Modern SAT Solvers
Part A

Vienna Winter School on Verification

6. February 2012
TU Vienna, Austria

Armin Biere
Institute for Formal Models and Verification
Johannes Kepler University, Linz, Austria

http://fmv.jku.at

http://fmv.jku.at

What is Practical SAT Solving? >

reencoding?
encoding |=-------

iInprocessing

= simplifying |

- search

R SE

SAT Competition / Race Winners on SC 2009 Application Benchmarks

CPU Time (in seconds)

1200

1000

800

600

400

200

Results of the SAT competition/race winners on the SAT 2009 application benchmarks, 20mn timeout

> B[] X X+

4 q

DECNCNENCH /

T T T N 4 T oo

T T
Limmat (2002) O

(9]
Zchaff (2002) o - .V 6*, 9 S &

Berkmin (2002) + =
Forklift (2003) 4

Siege (2003) ; L v v o
Zchaff (2004) +
SatELite (2005)
Minisat 2 (2006)
Picosat (2007)

Rsat (2007) X
Minisat 2.1 (2008) X
Precosat (2009)

Glucose (2009) K
Clasp (2009) + ~

Cryptominisat (2010) m
Lingeling (2010) . X

Minisat 2.2 (2010) S om 3
Glucose 2 (2011) ; E

Glueminisat (2011)

Contrasat (2011)

20 40 60 80 100 120 140 160

Number of problems solved

180

3

R SE

ZChatff,

CPU Time (in seconds)

1200

, My Solvers

Results of the SAT competition/race winners on the SAT 2009 application benchmarks, 20mn timeout

1000 -

800 -

600 -

400

200

X +

T T T T T T a T T~ T
Limmat (2002)

Zchaff (2002)
Berkmin (2002)
Forklift (2003)
Siege (2003) +
Zchaff (2004) +
SatELite (2005)
Minisat 2 (2006)
Picosat (2007)

Rsat (2007) X
Minisat 2.1 (2008) X
Precosat (2009)

Glucose (2009)

Clasp (2009) X
Cryptominisat (2010)
Lingeling (2010).

Minisat 2.2 (2010)

Glucose 2 (2011) >
Glueminisat (2011)
Contrasat (2011)
Lingeling 587f (2011) =~ X

+

X

180

Number of problems solved

200

R SE

SAT Example: Equivalence Checking If-Then-Else Chains encoding 5

original C code optimized C code
if(la && !b) h(); if(a) £0);
else if('a) g(); else if(b) g();
else f£(); else h{();

4)

if(la) { if(a) £0);

if(!b) h(); = else {

else gl(); if(!'b) h();
} else £(); else g(); }

How to check that these two versions are equivalent?

R SE

SAT Example cont. encoding g

1. represent procedures as independent boolean variables

original := optimized :=
if ~a A\ —b then h if a then f
else if —a then g else if b then g
else f else /1

2. compile if-then-else chains into boolean formulae

compile(if x thenyelsez) = (xAy) V (-xAz)

3. check equivalence of the following boolean formulae
compile(original) < compile(optimized)
4. same problem as checking the following formula to be unsatisfiable

compile(original) < compile(optimized)

R SE

COmpiIation encoding| 7

original = if —a N\ —b then h else if —a then g else f
= (—aAN-b)ANhV —(—-aN\—-b)Nif —a then g else f
= (maAN-b)ANhV —(maAN-b)N(—aNg V alf)
optimized = if athen f else if b then g else &

al f VvV —aNif b then g else h

aNfV —aN(bANg NV —bNh)

(maN=-b)ANh NV =(maN—b)AN(—aNg V aNf) < aNfN —aN(bNgV —bAh)

R SE

SAT Example: Circuit Equivalence Checking encoding| g

b TR
a }7)/ 3 }
:)
bV alc (avb) N (bVc)
equivalent?
bV alc & (avb) N (bVc)

R SE

SAT

SAT (Satisfiability) the classical NP complete Problem:
Given a propositional formula f over n propositional variables V = {x,y,...}.
Is there are an assignmentc:V — {0,1} witho(f) =1 ?

