Automated Theorem Proving

An Introduction

Laura Kovács TU Vienna

First-Order Logic

- A first-order signature: function (including constant) and predicate symbols. Equality is part of the language.
- A set of variables.
- ► Terms are built using variables and function symbols. For example, f(x) + g(x).
- Atoms, or atomic formulas are obtained by applying a predicate symbol to a sequence of terms. For example, *p*(*a*, *x*) or *f*(*x*) + *g*(*x*) ≥ 2.
- Formulas are built from atoms using logical connectives ¬, ∧, ∨, →, ↔ and quantifiers ∀, ∃. For example, (∀x)x = 0 ∨ (∃y)y > x.

(日) (日) (日) (日) (日) (日) (日)

Is is true that:

 $\exists x \forall y \ p(x,y) \ \rightarrow \ \forall \ y \ \exists x \ p(x,y)$

Is is true that:

$$\exists x \forall y \ p(x,y) \rightarrow \forall y \ \exists x \ p(x,y)$$

Prove it with our theorem prover: VAMPIRE (vprover.org)

Exercises

Is is true that:

$$\exists x \forall y \ p(x,y) \rightarrow \forall y \ \exists x \ p(x,y)$$

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ─ □ ─ の < @

Prove it with our theorem prover: VAMPIRE (vprover.org) and thank it to yourself!

Exercise

$$\exists x \forall y \ p(x,y) \rightarrow \forall y \exists x \ p(x,y)$$

Exercise

 $\exists x \forall y \ p(x,y) \rightarrow \forall y \ \exists x \ p(x,y)$

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三 - のへぐ

Assume: $\exists x \forall y \ p(x, y)$ Prove: $\forall y \exists x \ p(x, y)$

Exercise: Proof by contradiction

$$\exists x \forall y \ p(x,y) \rightarrow \forall y \exists x \ p(x,y)$$

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三 - のへぐ

Assume: $\exists x \forall y \ p(x, y)$

Assume: $\neg \forall y \exists x p(x, y)$

Prove a contradiction!

Exercise: Proof by contradiction \iff Proof by refutation

$$\exists x \forall y \ p(x,y) \rightarrow \forall y \ \exists x \ p(x,y)$$

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三 - のへぐ

Assume: $\exists x \forall y \ p(x, y)$

Assume: $\neg \forall y \exists x p(x, y)$

Prove a contradiction!

Given a problem with assumptions F_1, \ldots, F_n and conjecture G,

- 1. negate the conjecture;
- 2. establish unsatisfiability of the set of formulas $F_1, \ldots, F_n, \neg G$.

Thus, we reduce the theorem proving problem to the problem of checking unsatisfiability.

Exercise: Proof by contradiction \iff Proof by refutation

$$\exists x \; \forall y \; p(x,y) \; \rightarrow \; \forall \; y \; \exists x \; p(x,y)$$

Assume: $\exists x \forall y \ p(x, y)$

Assume: $\neg \forall y \exists x p(x, y)$

Prove a contradiction!

What an Automatic Theorem Prover is Expected to Do

◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のQ@

Input:

- a set of assumptions and axioms (first order-formulas);
- a conjecture (first-order formula).

Output:

proof (hopefully).

What an Automatic Theorem Prover is Expected to Do

Input:

- a set of assumptions and axioms (first order-formulas);
- a conjecture (first-order formula).

Output:

proof (hopefully).

Note:

Once an automatic theorem prover started a proof attempt, it can only be interrupted by terminating the process.

◆□▶ ◆□▶ ▲□▶ ▲□▶ ■ ののの

Read a problem;

► Try to derive false.

► If *false* is derived, report the result, maybe including a refutation.

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三 - のへぐ

Read a problem;

- ► Try to derive false.
 - What are the proving rules?
 - How to use the proving rules?
- ▶ If *false* is derived, report the result, maybe including a refutation.

◆□▶ ◆□▶ ▲□▶ ▲□▶ ■ ののの

Read a problem;

- ► Try to derive false.
 - What are the proving rules? INFERENCE SYSTEM
 - How to use the proving rules? SATURATION ALGORITHM
- ▶ If *false* is derived, report the result, maybe including a refutation.

< □ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

Read a problem;

- ► Try to derive false.
 - What are the proving rules? INFERENCE SYSTEM
 - How to use the proving rules? SATURATION ALGORITHM
- ▶ If *false* is derived, report the result, maybe including a refutation.

(日) (日) (日) (日) (日) (日) (日)

Notation: We will use \Box to denote *false* (the formula which is always false).

Outline

The Superposition Inference Systems

Saturation Algorithms

From Theory to Practice

Homework

▲□▶▲圖▶▲≣▶▲≣▶ ≣ のQ@

Example from Algebra

Group theory theorem: if a group satisfies the identity $x^2 = 1$, then it is commutative.

Example from Algebra

Group theory theorem: if a group satisfies the identity $x^2 = 1$, then it is commutative.

