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First-Order Logic

I A first-order signature: function (including constant) and
predicate symbols. Equality is part of the language.

I A set of variables.

I Terms are built using variables and function symbols. For
example, f (x) + g(x).

I Atoms, or atomic formulas are obtained by applying a predicate
symbol to a sequence of terms. For example, p(a, x) or
f (x) + g(x) ≥ 2.

I Formulas are built from atoms using logical connectives ¬, ∧, ∨,
→,↔ and quantifiers ∀, ∃. For example, (∀x)x = 0 ∨ (∃y)y > x .



Exercises

Is is true that:

∃x ∀y p(x , y) → ∀ y ∃x p(x , y)

Prove it with our theorem prover: VAMPIRE (vprover.org)

and thank it to yourself!
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Proof by Refutation

Given a problem with assumptions F1, . . . ,Fn and conjecture G,

1. negate the conjecture;
2. establish unsatisfiability of the set of formulas F1, . . . ,Fn,¬G.

Thus, we reduce the theorem proving problem to the problem of
checking unsatisfiability.

Exercise

: Proof by contradiction

⇐⇒ Proof by refutation

∃x ∀y p(x , y) → ∀ y ∃x p(x , y)

Assume: ∃x ∀y p(x , y)
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What an Automatic Theorem Prover is Expected to Do

Input:

I a set of assumptions and axioms (first order-formulas);
I a conjecture (first-order formula).

Output:

I proof (hopefully).

Note:

Once an automatic theorem prover started a proof attempt,
it can only be interrupted by terminating the process.
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General Proving Scheme (simplified)

I Read a problem;

I Try to derive false.

I What are the proving rules?

INFERENCE SYSTEM

I How to use the proving rules?

SATURATION ALGORITHM

I If false is derived, report the result, maybe including a refutation.

Notation: We will use � to denote false (the formula which is always false).
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Outline

The Superposition Inference Systems

Saturation Algorithms

From Theory to Practice

Homework



Example from Algebra

Group theory theorem: if a group satisfies the identity x2 = 1, then it
is commutative.

More formally: in a group “assuming that x2 = 1 for all x prove that
x · y = y · x holds for all x , y .”
What is implicit: axioms of the group theory.

∀x(1 · x = x)
∀x(x−1 · x = 1)
∀x∀y∀z((x · y) · z = x · (y · z))
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Formulation in First-Order Logic with Equality

∀x(1 · x = x)
Axioms (of group theory): ∀x(x−1 · x = 1)

∀x∀y∀z((x · y) · z = x · (y · z))

Assumptions: ∀x(x · x = 1)
Conjecture: ∀x∀y(x · y = y · x)



Proof by Vampire (Slightly Modified)
Refutation found. Thanks to Tanya!
203. $false [subsumption resolution 202,14]
202. sP1(mult(sK,sK0)) [backward demodulation 188,15]
188. mult(X8,X9) = mult(X9,X8) [superposition 22,87]
87. mult(X2,mult(X1,X2)) = X1 [forward demodulation 71,27]
71. mult(inverse(X1),e) = mult(X2,mult(X1,X2)) [superposition 23,20]
27. mult(inverse(X2),e) = X2 [superposition 22,10]
23. mult(inverse(X4),mult(X4,X5)) = X5 [forward demodulation 18,9]
22. mult(X0,mult(X0,X1)) = X1 [forward demodulation 16,9]
20. e = mult(X0,mult(X1,mult(X0,X1))) [superposition 11,12]
18. mult(e,X5) = mult(inverse(X4),mult(X4,X5)) [superposition 11,10]
16. mult(e,X1) = mult(X0,mult(X0,X1)) [superposition 11,12]
15. sP1(mult(sK0,sK)) [inequality splitting 13,14]
14. ˜sP1(mult(sK,sK0)) [inequality splitting name introduction]
13. mult(sK,sK0) != mult(sK0,sK) [cnf transformation 8]
12. e = mult(X0,X0) (0:5) [cnf transformation 4]
11. mult(mult(X0,X1),X2)=mult(X0,mult(X1,X2))[cnf transformation 3]
10. e = mult(inverse(X0),X0) [cnf transformation 2]
9. mult(e,X0) = X0 [cnf transformation 1]
8. mult(sK,sK0) != mult(sK0,sK) [skolemisation 7]
7. ? [X0,X1] : mult(X0,X1) != mult(X1,X0) [ennf transformation 6]
6. ˜! [X0,X1] : mult(X0,X1) = mult(X1,X0) [negated conjecture 5]
5. ! [X0,X1] : mult(X0,X1) = mult(X1,X0) [input]
4. ! [X0] : e = mult(X0,X0)[input]
3. ! [X0,X1,X2] : mult(mult(X0,X1),X2) = mult(X0,mult(X1,X2))[input]
2. ! [X0] : e = mult(inverse(X0),X0) [input]
1. ! [X0] : mult(e,X0) = X0 [input]

I Proof by refutation;
I Inference rules of the superposition calculus;
I Each inference derives a new formula;
I Generating and simplifying inferences.