SAT belongs to NP

There is a non-deterministic Touring-machine deciding SAT in polynomial time:

guess the assignment ¢ (linear in n), calculate o(f) (linear in |f])
Note: on a real (deterministic) computer this would still require 2" time
SAT is complete for NP (see complexity / theory class)

Implications for us:
general SAT algorithms are probably exponential in time (unless NP = P)

encoding 9

R SE

Conjunctive Normal Form encoding| 10
Definition

a formula in Conjunctive Normal Form (CNF) is a conjunction of clauses

CiACHA...ACy

each clause C is a disjunction of literals

and each literal is either a plain variable x or a negated variable x.

Example (aVvbVvc)A(@vb)AN(ave)

Note 1: two notions for negation: in x and — as in —x for denoting negation.
Note 2: the original SAT problem is actually formulated for CNF

Note 3: SAT solvers mostly also expect CNF as input
R'SE

Translation into CNF via NNF encoding 11

Negation Normal Form (NNF) AND/OR form + negations only occur in front of variables

use De’Morgan (push negations inward) to translate into NNF

a<>(bha) = (a— (bNa))N(a<+ (bNa))

@V (bAa)AaV(bAa))

@V (bANa))A(aV (bVa)) in NNF

use distributivity of OR over AND (“multiply out outer Vv)

(@avb)yN(ava)N\(aVvbVa)

and simplify to finally obtain (avb)

unfortunaly really expensive: (AC;)V(AD;) = A(C;VD;) O(n?)

Example of Tseitin Transformation: Circuit to CNF

CNF

-

w

oNx—a)N(x—=c)AN(x<—alc)A ...

oN(XVa)N(XVc)A(xVave)A ...

encoding 12

o N

R SE

Tseitin Transformation: Input / Output Constraints encoding 13

Negation:

Disjunction:

Conjunction:

Equivalence:

X<y

x> (yVz)

x < (YAZ)

x> (yrz)

-
-

(0

to 3

toeTeTT

(x =)A= x)
(XVY)A(yVx)

YVX)AEZVX)A(XVyVz)
x—=>Ax—=>2)A((yA2) = x)
XVY)AXVZ)A((yAZ) VX
(XVY)A(XVZ)AN(FVZIVX)

x= o)) A (o) —x)

x=> (= 2)ANz=y)A (< z) = x)

x—= =) Ax=>(Z=y)A Y+ 2) = x)
(XVYVZ)AEVZIVY)A((y > 2) = x)
xXVIVZ)AEVZIVY)A((YAZ)V(IAZ)) = x)
XVIVZ)AEVZIVY)A((yAZ) =)N ((FAZ) = x)
(XVIVZOANEXVZIVY)AFTVZIVX)A(YVZVX)

R SE

Davis & Putnam Procedure (DP) search 14

e dates back to the 50’ies:
1t version is resolution based

second version splits space for time
e ideas:
— eliminate the two cases of assigning a variable in space (15t version) or
— case analysis in time, e.g. try x =0, 1 in turn and recurse (2"4 version)

e most successful SAT solvers are based on variant (CDCL) of the second version

works for very large instances

e recent (< 15 years) optimizations:
backjumping, learning, UIPs, dynamic splitting heuristics, fast data structures
(we will have a look at each of them)
R'SE

Resolution Rule search 15

Cu{v} DU{-v}

{v, v}iNnC={v,v}ND=0
CUD

Read:
resolving the two antecedent clauses CU {v} and DU {—v},
both above the line, on the variable v, results in the

resolvent (clause) DUC below the line.

