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Stochastic Games

� Two-player perfect-information games on finite
graphs with randomness in transitions.
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� Various sub-classes
� Brief discussion of applications.
� Solution techniques.



System Analysis

� Formal analysis of systems to prove correctness
with respect to properties.

� System to game graph
� Vertices represent states.

Krishnendu Chatterjee Winter School, Vienna, Feb, 2012 3

� Vertices represent states.
� Edges represent transitions.
� Paths represent behavior.
� Players represent various interacting agents.

� Mathematical framework for system analysis.
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Applications: Verification of Systems

� Verification of systems

� Environment

M satisfies property

E
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� Environment

� Controller (Synthesis)

E

C



Applications: Verification of Systems

� Verification and synthesis of systems

� System is fixed and the environment fixed: deterministic systems.

� System is fixed, but not the environment: Demonic non-determinism.
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� Environment fixed but probabilistically (randomized scheduler):
Markov chain.

� Probabilistic environment and controller: Markov decision process.

� Controller vs. environment: angelic vs. demonic non-determinism
(alternation).



Applications: Systems for Specification

� Synthesis of systems from specification

� Input/Output signals.
� Automata over I/O that specifies the desired set of

behaviors.

� Can the input player present input such that no matter how
the output player plays the generated sequence of I/O
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� Can the input player present input such that no matter how
the output player plays the generated sequence of I/O
signals is accepted by automata ?

� Deterministic automata: Games.

� Some input signals generate probabilistic transition:
Stochastic games.



-synthesis [Church, Ramadge/Wonham, Pnueli/Rosner]

-model checking of open systems

-receptiveness [Dill, Abadi/Lamport]

-semantics of interaction [Abramsky]

-non-emptiness of tree automata [Rabin, Gurevich/ Harrington]

Game Models Applications
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-behavioral type systems and interface automata [deAlfaro/ Henzinger]

-model-based testing [Gurevich/Veanes et al.]

-etc.

• Mathematicians (logic and set theory), Stochastic game theorists, Economists, 

Computer Scientists, Biologists (evolutionary games).



Properties

� Properties in verification

� Reachability to target set.

� Liveness (Buechi) or repeated reachability.
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� Fairness.

� Parity objectives: all !-regular specifications.



MARKOV CHAINS
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MARKOV CHAINS



Markov Chains

� Markov chain model: G=((S,E), δ)

� Finite set S of states.

� Probabilistic transition function δ

Krishnendu Chatterjee Winter School, Vienna, Feb, 2012 12

� Probabilistic transition function δ

� E ={ (s,t) | δ(s)(t) > 0}

� The graph (S,E) is useful.



Markov Chain: Example
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Markov Chain: Example
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Pepsi with prob. 0.6, 

Cola with prob.  0.4

Drink Pepsi today:

Pepsi with prob. 0.5
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Pepsi with prob. 0.5

Cola with prob. 0.5



Markov Chain: Example
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Strongly connected Markov chain: 

Average frequency. 

Linear equations: for every state s we have

xs = ∑t xt ¢ ±(t)(s)



Markov Chain

� Properties of interest

� Target set T: probability to reach the target set.

� Target set B: probability to visit B infinitely often.
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Objectives

� Objectives are subsets of infinite paths, i.e., Ã µ S!.

� Reachability: set of paths that visit the target T at
least once.
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� Liveness (Buechi): set of paths that visit the target B
infinitely often.

� Parity: given a priority function p: S ! {0,1,…, d}, the
objective is the set of infinite paths where the
minimum priority visited infinitely often is even.
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Parity Objectives

� Parity: given a priority function p: S ! {0,1,…, d},
the objective is the set of infinite paths where the
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Markov Chain: Example

� Reachability: starting state is blue.
� Red: probability is less than 1.
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� Blue: probability is 1.
� Green: probability is 1.

� Liveness: infinitely often visit
� Red: probability is 0.
� Blue: probability is 0.
� Green: probability is 1.



Markov Chain: Example

� Parity
� Blue infinitely often, or 1 finitely often.

01 2
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� Blue infinitely often, or 1 finitely often.
� In general, if priorities are 0,1, …, 2d, then we require

for some 0 · i · d, that priority 2i infinitely often, and
all priorities less than 2i is finitely often.



Questions

� Qualitative question
� The set where the property holds with probability 1.
� Qualitative analysis.
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� Quantitative question
� What is the precise probability that the property holds.
� Quantitative analysis.