More formally: in a group "assuming that $x^2 = 1$ for all x prove that $x \cdot y = y \cdot x$ holds for all x, y."

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三 - のへぐ

Example from Algebra

Group theory theorem: if a group satisfies the identity $x^2 = 1$, then it is commutative.

More formally: in a group "assuming that $x^2 = 1$ for all x prove that $x \cdot y = y \cdot x$ holds for all x, y." What is implicit: axioms of the group theory.

$$\begin{aligned} &\forall x(1 \cdot x = x) \\ &\forall x(x^{-1} \cdot x = 1) \\ &\forall x \forall y \forall z((x \cdot y) \cdot z = x \cdot (y \cdot z)) \end{aligned}$$

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三 - のへぐ

Formulation in First-Order Logic with Equality

Axioms (of group theory):	$ \begin{aligned} &\forall x (1 \cdot x = x) \\ &\forall x (x^{-1} \cdot x = 1) \\ &\forall x \forall y \forall z ((x \cdot y) \cdot z = x \cdot (y \cdot z)) \end{aligned} $
Assumptions:	$\forall x(x \cdot x = 1)$
Conjecture:	$\forall x \forall y (x \cdot y = y \cdot x)$

```
Refutation found. Thanks to Tanya!
203. $false [subsumption resolution 202,14]
202. sP1(mult(sK,sK0)) [backward demodulation 188,15]
188. mult(X8,X9) = mult(X9,X8) [superposition 22,87]
87. mult(X2, mult(X1, X2)) = X1 [forward demodulation 71, 27]
71. mult(inverse(X1),e) = mult(X2,mult(X1,X2)) [superposition 23,20]
27. mult(inverse(X2),e) = X2 [superposition 22,10]
23. mult(inverse(X4), mult(X4, X5)) = X5 [forward demodulation 18,9]
22. mult(X0, mult(X0, X1)) = X1 [forward demodulation 16,9]
20. e = mult(X0, mult(X1, mult(X0, X1))) [superposition 11,12]
18. mult(e, X5) = mult(inverse(X4), mult(X4, X5)) [superposition 11,10]
16. mult(e, X1) = mult(X0, mult(X0, X1)) [superposition 11,12]
15. sP1(mult(sK0,sK)) [inequality splitting 13,14]
14. "sP1(mult(sK,sK0)) [inequality splitting name introduction]
13. mult(sK,sK0) != mult(sK0,sK) [cnf transformation 8]
12. e = mult(X0, X0) (0:5) [cnf transformation 4]
11. mult(mult(X0,X1),X2)=mult(X0,mult(X1,X2))[cnf transformation 3]
10. e = mult(inverse(X0),X0) [cnf transformation 2]
9. mult(e,X0) = X0 [cnf transformation 1]
8. mult(sK,sK0) != mult(sK0,sK) [skolemisation 7]
7.
  ? [X0,X1] : mult(X0,X1) != mult(X1,X0) [ennf transformation 6]
6. [X0,X1] : mult(X0,X1) = mult(X1,X0) [negated conjecture 5]
5. [X0, X1] : mult(X0, X1) = mult(X1, X0) [input]
4. ! [X0] : e = mult(X0,X0)[input]
3. ! [X0, X1, X2] : mult(mult(X0, X1), X2) = mult(X0, mult(X1, X2))[input]
2. [X0] : e = mult(inverse(X0), X0) [input]
1. ! [X0] : mult(e,X0) = X0 [input]
```

```
Refutation found. Thanks to Tanya!
203. $false [subsumption resolution 202,14]
202. sP1(mult(sK,sK0)) [backward demodulation 188,15]
188. mult(X8, X9) = mult(X9, X8) [superposition 22, 87]
87. mult(X2, mult(X1, X2)) = X1 [forward demodulation 71, 27]
71. mult(inverse(X1),e) = mult(X2,mult(X1,X2)) [superposition 23,20]
27. mult(inverse(X2),e) = X2 [superposition 22,10]
23. mult(inverse(X4), mult(X4, X5)) = X5 [forward demodulation 18,9]
22. mult (X0, mult (X0, X1)) = X1 [forward demodulation 16,9]
20. e = mult(X0, mult(X1, mult(X0, X1))) [superposition 11,12]
18. mult(e, X5) = mult(inverse(X4), mult(X4, X5)) [superposition 11,10]
16. mult(e, X1) = mult(X0, mult(X0, X1)) [superposition 11,12]
15. sP1(mult(sK0,sK)) [inequality splitting 13,14]
14. "sP1(mult(sK,sK0)) [inequality splitting name introduction]
13. mult(sK,sK0) != mult(sK0,sK) [cnf transformation 8]
12. e = mult(X0, X0) (0:5) [cnf transformation 4]
11. mult(mult(X0,X1),X2)=mult(X0,mult(X1,X2))[cnf transformation 3]
10. e = mult(inverse(X0),X0) [cnf transformation 2]
9. mult(e,X0) = X0 [cnf transformation 1]
8. mult(sK,sK0) != mult(sK0,sK) [skolemisation 7]
  ? [X0,X1] : mult(X0,X1) != mult(X1,X0) [ennf transformation 6]
7.
6. ~! [X0,X1] : mult(X0,X1) = mult(X1,X0) [negated conjecture 5]
5. !
     [X0, X1] : mult(X0, X1) = mult(X1, X0) [input]
4. ! [X0] : e = mult(X0,X0)[input]
3. ! [X0, X1, X2] : mult(mult(X0, X1), X2) = mult(X0, mult(X1, X2))[input]
2. ! [X0] : e = mult(inverse(X0),X0) [input]
1. ! [X0] : mult(e,X0) = X0 [input]
```