} Saturation algorithm
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I Inference rules of the superposition calculus;
I Each inference derives a new formula;
I Generating and simplifying inferences.

} Saturation algorithm



Proof by Vampire (Slightly Modified)
Refutation found. Thanks to Tanya!
203. $false [subsumption resolution 202,14]
202. sP1(mult(sK,sK0)) [backward demodulation 188,15]
188. mult(X8,X9) = mult(X9,X8) [superposition 22,87]
87. mult(X2,mult(X1,X2)) = X1 [forward demodulation 71,27]
71. mult(inverse(X1),e) = mult(X2,mult(X1,X2)) [superposition 23,20]
27. mult(inverse(X2),e) = X2 [superposition 22,10]
23. mult(inverse(X4),mult(X4,X5)) = X5 [forward demodulation 18,9]
22. mult(X0,mult(X0,X1)) = X1 [forward demodulation 16,9]
20. e = mult(X0,mult(X1,mult(X0,X1))) [superposition 11,12]
18. mult(e,X5) = mult(inverse(X4),mult(X4,X5)) [superposition 11,10]
16. mult(e,X1) = mult(X0,mult(X0,X1)) [superposition 11,12]
15. sP1(mult(sK0,sK)) [inequality splitting 13,14]
14. ˜sP1(mult(sK,sK0)) [inequality splitting name introduction]
13. mult(sK,sK0) != mult(sK0,sK) [cnf transformation 8]
12. e = mult(X0,X0) (0:5) [cnf transformation 4]
11. mult(mult(X0,X1),X2)=mult(X0,mult(X1,X2))[cnf transformation 3]
10. e = mult(inverse(X0),X0) [cnf transformation 2]
9. mult(e,X0) = X0 [cnf transformation 1]
8. mult(sK,sK0) != mult(sK0,sK) [skolemisation 7]
7. ? [X0,X1] : mult(X0,X1) != mult(X1,X0) [ennf transformation 6]
6. ˜! [X0,X1] : mult(X0,X1) = mult(X1,X0) [negated conjecture 5]
5. ! [X0,X1] : mult(X0,X1) = mult(X1,X0) [input]
4. ! [X0] : e = mult(X0,X0)[input]
3. ! [X0,X1,X2] : mult(mult(X0,X1),X2) = mult(X0,mult(X1,X2))[input]
2. ! [X0] : e = mult(inverse(X0),X0) [input]
1. ! [X0] : mult(e,X0) = X0 [input]

I Proof by refutation;
I Inference rules of the superposition calculus;
I Each inference derives a new formula;
I Generating and simplifying inferences.

} Saturation algorithm



Inference System

I inference rule has the form

F1 . . . Fn

G
,

where n ≥ 0 and F1, . . . ,Fn,G are formulas.
I The formula G is called the conclusion of the inference;
I The formulas F1, . . . ,Fn are called its premises.
I An inference system I is a set of inference rules.
I Axiom: inference rule with no premises.

I Derivation in an inference system I: a tree built from inferences
in I.

I If the root of this derivation is E , then we say it is a derivation of
E .
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The Superposition Inference System - An Inference System for Logic with Equality

We will define it only for propositional formulas (or ground formulas).

Notation: s[l] denotes the term s such that l is a subterm of s.

Superposition: (right and left)

l = r ∨ C s[l] = t ∨ D
s[r ] = t ∨ C ∨ D

(Sup),
l = r ∨ C s[l] 6= t ∨ D

s[r ] 6= t ∨ C ∨ D
(Sup),

Equality Resolution:

s 6= s ∨ C
C

(ER),

Equality Factoring:

s = t ∨ s = t ′ ∨ C
s = t ∨ t 6= t ′ ∨ C

(EF),
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The ground superposition inference system SRF consists of three inference rules:
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s[r ] = t ∨ C ∨ D

(Sup),
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Soundness

I An inference is sound if the conclusion of this inference is a
logical consequence of its premises.

I An inference system is sound if every inference rule in this
system is sound.

SRF is sound.

Consequence of soundness: let S be a set of formulas. If � can be
derived from S in SRF, then S is unsatisfiable.
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Example

(1) f (a) = a ∨ g(a) = a (input)
(2) f (f (a)) = a ∨ g(g(a)) 6= a (input)
(3) f (f (a)) 6= a (input)

(4) f (a) 6= a ∨ g(a) = a (1,3) (superposition)
(5) a 6= a ∨ g(a) = a ∨ g(a) = a (1,4) (superposition)
(6) g(a) = a ∨ g(a) = a (5) (equality resolution)
(7) g(a) = a ∨ a 6= a (6) (equality factoring)
(8) g(a) = a (7) (equality resolution)
(9) f (f (a)) = a ∨ g(a) 6= a (2,8) (superposition)

(10) f (f (a)) = a ∨ a 6= a (8,9) (superposition)
(11) f (f (a)) = a (10) (equality resolution)
(12) a 6= a (3,11) (superposition)
(13) � (12) (equality resolution)
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Soundness be used for Checking (Un)satisfiability!

