time-dependent Version)
	Verification Challenges
	 Consensus
	A Classic Problem: Distributed Agreement (Consensus)
	Consensus Properties
	Asynchronous Consensus Impossibility
	Distributed Agreement (Consensus) - FLP
	Synchronous Consensus
	Impossibility of Consensus for f = 1, n = 3
	„Easy Impossibility Proofs“ [FLM86] (I)
	„Easy Impossibility Proofs“ [FLM86] (II)
	„Easy Impossibility Proofs“ [FLM86] (III)
	„Easy Impossibility Proofs“ [FLM86] (IV)
	 Food for Thoughts
	Communcation Failures
	Exercises
	The End �(Part 1)
	References
	References
	References
	References