Proof by refutation;

```
Refutation found. Thanks to Tanya!
203. $false [subsumption resolution 202,14]
202. sP1(mult(sK,sK0)) [backward demodulation 188,15]
188. mult(X8,X9) = mult(X9,X8) [superposition 22,87]
87. mult(X2, mult(X1, X2)) = X1 [forward demodulation 71, 27]
71. mult(inverse(X1),e) = mult(X2,mult(X1,X2)) [superposition 23,20]
27. mult(inverse(X2), e) = X2 [superposition 22, 10]
23. mult(inverse(X4), mult(X4, X5)) = X5 [forward demodulation 18,9]
22. mult (X0, mult (X0, X1)) = X1 [forward demodulation 16,9]
20. e = mult(X0,mult(X1,mult(X0,X1))) [superposition 11,12]
18. mult(e, X5) = mult(inverse(X4), mult(X4, X5)) [superposition 11,10]
16. mult(e, X1) = mult(X0, mult(X0, X1)) [superposition 11,12]
15. sP1(mult(sK0,sK)) [inequality splitting 13,14]
14. "sP1(mult(sK,sK0)) [inequality splitting name introduction]
13. mult(sK,sK0) != mult(sK0,sK) [cnf transformation 8]
12. e = mult(X0, X0) (0:5) [cnf transformation 4]
11. mult(mult(X0,X1),X2)=mult(X0,mult(X1,X2))[cnf transformation 3]
10. e = mult(inverse(X0),X0) [cnf transformation 2]
9. mult(e,X0) = X0 [cnf transformation 1]
8. mult(sK,sK0) != mult(sK0,sK) [skolemisation 7]
  ? [X0,X1] : mult(X0,X1) != mult(X1,X0) [ennf transformation 6]
7.
6. ~! [X0,X1] : mult(X0,X1) = mult(X1,X0) [negated conjecture 5]
5. [X0, X1] : mult(X0, X1) = mult(X1, X0) [input]
4. ! [X0] : e = mult(X0,X0)[input]
3. ! [X0,X1,X2] : mult(mult(X0,X1),X2) = mult(X0,mult(X1,X2))[input]
2. ! [X0] : e = mult(inverse(X0),X0) [input]
1. ! [X0] : mult(e,X0) = X0 [input]
```

16. mult(e,X1) = mult(X0,mult(X0,X1)) [superposition 11,12]

▲□▶▲□▶▲□▶▲□▶ □ のQ@

12. e = mult(X0,X0)
11. mult(mult(X0,X0),X1)=mult(X0,mult(X0,X1))

```
16. mult(e,X1) = mult(X0,mult(X0,X1)) [superposition 11,12]
```

▲□▶▲□▶▲□▶▲□▶ □ のQ@

```
12. e = mult(X0,X0)
11. mult(mult(X0,X0),X1)=mult(X0,mult(X0,X1))
```

```
16. mult(e,X1) = mult(X0,mult(X0,X1)) [superposition 11,12]
```