Completeness.
Let S be an unsatisfiable set of clauses. Then there exists a
derivation of � from S in SRF.

How to find this derivation: using a saturation algorithm.
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How to Establish Unsatisfiability?
Idea:

I Take a set of formulas S, initially S = S0,

where S0 is the input set of formulas.

I Repeatedly apply inferences in I to formulas in S and add their
conclusions to S, unless these conclusions are already in S.

I-inference process:

S0 ⇒ S1 ⇒ S2 ⇒ . . .

1. there exists an inference

F1 . . . Fn

F

in I such that {F1, . . . ,Fn} ⊆ Si ;
2. Si+1 = Si ∪ {F}.

I If, at any stage, we obtain �, we terminate and report
unsatisfiability of S0.



How to Establish Unsatisfiability?
Idea:

I Take a set of formulas S, initially S = S0,

where S0 is the input set of formulas.

I Repeatedly apply inferences in I to formulas in S and add their
conclusions to S, unless these conclusions are already in S.

I-inference process:

S0 ⇒ S1 ⇒ S2 ⇒ . . .

1. there exists an inference

F1 . . . Fn

F

in I such that {F1, . . . ,Fn} ⊆ Si ;
2. Si+1 = Si ∪ {F}.

I If, at any stage, we obtain �, we terminate and report
unsatisfiability of S0.



How to Establish Unsatisfiability?
Idea:

I Take a set of formulas S, initially S = S0,

where S0 is the input set of formulas.

I Repeatedly apply inferences in I to formulas in S and add their
conclusions to S, unless these conclusions are already in S.

I-inference process: S0 ⇒ S1 ⇒ S2 ⇒ . . .

1. there exists an inference

F1 . . . Fn

F

in I such that {F1, . . . ,Fn} ⊆ Si ;
2. Si+1 = Si ∪ {F}.

I If, at any stage, we obtain �, we terminate and report
unsatisfiability of S0.



How to Establish Unsatisfiability?
Idea:

I Take a set of formulas S, initially S = S0,

where S0 is the input set of formulas.

I Repeatedly apply inferences in I to formulas in S and add their
conclusions to S, unless these conclusions are already in S.

I-inference process:

S0 ⇒ S1 ⇒ S2 ⇒ . . .

1. there exists an inference

F1 . . . Fn

F

in I such that {F1, . . . ,Fn} ⊆ Si ;
2. Si+1 = Si ∪ {F}.

I If, at any stage, we obtain �, we terminate and report
unsatisfiability of S0.



How to Establish Satisfiability?

When can we report satisfiability?

When we build a set S such that any inference applied to formulas in
S is already a member of S. Any such set of formulas is called
saturated.

In first-order logic it is often the case that all saturated sets are
infinite, so in practice we can almost never build a saturated set.

The process of trying to build one is referred to as saturation.
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Saturation Algorithm

A saturation algorithm tries to saturate a set of formulas with respect
to a given inference system.
In theory there are three possible scenarios:

1. At some moment the empty formula � is generated, in this case
the input set of formulas is unsatisfiable.

2. Saturation will terminate without ever generating �, in this case
the input set of formulas in satisfiable.

3. Saturation will run forever, but without generating �. In this case
the input set of formulas is satisfiable.



Saturation Algorithm in Practice

In practice there are three possible scenarios:

1. At some moment the empty formula � is generated, in this case
the input set of formulas is unsatisfiable.

2. Saturation will terminate without ever generating �, in this case
the input set of formulas in satisfiable.

3. Saturation will run until we run out of resources, but without
generating �. In this case it is unknown whether the input set is
unsatisfiable.
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From theory to practice

I Preprocessing input problems;
I Normal form transformations of formulas;
I Superposition system;
I Orderings;
I Selection functions;
I Fairness (saturation algorithms);
I Redundancy.



Our story of success ... http://vprover.org
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Homework Exercises

Problem 1. Establish the unsatisfiability of the following set of four
formulas, using the superposition inference system SRF:

(1) c = d
(2) f (d) 6= d ∨ a = b
(3) f (c) = d
(4) g(a,b) 6= g(b,a)

Problem 2. The limit of an I-inference process S0 ⇒ S1 ⇒ S2 ⇒ . . . is
the set of formulas

⋃
i Si . In other words, the limit is the set of all

derived formulas.

Suppose that we have an infinite inference process such that S0 is
unsatisfiable and we use the ground superposition inference system
SRF.

Question: does completeness of SRF imply that the limit of the
process contains the empty clause? Justify your answer!
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