Qualitative Analysis of Markov Chains

� Consider the graph of Markov chain.

� Closed recurrent set: 
� Bottom strongly connected component.
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� Bottom strongly connected component.
� Closed: No probabilistic transition out.
� Strongly connected.



Qualitative Analysis of Markov Chains

� Theorem: Reach the set of closed recurrent set 
with probability 1.

� Proof. 
� Consider the DAG of the scc decomposition of the 
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� Consider the DAG of the scc decomposition of the 
graph. 

� Consider a scc C of the graph that is not bottom. 
� Let ® be the minimum positive transition prob.
� Leave C within n steps with prob at least ¯ = ®n.
� Stay in C for at least k*n steps is at most (1-¯)k.

� As k goes to infinity this goes to 0. 



Qualitative Analysis of Markov Chains

� Theorem: Reach the set of closed recurrent set 
with probability 1.

� Proof. 
� Path goes out with ¯.
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� Path goes out with ¯.

� Never gets executed for k times
is (1-¯)k. Now let k goto

infinity.



Qualitative Analysis of Markov Chains

� Theorem: Given a closed recurrent set C, for any
starting state in C, all states is reached with prob
1, and hence all states visited infinitely often with
prob 1.
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� Proof.  Very similar argument like before.



Qualitative and Quantitative Analysis

� Previous two results are the basis.

� Example: Liveness objective.
� Compute max scc decomposition.
� Reach the bottom scc’s with prob 1.
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� Reach the bottom scc’s with prob 1.
� A bottom scc with a target is a good bottom scc,

otherwise bad bottom scc.
� Qualitative: if a path to a bad bottom scc, not with prob

1. Otherwise with prob 1.
� Quantitative: reachability probability to good bottom

scc.



Quantitative Reachability Analysis

� Let us denote by C the set of bottom scc’s (the
quantitative values are 0 or 1). We now define a
set of linear equalities. There is a variable xs for
every state s. The equalities are as follows:
� xs = 0 if s in C and bad bottom scc.
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� xs = 1 if s in C and good bottom scc.
� xs = ∑t2S xt * δ(s)(t).

� Brief proof idea: The remaining Markov chain is
transient. Matrix algebra det(I-δ)≠ 0.



Markov Chain Summary
Reachability Liveness Parity

Qualitative Linear time Linear time Linear time
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Quantitative Linear equalities

(Gaussian elimination)

Linear equalities Linear equalities



MARKOV DECISION PROCESSES 
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MARKOV DECISION PROCESSES 



Markov Decision Processes

� Markov decision processes (MDPs)
� Non-determinism.
� Probability.
� Generalizes non-deterministic systems and Markov

chains.
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� An MDP G= ((S,E), (S1, SP), δ)
� δ : SP ! D(S).
� For s 2 SP, the edge (s,t) 2 E iff δ(s)(t)>0.

� E(s) out-going edges from s, and assume E(s) non-
empty for all s.



MDP: Example
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MDP: Example
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y 1-y
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MDP

� Model

� Objectives

� How is non-determinism resolved: notion of
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� How is non-determinism resolved: notion of
strategies. At each stage can be resolved
differently and also probabilistically.



Strategies

� Strategies are recipe how to move tokens or how
to extend plays. Formally, given a history of play
(or finite sequence of states), it chooses a
probability distribution over out-going edges.
� ¾: S* S1 → D(S).
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MDP: Strategy Example
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Token for k-th time: choose left with prob 1/k and right (1-1/k). 



Strategies
� Strategies are recipe how to move tokens or how to extend plays.

Formally, given a history of play (or finite sequence of states), it
chooses a probability distribution over out-going edges.
� ¾: S* S1 ! D(S).

� History dependent and randomized.

� History independent: depends only current state (memoryless or
positional).
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positional).
� ¾: S1 ! D(S)

� Deterministic: no randomization (pure strategies).
� ¾: S* S1 ! S

� Deterministic and memoryless: no memory and no randomization
(pure and memoryless and is the simplest class).
� ¾: S1 ! S



Example: Cheating Lovers

Visit green and red infinitely often.

Pure memoryless not good enough.
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Pure memoryless not good enough.

Strategy with memory: alternates.

Randomized memoryless: choose with uniform probability.

Certainty vs. probability 1.



Values in MDPs

� Value at a state for an objective Ã

� Val(Ã)(s) = sup¾ Prs
¾(Ã).

� Qualitative analysis
� Compute the set of almost-sure (prob 1) winning
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� Compute the set of almost-sure (prob 1) winning
states (i.e., set of states with value 1).