▲□▶▲□▶▲□▶▲□▶ □ のQ@

```
12. e = mult(X0,X0)
11. mult(mult(X0,X0),X1)=mult(X0,mult(X0,X1))
```

```
Refutation found. Thanks to Tanya!
203. $false [subsumption resolution 202,14]
202. sP1(mult(sK,sK0)) [backward demodulation 188,15]
188. mult(X8,X9) = mult(X9,X8) [superposition 22,87]
87. mult(X2, mult(X1, X2)) = X1 [forward demodulation 71, 27]
71. mult(inverse(X1),e) = mult(X2,mult(X1,X2)) [superposition 23,20]
27. mult(inverse(X2), e) = X2 [superposition 22, 10]
23. mult(inverse(X4), mult(X4, X5)) = X5 [forward demodulation 18,9]
22. mult(X0, mult(X0, X1)) = X1 [forward demodulation 16,9]
20. e = mult(X0, mult(X1, mult(X0, X1))) [superposition 11,12]
18. mult(e, X5) = mult(inverse(X4), mult(X4, X5)) [superposition 11,10]
16. mult(e, X1) = mult(X0, mult(X0, X1)) [superposition 11,12]
15. sP1(mult(sK0,sK)) [inequality splitting 13,14]
14. "sP1(mult(sK,sK0)) [inequality splitting name introduction]
13. mult(sK,sK0) != mult(sK0,sK) [cnf transformation 8]
12. e = mult(X0, X0) (0:5) [cnf transformation 4]
11. mult(mult(X0,X1),X2)=mult(X0,mult(X1,X2))[cnf transformation 3]
10. e = mult(inverse(X0),X0) [cnf transformation 2]
9. mult(e,X0) = X0 [cnf transformation 1]
8. mult(sK,sK0) != mult(sK0,sK) [skolemisation 7]
  ? [X0,X1] : mult(X0,X1) != mult(X1,X0) [ennf transformation 6]
7.
6. ~! [X0,X1] : mult(X0,X1) = mult(X1,X0) [negated conjecture 5]
5. !
     [X0, X1] : mult(X0, X1) = mult(X1, X0) [input]
4. ! [X0] : e = mult(X0,X0)[input]
3. ! [X0,X1,X2] : mult(mult(X0,X1),X2) = mult(X0,mult(X1,X2))[input]
2. ! [X0] : e = mult(inverse(X0),X0) [input]
1. ! [X0] : mult(e,X0) = X0 [input]
```

▲□▶▲□▶▲□▶▲□▶ □ のQ@

- Proof by refutation;
- Inference rules of the superposition calculus;
- Each inference derives a new formula;

```
Refutation found. Thanks to Tanya!
203. $false [subsumption resolution 202,14]
202. sP1(mult(sK,sK0)) [backward demodulation 188,15]
188. mult(X8, X9) = mult(X9, X8) [superposition 22, 87]
87. mult(X2, mult(X1, X2)) = X1 [forward demodulation 71,27]
71. mult(inverse(X1),e) = mult(X2,mult(X1,X2)) [superposition 23,20]
27. mult(inverse(X2),e) = X2 [superposition 22,10]
23. mult(inverse(X4), mult(X4, X5)) = X5 [forward demodulation 18,9]
22. mult(X0, mult(X0, X1)) = X1 [forward demodulation 16,9]
20. e = mult(X0, mult(X1, mult(X0, X1))) [superposition 11, 12]
18. mult(e,X5) = mult(inverse(X4),mult(X4,X5)) [superposition 11,10]
16. mult(e,X1) = mult(X0,mult(X0,X1)) [superposition 11,12]
15. sP1(mult(sK0,sK)) [inequality splitting 13,14]
14. "sP1(mult(sK,sK0)) [inequality splitting name introduction]
13. mult(sK,sK0) != mult(sK0,sK) [cnf transformation 8]
12. e = mult(X0, X0) (0:5) [cnf transformation 4]
11. mult(mult(X0,X1),X2)=mult(X0,mult(X1,X2))[cnf transformation 3]
10. e = mult(inverse(X0),X0) [cnf transformation 2]
9. mult(e,X0) = X0 [cnf transformation 1]
8. mult(sK,sK0) != mult(sK0,sK) [skolemisation 7]
  ? [X0,X1] : mult(X0,X1) != mult(X1,X0) [ennf transformation 6]
7.
6. ~! [X0,X1] : mult(X0,X1) = mult(X1,X0) [negated conjecture 5]
5. ! [X0, X1] : mult(X0, X1) = mult(X1, X0) [input]
4. ! [X0] : e = mult(X0,X0)[input]
3. ! [X0, X1, X2] : mult(mult(X0, X1), X2) = mult(X0, mult(X1, X2))[input]
2. ! [X0] : e = mult(inverse(X0),X0) [input]
1. ! [X0] : mult(e,X0) = X0 [input]
```

▲□▶▲□▶▲□▶▲□▶ □ のQ@

- Proof by refutation;
- Inference rules of the superposition calculus;
- Each inference derives a new formula;
- Generating and simplifying inferences.

```
Refutation found. Thanks to Tanya!
203. $false [subsumption resolution 202,14]
202. sP1(mult(sK,sK0)) [backward demodulation 188,15]
188. mult(X8, X9) = mult(X9, X8) [superposition 22, 87]
87. mult(X2, mult(X1, X2)) = X1 [forward demodulation 71, 27]
71. mult(inverse(X1),e) = mult(X2,mult(X1,X2)) [superposition 23,20]
27. mult(inverse(X2),e) = X2 [superposition 22,10]
23. mult(inverse(X4), mult(X4, X5)) = X5 [forward demodulation 18,9]
22. mult(X0, mult(X0, X1)) = X1 [forward demodulation 16,9]
20. e = mult(X0, mult(X1, mult(X0, X1))) [superposition 11,12]
18. mult(e, X5) = mult(inverse(X4), mult(X4, X5)) [superposition 11,10]
16. mult(e,X1) = mult(X0,mult(X0,X1)) [superposition 11,12]
15. sP1(mult(sK0,sK)) [inequality splitting 13,14]
14. "sP1(mult(sK,sK0)) [inequality splitting name introduction]
13. mult(sK,sK0) != mult(sK0,sK) [cnf transformation 8]
12. e = mult(X0, X0) (0:5) [cnf transformation 4]
11. mult(mult(X0,X1),X2)=mult(X0,mult(X1,X2))[cnf transformation 3]
10. e = mult(inverse(X0),X0) [cnf transformation 2]
9. mult(e,X0) = X0 [cnf transformation 1]
8. mult(sK,sK0) != mult(sK0,sK) [skolemisation 7]
7. ? [X0,X1] : mult(X0,X1) != mult(X1,X0) [ennf transformation 6]
6. ~! [X0,X1] : mult(X0,X1) = mult(X1,X0) [negated conjecture 5]
5. ! [X0, X1] : mult(X0, X1) = mult(X1, X0) [input]
4. ! [X0] : e = mult(X0,X0)[input]
3. ! [X0, X1, X2] : mult(mult(X0, X1), X2) = mult(X0, mult(X1, X2))[input]
2. ! [X0] : e = mult(inverse(X0),X0) [input]
1. ! [X0] : mult(e,X0) = X0 [input]
```

