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What is Practical SAT Solving? 2

simplifying

encoding

search

inprocessing

reencoding?
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SAT Competition / Race Winners on SC 2009 Application Benchmarks 3
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Results of the SAT competition/race winners on the SAT 2009 application benchmarks, 20mn timeout

Limmat (2002)
Zchaff (2002)
Berkmin (2002)
Forklift (2003)
Siege (2003)
Zchaff (2004)
SatELite (2005)
Minisat 2 (2006)
Picosat (2007)
Rsat (2007)
Minisat 2.1 (2008)
Precosat (2009)
Glucose (2009)
Clasp (2009)
Cryptominisat (2010)
Lingeling (2010)
Minisat 2.2 (2010)
Glucose 2 (2011)
Glueminisat (2011)
Contrasat (2011)

[Le Berre'11]
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ZChaff, MiniSAT, My Solvers 4
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Results of the SAT competition/race winners on the SAT 2009 application benchmarks, 20mn timeout
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Lingeling (2010)
Minisat 2.2 (2010)
Glucose 2 (2011)
Glueminisat (2011)
Contrasat (2011)
Lingeling 587f (2011)
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SAT Example: Equivalence Checking If-Then-Else Chains encoding 5

original C code optimized C code

if(!a && !b) h(); if(a) f();
else if(!a) g(); else if(b) g();
else f(); else h();

⇓ ⇑

if(!a) { if(a) f();
if(!b) h(); ⇒ else {
else g(); if(!b) h();
} else f(); else g(); }

How to check that these two versions are equivalent?
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SAT Example cont. encoding 6

1. represent procedures as independent boolean variables

original := optimized :=

if ¬a∧¬b then h if a then f
else if ¬a then g else if b then g
else f else h

2. compile if-then-else chains into boolean formulae

compile(if x then y else z) ≡ (x∧ y) ∨ (¬x∧ z)

3. check equivalence of the following boolean formulae

compile(original) ⇔ compile(optimized)

4. same problem as checking the following formula to be unsatisfiable

compile(original) 6↔ compile(optimized)
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Compilation encoding 7

original ≡ if ¬a∧¬b then h else if ¬a then g else f

≡ (¬a∧¬b)∧h ∨ ¬(¬a∧¬b)∧ if ¬a then g else f

≡ (¬a∧¬b)∧h ∨ ¬(¬a∧¬b)∧ (¬a∧g ∨ a∧ f )

optimized ≡ if a then f else if b then g else h

≡ a∧ f ∨ ¬a∧ if b then g else h

≡ a∧ f ∨ ¬a∧ (b∧g ∨ ¬b∧h)

(¬a∧¬b)∧h ∨ ¬(¬a∧¬b)∧ (¬a∧g ∨ a∧ f ) ⇔ a∧ f ∨ ¬a∧ (b∧g ∨ ¬b∧h)
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SAT Example: Circuit Equivalence Checking encoding 8

c

a

b

c

a

b

b ∨ a∧ c (a∨b) ∧ (b∨ c)

equivalent?

b ∨ a∧ c ⇔ (a∨b) ∧ (b∨ c)
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SAT encoding 9

SAT (Satisfiability) the classical NP complete Problem:

Given a propositional formula f over n propositional variables V = {x,y, . . .}.

Is there are an assignment σ : V →{0,1} with σ( f ) = 1 ?

SAT belongs to NP

There is a non-deterministic Touring-machine deciding SAT in polynomial time:

guess the assignment σ (linear in n), calculate σ( f ) (linear in | f |)

Note: on a real (deterministic) computer this would still require 2n time

SAT is complete for NP (see complexity / theory class)

Implications for us:
general SAT algorithms are probably exponential in time (unless NP = P)
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Conjunctive Normal Form encoding 10

Definition

a formula in Conjunctive Normal Form (CNF) is a conjunction of clauses

C1∧C2∧ . . .∧Cn

each clause C is a disjunction of literals

C = L1∨ . . .∨Lm

and each literal is either a plain variable x or a negated variable x.

Example (a∨b∨ c)∧ (a∨b)∧ (a∨ c)

Note 1: two notions for negation: in x and ¬ as in ¬x for denoting negation.