R SE

Eliminating Variables with Resolution search 16

1. pick variable x
2. add all resolvents on x

3. remove all clauses with x and x

For instance given: (aVb)N(aVb)N(@vb)AN(avbve)\(@vbve)
(avb) (avb) (avb) (avbve) (aVvb) (@avbVe)
Resolvents on a: b bV c bV ¢
Remaining clauses after removing all clauses containing a or a: bA(bVc)A(bVE)

Resolving on b gives the remaining clauses cN\C

Which finally (resolving on c¢) gives the inconsistent empty clause

corresponds to eliminate a Tseitin variable for OR by distributivity
R SE

Problems with Resolution Based DP search 17

e if variables have many occurences, then many resolvents are added
— in the worst x and —x occur in half of the clauses ...
— ... then the number of clauses increases quadratically

— clauses become longer and longer

e unfortunately in real world examples the CNF explodes

e currently practically only useful
— in the context of bounded variable elimination (preprocessing)

— as in SatELite preprocessor [EénBiere05]

R SE

DPLL Procedure search 18

DPLL(F)
F := BCP(F)
if F =T return satisfiable
if L € F return unsatisfiable
pick remaining variable x and literal [€ {x, —~x}
if DPLL(F N{l}) returns satisfiable return satisfiable

return DPLL(F N{—l}

R SE

DPLL Example search 19

clauses

decision a

-.av-.bv-.c

¢ decision b C sav bv-c
b_l adv bv C
N av-bv-c
-0 nC Clv-lbv C
€= av bv-c

av bv c

R SE

Conflict Driven Clause Learning (CDCL)

q =
b=1
c =0

decision a

decision b

1 C

search 29

clauses

~av-bv-c
navabv ¢
~av bv-c
~av bv c
av-bv-c
av-bv c
av bv-c
av bv ¢

learn '|Clv-|b

R SE

Conflict Driven Clause Learning (CDCL) search| 21

clauses
®

. av-bv-c
decision a ey
-|av—|bv C

a=1

& e by e
b:O ¢ aV‘IbV'IC
~c BCP av-bv c

. av bv-c

av bv C
-|Clv-|b

learn 1d

R SE

Conflict Driven Clause Learning (CDCL)

a=1
b=0
c =0

o
-a BCP

®
- ¢ decision

@
-b BCP

learn

clauses

~avabvac
~av-abv c
~av bvac
~av bv ¢
avabv-c

av bv-lc

-|Clv-|b

C

search 29

R SE

Conflict Driven Clause Learning (CDCL)

-a BCP

b BCP

learn

clauses

~avabvac
~avabv c
~av bvac
-av bv c

av bv C
-|av-|b

I—"I

search 23

R SE

Simple Data Structures in DP Implementation

Variables

—

Clauses

AT NIRTL

search 24

R SE

BCP Example search o5

0 0
decision level Control Trail
X[1 —
— -1 2
S| X|22
Variables% x| 3 :_,i} Clauses
‘D
X| 4 —=
§% C T s
X| 35 | — e -

R SE

Example cont. search| 2g

Decide

0

decision level Control Trail
X[1 —
— -1 2
S| X|22
Variables% x| 3 :_,i} Clauses
‘D
X| 4 —=
§% C T s
X| 35 | — e -

R SE

Example cont. search o7

Assign

0
1 0 — 1

decision level Control Trail

I

— -1 2

S| X|22

Variables% x| 3 :_,i} Clauses

‘D
X| 4 —=

§% C T s
X| 35 | — e -

R SE

Example cont. search| 2g

BCP
3
/ 0 N 2
1 0 \k 1
decision level Control Trail
I
— -1 2
S|11|2
Variables% 113 :_,i} Clauses
‘D
X| 4 —=
$2 C T s
X| 35 | — e -