Saturation algorithm

* 白 * * 母 * * ヨ * * ヨ * * の < や

- Proof by refutation;
- Inference rules of the superposition calculus;
- Each inference derives a new formula;
- Generating and simplifying inferences.

Inference System

inference rule has the form

$$\frac{F_1 \dots F_n}{G}$$

< □ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

where $n \ge 0$ and F_1, \ldots, F_n, G are formulas.

- ▶ The formula *G* is called the conclusion of the inference;
- The formulas F_1, \ldots, F_n are called its premises.
- ► An inference system I is a set of inference rules.
- Axiom: inference rule with no premises.

Inference System

inference rule has the form

$$\frac{F_1 \dots F_n}{G}$$

where $n \ge 0$ and F_1, \ldots, F_n, G are formulas.

- The formula G is called the conclusion of the inference;
- The formulas F_1, \ldots, F_n are called its premises.
- ► An inference system I is a set of inference rules.
- Axiom: inference rule with no premises.
- Derivation in an inference system I: a tree built from inferences in I.
- If the root of this derivation is *E*, then we say it is a derivation of *E*.

The Superposition Inference System - An Inference System for Logic with Equality

(ロ)、

We will define it only for propositional formulas (or ground formulas).

Notation: s[I] denotes the term *s* such that *I* is a subterm of *s*.

The Superposition Inference System - An Inference System for Logic with Equality

The ground superposition inference system SRF consists of three inference rules:

Superposition: (right and left)

$$\frac{l = r \lor C \quad \mathbf{s}[l] = t \lor D}{\mathbf{s}[r] = t \lor C \lor D} \text{ (Sup)}, \quad \frac{l = r \lor C \quad \mathbf{s}[l] \neq t \lor D}{\mathbf{s}[r] \neq t \lor C \lor D} \text{ (Sup)},$$

Equality Resolution:

$$\frac{s \neq s \lor C}{C}$$
 (ER),

Equality Factoring:

$$\frac{s = t \lor s = t' \lor C}{s = t \lor t \neq t' \lor C}$$
(EF),

(日) (日) (日) (日) (日) (日) (日)

Soundness

- An inference is sound if the conclusion of this inference is a logical consequence of its premises.
- An inference system is sound if every inference rule in this system is sound.

< □ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

Soundness

- An inference is sound if the conclusion of this inference is a logical consequence of its premises.
- An inference system is sound if every inference rule in this system is sound.

\mathbb{SRF} is sound.

Consequence of soundness: let *S* be a set of formulas. If \Box can be derived from *S* in SRF, then *S* is unsatisfiable.

◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のQ@
```
(1) f(a) = a \lor g(a) = a

(2) f(f(a)) = a \lor g(g(a)) \neq a

(3) f(f(a)) \neq a
```

(input) (input) (input)

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ─ □ ─ の < @

(1) $f(a) = a \lor g(a) = a$ (2) $f(f(a)) = a \lor g(g(a)) \neq a$ (3) $f(f(a)) \neq a$ (4) $f(a) \neq a \lor g(a) = a$ (input) (input) (input) (1,3) (superposition)

▲ロ▶ ▲□▶ ▲□▶ ▲□▶ □ のQ@

(1) $f(a) = a \lor g(a) = a$ (input) (2) $f(f(a)) = a \lor g(g(a)) \neq a$ (input) (3) $f(f(a)) \neq a$ (input) (4) $f(a) \neq a \lor g(a) = a$ (1,3) (superposition) (5) $a \neq a \lor g(a) = a \lor g(a) = a$ (1,4) (superposition)

◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のQ@

 $\begin{array}{lll} (1) & f(a) = a \lor g(a) = a & (\text{input}) \\ (2) & f(f(a)) = a \lor g(g(a)) \neq a & (\text{input}) \\ (3) & f(f(a)) \neq a & (\text{input}) \\ (4) & f(a) \neq a \lor g(a) = a & (1,3) & (\text{superposition}) \\ (5) & a \neq a \lor g(a) = a \lor g(a) = a & (1,4) & (\text{superposition}) \\ (6) & g(a) = a \lor g(a) = a & (5) & (\text{equality resolution}) \end{array}$

(ロ) (同) (三) (三) (三) (○) (○)

```
(1) f(a) = a \lor g(a) = a (input)

(2) f(f(a)) = a \lor g(g(a)) \neq a (input)

(3) f(f(a)) \neq a (input)

(4) f(a) \neq a \lor g(a) = a (1,3) (superposition)

(5) a \neq a \lor g(a) = a \lor g(a) = a (1,4) (superposition)

(6) g(a) = a \lor g(a) = a (5) (equality resolution)

(7) g(a) = a \lor a \neq a (6) (equality factoring)
```

◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のQ@

```
(1) f(a) = a \lor g(a) = a
                                                      (input)
(2) f(f(a)) = a \lor g(g(a)) \neq a
                                                      (input)
(3) f(f(a)) \neq a
                                                      (input)
(4) f(a) \neq a \lor g(a) = a
                                     (1,3) (superposition)
(5) a \neq a \lor g(a) = a \lor g(a) = a (1,4) (superposition)
(6) g(a) = a \lor g(a) = a
                                          (5) (equality resolution)
(7) g(a) = a \lor a \neq a
                                          (6) (equality factoring)
(8) g(a) = a
                                          (7)
                                               (equality resolution)
```

```
(1) f(a) = a \lor g(a) = a
                                                        (input)
(2) f(f(a)) = a \lor g(g(a)) \neq a
                                                        (input)
(3) \quad f(f(a)) \neq a
                                                        (input)
(4) f(a) \neq a \lor g(a) = a
                                      (1,3) (superposition)
(5) a \neq a \lor g(a) = a \lor g(a) = a (1,4) (superposition)
(6) \quad g(a) = a \lor g(a) = a
                                           (5) (equality resolution)
(7) g(a) = a \lor a \neq a
                                           (6) (equality factoring)
(8) q(a) = a
                                           (7) (equality resolution)
(9) f(f(a)) = a \lor q(a) \neq a
                                        (2, 8)
                                                (superposition)
```

```
(1) f(a) = a \lor g(a) = a
 (2) f(f(a)) = a \lor g(g(a)) \neq a
 (3) f(f(a)) \neq a
 (4) f(a) \neq a \lor g(a) = a
                                        (1,3) (superposition)
 (5) a \neq a \lor g(a) = a \lor g(a) = a (1,4) (superposition)
 (6) g(a) = a \lor g(a) = a
 (7) g(a) = a \lor a \neq a
                                            (6)
 (8) q(a) = a
 (9) f(f(a)) = a \lor q(a) \neq a
(10) f(f(a)) = a \lor a \neq a
```

(input) (input) (input) (5) (equality resolution) (equality factoring) (7) (equality resolution) (2,8) (superposition) (8,9) (superposition)

```
(1) f(a) = a \lor g(a) = a
 (2) f(f(a)) = a \lor g(g(a)) \neq a
 (3) f(f(a)) \neq a
 (4) f(a) \neq a \lor g(a) = a
 (5) a \neq a \lor g(a) = a \lor g(a) = a (1,4) (superposition)
 (6) g(a) = a \lor g(a) = a
 (7) g(a) = a \lor a \neq a
 (8) q(a) = a
     f(f(a)) = a \lor q(a) \neq a
                                         (2, 8)
 (9)
(10) f(f(a)) = a \lor a \neq a
(11) f(f(a)) = a
```

(input) (input) (input) (1,3) (superposition) (5) (equality resolution) (6) (equality factoring) (7) (equality resolution) (superposition) (8,9) (superposition) (10) (equality resolution)

```
(1) f(a) = a \lor g(a) = a
 (2) f(f(a)) = a \lor g(g(a)) \neq a
 (3) f(f(a)) \neq a
 (4) f(a) \neq a \lor g(a) = a
 (5) a \neq a \lor g(a) = a \lor g(a) = a (1,4) (superposition)
 (6) g(a) = a \lor g(a) = a
 (7) g(a) = a \lor a \neq a
 (8) g(a) = a
     f(f(a)) = a \lor q(a) \neq a
                                          (2, 8)
 (9)
(10) f(f(a)) = a \lor a \neq a
(11) \quad f(f(a)) = a
(12) a ≠ a
```