Note 2: the original SAT problem is actually formulated for CNF

Note 3: SAT solvers mostly also expect CNF as input
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Translation into CNF via NNF encoding 11

Negation Normal Form (NNF) AND/OR form + negations only occur in front of variables

use De’Morgan (push negations inward) to translate into NNF

a↔ (b∧a) ≡ (a→ (b∧a))∧ (a← (b∧a))

≡ (ā∨ (b∧a))∧ (a∨ (b∧a))

≡ (ā ∨ (b∧a))∧ (a∨ (b̄∨ ā)) in NNF

use distributivity of OR over AND (“multiply out outer ∨ ”)

(ā∨b)∧ (ā∨a)∧ (a∨ b̄∨ ā)

and simplify to finally obtain (ā∨b)

unfortunaly really expensive: (
∧

Ci)∨ (
∧

D j)≡
∧
(Ci∨D j) O(n2)
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Example of Tseitin Transformation: Circuit to CNF encoding 12

CNF

c

b

a

w

v

w

u
o

x

y

o ∧
(x ↔ a∧ c) ∧
(y ↔ b∨ x) ∧
(u ↔ a∨b) ∧
(v ↔ b∨ c) ∧
(w↔ u∧ v) ∧
(o ↔ y⊕w)

o∧ (x→ a)∧ (x→ c)∧ (x← a∧ c)∧ . . .

o∧ (x∨a)∧ (x∨ c)∧ (x∨a∨ c)∧ . . .
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Tseitin Transformation: Input / Output Constraints encoding 13

Negation: x↔ y ⇔ (x→ y)∧ (y→ x)
⇔ (x∨ y)∧ (y∨ x)

Disjunction: x↔ (y∨ z) ⇔ (y→ x)∧ (z→ x)∧ (x→ (y∨ z))
⇔ (y∨ x)∧ (z∨ x)∧ (x∨ y∨ z)

Conjunction: x↔ (y∧ z) ⇔ (x→ y)∧ (x→ z)∧ ((y∧ z)→ x)
⇔ (x∨ y)∧ (x∨ z)∧ ((y∧ z)∨ x)
⇔ (x∨ y)∧ (x∨ z)∧ (y∨ z∨ x)

Equivalence: x↔ (y↔ z) ⇔ (x→ (y↔ z))∧ ((y↔ z)→ x)
⇔ (x→ ((y→ z)∧ (z→ y))∧ ((y↔ z)→ x)
⇔ (x→ (y→ z))∧ (x→ (z→ y))∧ ((y↔ z)→ x)
⇔ (x∨ y∨ z)∧ (x∨ z∨ y)∧ ((y↔ z)→ x)
⇔ (x∨ y∨ z)∧ (x∨ z∨ y)∧ (((y∧ z)∨ (y∧ z))→ x)
⇔ (x∨ y∨ z)∧ (x∨ z∨ y)∧ ((y∧ z)→ x)∧ ((y∧ z)→ x)
⇔ (x∨ y∨ z)∧ (x∨ z∨ y)∧ (y∨ z∨ x)∧ (y∨ z∨ x)
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Davis & Putnam Procedure (DP) search 14

• dates back to the 50’ies:

1st version is resolution based

second version splits space for time

• ideas:

– eliminate the two cases of assigning a variable in space (1st version) or

– case analysis in time, e.g. try x = 0,1 in turn and recurse (2nd version)

• most successful SAT solvers are based on variant (CDCL) of the second version

works for very large instances

• recent (≤ 15 years) optimizations:

backjumping, learning, UIPs, dynamic splitting heuristics, fast data structures

(we will have a look at each of them)
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Resolution Rule search 15

C∪{v} D∪{¬v}
{v,¬v}∩C = {v,¬v}∩D = /0

C∪D

Read:

resolving the two antecedent clauses C∪{v} and D∪{¬v},

both above the line, on the variable v, results in the

resolvent (clause) D∪C below the line.
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Eliminating Variables with Resolution search 16

1. pick variable x

2. add all resolvents on x

3. remove all clauses with x and x̄

For instance given: (a∨b)∧ (a∨ b̄)∧ (ā∨b)∧ (ā∨ b̄∨ c)∧ (ā∨ b̄∨ c̄)

Resolvents on a:
(a∨b) (ā∨b)

b
(a∨b) (ā∨ b̄∨ c)

b̄∨ c
(a∨b) (ā∨ b̄∨ c̄)

b̄∨ c̄

Remaining clauses after removing all clauses containing a or ā: b∧ (b̄∨ c)∧ (b̄∨ c̄)

Resolving on b gives the remaining clauses c∧ c̄

Which finally (resolving on c) gives the inconsistent empty clause

corresponds to eliminate a Tseitin variable for OR by distributivity
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Problems with Resolution Based DP search 17

• if variables have many occurences, then many resolvents are added

– in the worst x and ¬x occur in half of the clauses . . .