� Quantitative analysis
� Compute the value for all states.



Qualitative and Quantitative Analysis

� Qualitative analysis
� Liveness (Buechi) and reachability as a special case.

� Reduction of quantitative analysis to quantitative 
reachability.
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reachability.

� Quantitative reachability.



Qualitative Analysis for Liveness

� An MDP G, with a target set B.

� Set of states such that there is a strategy to
ensure that B is visited infinitely often with
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ensure that B is visited infinitely often with
probability 1.

� We will show pure memoryless is enough.

� The generalization to parity (left as an exercise).



Attractor

� Random Attractor for a set U of states.

� U0 = U.

� U = U [ {s 2 S j E(s) µ U } 
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� Ui+1 = Ui [ {s 2 S1 j E(s) µ Ui} 

[ {s 2 SP j E(s) Å Ui ≠ ;}.

� From Ui+1 no matter what is the choice, Ui is
reached with positive probability. By induction U
is reached with positive probability.



Attractor

� AttrP(U) =[i ¸ 0 Ui.

� Attractor lemma: From AttrP(U) no matter the
strategy of the player (history dependent,
randomized) the set U is reached with positive
probability.

Krishnendu Chatterjee Winter School, Vienna, Feb, 2012 50

probability.

� Can be computed in O(m) time (m number of edges).

� Thus if U is not in the almost-sure winning set, then
AttrP(U) is also not in the almost-sure winning set.



Iterative Algorithm

B
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� Compute simple reachability to B (exist a path in 
the graph of the MDP (S,E). Let us call this set A.



Iterative Algorithm

BAU
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� Let U= S n A. Then there is not even a path from U 
to B. Clearly, U is not in the almost-sure set.

� By attractor lemma can take AttrP(U) out and iterate.



Iterative Algorithm

BAU
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� AttrP(U) may or may not intersect with B.

AttrP(U)



Iterative Algorithm

BAU
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� Iterate on the remaining sub-graph.
� Every iteration what is removed is not part of almost-

sure winning set. 
� What happens when the iteration stops. 

AttrP(U)



Iterative Algorithm

BAZ
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� The iteration stops. Let Z be the set of states
removed overall iteration.

� Two key properties.



Iterative Algorithm

BAZ
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� The iteration stops. Let Z be the set of states
removed overall iteration.

� Two key properties:
� No probabilistic edge from outside to Z.



Iterative Algorithm

BAZ
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� The iteration stops. Let Z be the set of states
removed overall iteration.

� Two key properties:
� No probabilistic edge from outside to Z.
� From everywhere in A (the remaining graph) path to B.



Iterative Algorithm

BAZ
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� Two key properties:
� No probabilistic edge from outside to Z.
� From everywhere in A (the remaining graph) path to B.

� Fix a memoryless strategy as follows: 
� In A n B: shorten distance to B. (Consider the BFS and choose edge).
� In B: stay in A.



Iterative Algorithm

BAZ
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� Fix a memoryless strategy as follows: 
� In A n B: shorten distance to B. (Consider the BFS and choose edge).
� In B: stay in A.

� Argue all bottom scc’s intersect with B. By Markov chain theorem 
done.



Iterative Algorithm

BAZ
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� Argue all bottom scc’s intersect with B. By Markov chain
theorem done.

� Towards contradiction some bottom scc that does not
intersect.
� Consider the minimum BFS distance to B.



Iterative Algorithm

BAZ
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� Argue all bottom scc’s intersect with B. By Markov chain theorem done.
� Towards contradiction some bottom scc that does not intersect. 

� Consider the minimum BFS distance to B.
� Case 1: if a state in SP, all edges must be there and so must be the one with shorter distance.
� Case 2: if a state in S1, then the successor chosen has shorter distance.
� In both cases we have a contradiction.



Iterative Algorithm

� Time complexity is O(n m).

� Pure memoryless almost-sure winning strategy.

� Exercise: extend it to parity with time complexity
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� Exercise: extend it to parity with time complexity
O(n m d).

� We are now done with qualitative analysis. We
will now argue how to reduce quantitative
analysis to quantitative reachability.



End of Part 1: 

1. Markov chains: 
Qualitative and quantitative Analysis

2. MDPs:
Qualitative analysis
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Qualitative analysis

Next Part:

1. MDPs: 
Quantitative Analysis

2. Stochastic games: 
Qualitative and quantitative Analysis