(input) (input) (input) (1,3) (superposition) (5) (equality resolution) (6) (equality factoring) (7) (equality resolution) (superposition) (8,9) (superposition) (10) (equality resolution) (3, 11) (superposition)

```
(1) f(a) = a \lor g(a) = a
 (2) f(f(a)) = a \lor g(g(a)) \neq a
 (3) f(f(a)) \neq a
 (4) f(a) \neq a \lor g(a) = a
 (5) a \neq a \lor g(a) = a \lor g(a) = a (1,4) (superposition)
 (6) g(a) = a \lor g(a) = a
 (7) g(a) = a \lor a \neq a
 (8) g(a) = a
     f(f(a)) = a \lor q(a) \neq a
 (9)
(10) f(f(a)) = a \lor a \neq a
(11) \quad f(f(a)) = a
(12) a \neq a
(13)
```

(input) (input) (input) (1,3) (superposition) (5) (equality resolution) (6) (equality factoring) (7) (equality resolution) (2, 8)(superposition) (8,9) (superposition) (10) (equality resolution) (3, 11) (superposition) (12) (equality resolution)

Soundness be used for Checking (Un)satisfiability!

Completeness.

Let *S* be an unsatisfiable set of clauses. Then there exists a derivation of \Box from *S* in SRF.

▲□▶▲□▶▲□▶▲□▶ □ のQ@

Soundness be used for Checking (Un)satisfiability!

Completeness.

Let S be an unsatisfiable set of clauses. Then there exists a derivation of \Box from S in SRF.

▲□▶▲□▶▲□▶▲□▶ □ のQ@

How to find this derivation: using a saturation algorithm.

The Superposition Inference Systems

Saturation Algorithms

From Theory to Practice

Homework

▲□▶▲圖▶▲≣▶▲≣▶ ≣ のQ@

Idea:

• Take a set of formulas *S*, initially $S = S_0$,

where S_0 is the input set of formulas.

Repeatedly apply inferences in I to formulas in S and add their conclusions to S, unless these conclusions are already in S.

< □ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

Idea:

Take a set of formulas S, initially S = S₀, where S₀ is the input set of formulas.

Repeatedly apply inferences in I to formulas in S and add their conclusions to S, unless these conclusions are already in S.

$$S_0 \Rightarrow S_1 \Rightarrow S_2 \Rightarrow \dots$$

< □ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

1. there exists an inference

$$\frac{F_1 \dots F_n}{F}$$

in \mathbb{I} such that $\{F_1, \dots, F_n\} \subseteq S_i$;
2. $S_{i+1} = S_i \cup \{F\}$.

Idea:

Take a set of formulas S, initially S = S₀, where S₀ is the input set of formulas.

Repeatedly apply inferences in I to formulas in S and add their conclusions to S, unless these conclusions are already in S.

I-inference process: $S_0 \Rightarrow S_1 \Rightarrow S_2 \Rightarrow \dots$

1. there exists an inference

$$\frac{F_1 \quad \dots \quad F_n}{F}$$

A D F A 同 F A E F A E F A Q A

in I such that $\{F_1, \ldots, F_n\} \subseteq S_i$; 2. $S_{i+1} = S_i \cup \{F\}$.

Idea:

Take a set of formulas S, initially S = S₀, where S₀ is the input set of formulas.

Repeatedly apply inferences in I to formulas in S and add their conclusions to S, unless these conclusions are already in S.

$$S_0 \Rightarrow S_1 \Rightarrow S_2 \Rightarrow \dots$$

(ロ) (同) (三) (三) (三) (○) (○)

If, at any stage, we obtain □, we terminate and report unsatisfiability of S₀.

When can we report satisfiability?

When can we report satisfiability?

When we build a set *S* such that any inference applied to formulas in *S* is already a member of *S*. Any such set of formulas is called saturated.

(ロ) (同) (三) (三) (三) (○) (○)

When can we report satisfiability?

When we build a set *S* such that any inference applied to formulas in *S* is already a member of *S*. Any such set of formulas is called saturated.

In first-order logic it is often the case that all saturated sets are infinite, so in practice we can almost never build a saturated set.

(ロ) (同) (三) (三) (三) (三) (○) (○)

The process of trying to build one is referred to as saturation.

◆□▶ ◆□▶ ◆豆▶ ◆豆▶ □豆 = のへぐ

◆□▶ ◆□▶ ◆豆▶ ◆豆▶ □豆 = のへぐ

▲□▶ ▲圖▶ ▲圖▶ ▲圖▶ ▲圖 - 釣A@

・ロト・四ト・ヨト・ヨト・日・今日・

くしゃ (日本) (日本) (日本) (日本)

・ロト・(四ト・(日下・(日下・))への)

Saturation Algorithm

A saturation algorithm tries to saturate a set of formulas with respect to a given inference system.

In theory there are three possible scenarios:

- 1. At some moment the empty formula □ is generated, in this case the input set of formulas is unsatisfiable.
- 2. Saturation will terminate without ever generating □, in this case the input set of formulas in satisfiable.
- 3. Saturation will run <u>forever</u>, but without generating □. In this case the input set of formulas is <u>satisfiable</u>.