– . . . then the number of clauses increases quadratically

– clauses become longer and longer

• unfortunately in real world examples the CNF explodes

• currently practically only useful

– in the context of bounded variable elimination (preprocessing)

– as in SatELite preprocessor [EénBiere05]
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DPLL Procedure search 18

DPLL(F)

F := BCP(F) boolean constraint propagation

if F => return satisfiable

if ⊥ ∈ F return unsatisfiable

pick remaining variable x and literal l ∈ {x,¬x}

if DPLL(F ∧{l}) returns satisfiable return satisfiable

return DPLL(F ∧{¬l}
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DPLL Example search 19

a

clauses

v b v ca

a v b v c

a v b v c

a v b v c

a v b v c

a v b v c

a v b v c

a v b v c

b

c

c

c b b

a

b c

b =

a =

c =

1

0

1 BCP

decision

decision

Modern SAT Solvers (Part A) — Vienna Winter School on Verification — February 2012 — Armin Biere — JKU Linz RiSE



Conflict Driven Clause Learning (CDCL) search 20

c

a v b
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Conflict Driven Clause Learning (CDCL) search 21
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Conflict Driven Clause Learning (CDCL) search 22
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Conflict Driven Clause Learning (CDCL) search 23
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Simple Data Structures in DP Implementation search 24
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BCP Example search 25
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Example cont. search 26
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Example cont. search 27

TrailControldecision level
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Example cont. search 28

TrailControldecision level
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Example cont. search 29

TrailControldecision level
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Example cont. search 30
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Example cont. search 31

TrailControldecision level
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Decision Heuristics search 32

• static heuristics:

– one linear order determined before solver is started

– usually quite fast to compute, since only calculated once

– and thus can also use more expensive algorithms

• dynamic heuristics

– typically calculated from number of occurences of literals
(in unsatisfied clauses)

– could be rather expensive, since it requires traversal of all clauses
(or more expensive updates in BCP)

– effective second order dynamic heuristics (e.g. VSIDS in Chaff)
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Cut Width Heuristics search 33

• not really used in practice, but instructive to understand why SAT solvers might work

• view CNF as a graph:

clauses as nodes, edges between clauses with same variable

• a cut is a set of variables that splits the graph in two parts

• recursively find short cuts that cut of parts of the graph

• static or dynamically order variables according to the cuts

−2 1 −3 1−1 2 3 −43 1, 2, −1, −2

assume
no occurences of

on the right side

short cut
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Cut Width Algorithm search 34

int

sat (CNF cnf)

{

  SetOfVariables cut = generate_good_cut (cnf);

  CNF assignment, left, right;

  left = cut_off_left_part (cut, cnf);

  right = cut_off_right_part (cut, cnf);

  forall_assignments (assignment, cut)

  {

    if (sat (apply (assignment, left)) && sat (apply (assignment, right)))

      return 1;

  }

  return 0;

}
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Other popular Decision Heuristics search 35

• Dynamic Largest Individual Sum (DLIS)

– fastest dynamic first order heuristic (e.g. GRASP solver)

– choose literal (variable + phase) which occurs most often (ignore satisfied clauses)

– requires explicit traversal of CNF (or more expensive BCP)

• look-ahead heuristics (e.g. SATZ or MARCH solver) failed literals, probing

– do trial assignments and BCP for all unassigned variables (both phases)

– if BCP leads to conflict, force toggled assignment of current trial decision

– optionally learn binary clauses and perform equivalent literal substitution

– decision: most balanced w.r.t. prop. assignments / sat. clauses / reduced clauses

– see also our recent Cube & Conquer paper [HeuleKullmanWieringaBiere-HVC’11]
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Exponential VSIDS (EVSIDS) search 36

Chaff precision of score traded for faster decay

• increment score of involved variables by 1

• decay score of all variables every 256 conflicts by halfing the score

• sort priority queue after decay and not at every conflict

MiniSAT uses EVSIDS

• also just update score of involved variables as actually LIS would also do

• dynamically adjust increment: δ′ = δ · 1f (typically increment δ by 5%)

• use floating point representation of score

• “rescore” to avoid overflow in regular intervals

• EVSIDS linearly related to NVSIDS
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Relating EVSIDS and NVSIDS search 37

(consider only one variable)

δk =

{
1 if involved in k-th conflict

0 otherwise

ik = (1− f ) ·δk

sn = (. . .(i1 · f + i2) · f + i3) · f · · ·) · f + in =
n

∑
k=1

ik · f n−k = (1− f ) ·
n

∑
k=1

δk · f n−k (NVSIDS)

Sn =
f−n

(1− f )
· sn =

f−n

(1− f )
· (1− f ) ·

n

∑
k=1

δk · f n−k =
n

∑
k=1

δk · f−k (EVSIDS)
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BerkMin’s Dynamic Second Order Heuristics search 38

[GoldbergNovikov-DATE’02]

• observation:

– recently added conflict clauses contain all the good variables of VSIDS

– the order of those clauses is not used in VSIDS

• basic idea:

– simply try to satisfy recently learned clauses first

– use VSIDS to chose the decision variable for one clause

– if all learned clauses are satisfied use other heuristics

– intuitively obtains another order of localization (no proofs yet)

• mixed results as other variants VMTF, CMTF (var/clause move to front)
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