R SE

Example cont. search| 29

Decide

\

3 — 3
/O\ 2
> 7 o\k 1

decision level Control Trail

I

— -1 2

S|11|2

Variables% 113 :_,i} Clauses

‘D
X| 4 —=

§% C T s
X| 35 | — e -

R SE

Example cont. search| 30

Assign

\\
o | W | B

/O\
> 7 o\k 1

decision level Control Trail
I
i -1 2
S|11|2
Variables% 113 :_,i} Clauses
X|5 = L

R SE

Example cont. search 31

BCP

o | W | B~ | WD

3/
/O\
> 7 o\k 1

decision level Control Trail
I
i -1 2
S|11|2
Variables% 113 :_,i} Clauses
1|5 —— [-

R SE

Decision Heuristics

e static heuristics:
— one linear order determined before solver is started
— usually quite fast to compute, since only calculated once

— and thus can also use more expensive algorithms

e dynamic heuristics

— typically calculated from number of occurences of literals
(in unsatisfied clauses)

— could be rather expensive, since it requires traversal of all clauses
(or more expensive updates in BCP)

— effective second order dynamic heuristics (e.g. VSIDS in Chaff)

search 32

R SE

Cut Width Heuristics

search 33

e not really used in practice, but instructive to understand why SAT solvers might work

e view CNF as a graph:

clauses as nodes, edges between clauses with same variable

e a cut is a set of variables that splits the graph in two parts

e recursively find short cuts that cut of parts of the graph

e static or dynamically order variables according to the cuts

~ 7

203 =21 31 R -4

short cut

assume

no occurences of
1,2,-1,-2

on the right side

R SE

Cut Width Algorithm

int
sat (CNF cnf)
{

SetOfVariables cut = generate_good_cut

CNF assignment, left, right;

left = cut_off_left_part (cut, cnf);

right = cut_off right_part (cut,

forall_ assignments (assignment,

{

if (sat (apply (assignment, left))

return 1;

return O;

(cnf) ;

&& sat (apply

(assignment,

search 34

right)))

R SE

Other popular Decision Heuristics search| 35

e Dynamic Largest Individual Sum (DLIS)
— fastest dynamic first order heuristic (e.g. GRASP solver)
— choose literal (variable + phase) which occurs most often (ignore satisfied clauses)

— requires explicit traversal of CNF (or more expensive BCP)

e |look-ahead heuristics (e.g. SATZ or MARCH solver) failed literals, probing
— do trial assignments and BCP for all unassigned variables (both phases)
— if BCP leads to conflict, force toggled assignment of current trial decision
— optionally learn binary clauses and perform equivalent literal substitution
— decision: most balanced w.r.t. prop. assignments / sat. clauses / reduced clauses

— see also our recent Cube & Conquer paper [HeuleKullmanWieringaBiere-HVC'11]
R'SE

Exponential VSIDS (EVSIDS) search 3@

Chaff precision of score traded for faster decay
e increment score of involved variables by 1
e decay score of all variables every 256 conflicts by halfing the score

e sort priority queue after decay and not at every conflict

MiniSAT uses EVSIDS
e also just update score of involved variables as actually LIS would also do
e dynamically adjust increment: &' = 6-% (typically increment o by 5%)
e use floating point representation of score

e “rescore” to avoid overflow in regular intervals

e EVSIDS linearly related to NVSIDS
R SE

Relating EVSIDS and NVSIDS search 37

5 1 if involved in k-th conflict
ke 0 otherwise
ir = (1—f)-6

S = = Lo Y et = Y e EVSIDS)
k=1 k=1

R SE

BerkMin’s Dynamic Second Order Heuristics search 3g
[GoldbergNovikov-DATE’02]
e Observation:
— recently added conflict clauses contain all the good variables of VSIDS

— the order of those clauses is not used in VSIDS

e basic idea:
— simply try to satisfy recently learned clauses first
— use VSIDS to chose the decision variable for one clause
— if all learned clauses are satisfied use other heuristics

— intuitively obtains another order of localization (no proofs yet)

e mixed results as other variants VMTF, CMTF (var/clause move to front)
R'SE