(日) (日) (日) (日) (日) (日) (日)

Saturation Algorithm in Practice

In practice there are three possible scenarios:

- 1. At some moment the empty formula □ is generated, in this case the input set of formulas is unsatisfiable.
- 2. Saturation will terminate without ever generating □, in this case the input set of formulas in satisfiable.
- Saturation will run <u>until we run out of resources</u>, but without generating □. In this case it is <u>unknown</u> whether the input set is unsatisfiable.

(ロ) (同) (三) (三) (三) (○) (○)

The Superposition Inference Systems

Saturation Algorithms

From Theory to Practice

Homework

◆□ > ◆□ > ◆ Ξ > ◆ Ξ > → Ξ → のへで

From theory to practice

- Preprocessing input problems;
- Normal form transformations of formulas;

◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のQ@

- Superposition system;
- Orderings;
- Selection functions;
- Fairness (saturation algorithms);
- Redundancy.

Our story of success ... http://vprover.org

					☆ - C Google
- Se	earch 🕴 📩 PDFC	Creator 🐠 eBa	y a Amazon	🐲 Coupons •	🕢 Radio 🛃 💽 🔯 🥪 Options -
<u> </u>	uche 🔶 🎸 📿	CAVIRA 🤤	Der Browser So	hutz ist aktivier	Aktualisieren Sie Avira
		Ou	r Trop	hies	The second
/ampire is winn ince 1999. All t Ve traditionally	ing at least together Va take part i	one divis mpire wor n the follo	ion of the 23 titles owing two	world cu more the divisions	on theorem proving <u>CASC</u> an any other prover. of the competition:
 The FOF dissecond in it as the mail The CNF diswas called The LTB discontain about the contain abou	vision: unre mportance a n competitio vision: first MIX and ree vision: prob out 3.5 milli	stricted fi after the l on divisio -order pro cognised lems with ion axiom	irst-order MIX division blems in o as the ma i very largo s).	problems. on before conjunctiv in compet e axiomat	This division was ranked 2007 and is now recognised e normal form. This division tion division before 2007. Isations (some of them
lere is the list (of our achie	vements:			
ere is the list (of our achie	vements: FOF	CNF/MIX	LTB	
ere is the list	of our achie	vements: FOF	CNF/MIX winner	LTB	
ere is the list	of our achie 1999 2000	FOF winner	CNF/MIX winner	LTB -	
ere is the list	of our achie 1999 2000 2001	vements: FOF winner	CNF/MIX winner winner	LTB - -	
ere is the list	of our achie 1999 2000 2001 2002	FOF winner winner	CNF/MIX winner winner winner	LTB - - -	
ere is the list	of our achie 1999 2000 2001 2002 2003	FOF winner winner winner winner	CNF/MIX winner winner winner winner	LTB - - - -	
ere is the list	of our achie 1999 2000 2001 2002 2003 2004	vements: FOF winner winner winner winner*	CNF/MIX winner winner winner winner winner	LTB - - - - -	
ere is the list	of our achie 1999 2000 2001 2002 2003 2004 2005	vements: FOF winner winner winner* winner	CNF/MIX winner winner winner winner*	LTB - - - - - -	
ere is the list	of our achie 1999 2000 2001 2002 2003 2004 2005 2006	vements: FOF winner winner winner* winner winner	CNF/MIX winner winner winner winner* winner*	LTB - - - - - - -	
ere is the list	of our achie 1999 2000 2001 2002 2003 2004 2005 2006 2007	vements: FOF winner winner winner* winner winner winner winner	CNF/MIX winner winner winner winner* winner* winner*	LTB - - - - - - - - - - -	
ere is the list	of our achie 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008	vements: FOF winner winner winner* winner winner winner winner winner	CNF/MIX winner winner winner winner* winner* winner* winner*	LTB - - - - - - - - - - -	
lere is the list	of our achie 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009	vements: FOF winner winner winner* winner winner winner winner winner winner	CNF/MIX winner winner winner winner* winner* winner* winner* winner*	LTB - - - - - - - - - - - - - - - - - - -	

Note: winner* means that Vampire solved more problems that all other provers in this division and '-' means that i not exist that year.

Outline

The Superposition Inference Systems

Saturation Algorithms

From Theory to Practice

Homework

▲□▶▲圖▶▲≣▶▲≣▶ ≣ の�?

Homework Exercises

Problem 1. Establish the unsatisfiability of the following set of four formulas, using the superposition inference system SRF:

(1) c = d(2) $f(d) \neq d \lor a = b$ (3) f(c) = d(4) $g(a,b) \neq g(b,a)$

Problem 2. The limit of an \mathbb{I} -inference process $S_0 \Rightarrow S_1 \Rightarrow S_2 \Rightarrow \dots$ is the set of formulas $\bigcup_i S_i$. In other words, the limit is the set of all derived formulas.

Suppose that we have an infinite inference process such that S_0 is unsatisfiable and we use the ground superposition inference system SRF.

Question: does completeness of SRF imply that the limit of the process contains the empty clause? Justify your answer!