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Specification Omega Automata

Syntax as for finite automata, 
in addition one of the following acceptance conditions: 

Buchi: BA ⊆ S

coBuchi: CA ⊆ S 

Streett: SA ⊆ 2S × 2S

Rabin: RA ⊆ 2S × 2S



Language L(M) of specification omega-automaton 

M = (S, S0, →, φ, A ) :

infinite trace  t0, t1, ... ∈ L(M)  

iffiff

there exists an infinite run  s0 → s1 → ...  of M

such that 

1.  s0 → s1 → ...  satisfies A

2. for all  i ≥ 0,   ti |= φ(si)



Let  Inf(s) = { p | p = si for infinitely many i }.

The infinite run  s  satisfies the acceptance condition A

iff

Buchi: Inf(s) ∩ BA ≠ ∅Buchi: Inf(s) ∩ BA ≠ ∅

coBuchi: Inf(s) ⊆ CA

Streett: for all  (l,r) ∈ SA,  
if  Inf(s) ∩ l ≠ ∅ then  Inf(s) ∩ r ≠ ∅

Rabin: for some  (l,r) ∈ RA,  
Inf(s) ∩ l = ∅ and  Inf(s) ∩ r ≠ ∅



finite: � FA

Buchi: �� BA

coBuchi: �� CAcoBuchi: �� CA

Streett: ∧ (��l  ⇒ ��r)

Rabin: ∨ (��¬l  ∧ ��r)



Linear semantics of specification omega automata:

omega-language containment

(K,q)  |=S M        iff      L(K,q) ⊆ L(M)

infinite traces



Response specification automaton :

� (a ⇒ �b)   assuming  (a ∧ b) = false

a ¬b

s1

s2

b¬a

s2

s3

s0

Buchi condition  { s0, s3 }



Linear semantics of monitor omega automata:

omega-language emptiness

(K,q)  |=M M        iff      L(K,q) Å L(M) = ;



Response monitor automaton :

� (a ⇒ �b)   assuming  (a ∧ b) = false

a ¬btrue a ¬b

s1 s2

Buchi condition  { s2 }

s0

true



a ¬a

�� a

a ¬a
s0 s1

Buchi condition  { s0 }

No coBuchi condition

Streett condition  { ({s0,s1}, {s0}) }

Rabin condition  { (∅, {s0}) }



a ¬a

�� a

a ¬a
s0 s1

No Buchi condition

coBuchi condition  { s0 }

Streett condition  { ({s1}, ∅) }

Rabin condition  { ({s1}, {s0,s1}) }



a ¬a
s s1

�� a

s0 s1

Buchi condition  { s2 }

a

s2



-Buchi and coBuchi automata cannot be determinized

-Streett and Rabin automata can be determinized

nondeterministic Buchi =nondeterministic Buchi =

deterministic Streett = deterministic Rabin =

nondeterministic Streett = nondeterministic Rabin =

omega-regular



Omega automata are strictly more expressive than LTL.

Omega-automata: omega-regular languagesOmega-automata: omega-regular languages

LTL:   counter-free omega-regular languages



Omega automata: omega-regular languages  
= second-order theory of monadic predicates & successor
= omega-regular expressions

LTL:   counter-free omega-regular languages                    
= first-order theory of monadic predicates & successor
= star-free omega-regular expressions 



a true

(∀p) ( p ∧ ¬p ∧ �(p ⇔ p)  ⇒ �(p ⇒ a))

(∀p) ( p(0) ∧ ¬p(1) ∧ (∀t) (p(t) ⇔ p(t+2))  ⇒
(∀t) (p(t) ⇒ a(t)))

(a; true)ω



Structure of the Omega-Regular Languages

Streett = 
Rabin 

Buchi coBuchiFinitecoFinite



Structure of the Omega-Regular Languages

Streett = 
Rabin 

Buchi coBuchiFinitecoFinite

counter-free



Structure of the Counter-free Omega-Regular Languages

finite boolean combinations of  �� and  ��

�� ����



The location of a linear-time property in the 
Borel hierarchy indicates how hard 
(theoretically as well as conceptually) the (theoretically as well as conceptually) the 
corresponding model-checking problem is. 



finite boolean combinations of  �� and  ��

safety

weakly 
fair

�� ����
safety

evty.

strongly fair eventuality



Model-checking problem

I |=   S

system model: 
state-transition graph

system property:   
-safety v. weak v. strong fairness 

system model: 
state-transition graph

system property:   
-safety v. weak v. strong fairness 
-logic v. spec v. monitor automata 
-linear v. branching



Model-checking problem

I |=   S

system model: 
state-transition graph

system property:   
-safety v. weak v. strong fairness 

system model: 
state-transition graph

system property:   
-safety v. weak v. strong fairness 
-logic v. spec v. monitor automata 
-linear v. branching

easiest
harder
hard



Model-Checking Algorithms = Graph Algorithms



1 Safety:

-solve:  ∃U model checking, 
finite monitors (� emptiness)

-algorithm:  reachability (linear)

2 Eventuality under weak fairness:

-solve:  weakly fair CTL (∃� model checking), 
Buchi monitors  ( emptiness)

-solve:  weakly fair CTL ( model checking), 
Buchi monitors  (�� emptiness)

-algorithm:  strongly connected components (linear)

3 Liveness:

-solve:  strongly fair CTL,  
Streett monitors  ( ∧ (��∨��) emptiness)

-algorithm:  recursively nested SCCs (quadratic)



From specification automata to monitor automata:

determinization (exponential) + complementation (easy) 

From LTL to monitor automata:

complementation (easy) + tableau construction (exponential)



Five Key Algorithms

1 Reachability

2 Strongly connected components

3 Recursively nested SCCs3 Recursively nested SCCs

4 Tableau construction

5 Streett determinization



Finite Emptiness

Given:  finite automaton (S, S0, →, φ, FA)

Find: is there a path from a state in S0 to a state in FA ? 

Solution:  depth-first or breadth-first search 



Application 1: 9U model checking

Application 2: finite monitorsApplication 2: finite monitors



Buchi Emptiness

Given:  Buchi automaton (S, S0, →, φ, BA)

Find: is there an infinite path from a state in S0 that 
visits some state in BA infinitely often ? 

Solution:    1.  Compute SCC graph by depth-first search 

2.  Mark SCC C as fair iff  C ∩ BA  ≠ ∅

3.  Check if some fair SCC is reachable from S0



Application 1: CTL model checking over 
weakly-fair transition graphs

(note: really need multiBuchi)(note: really need multiBuchi)

Application 2: Buchi monitors



Streett Emptiness

Given:  Streett automaton (S, S0, →, φ, SA)

Find: is there an infinite path from a state in S0 that 
satisfies all Streett conditions (l,r) in SA ? 

Solution:  check if  S0 ∩ RecSCC (S, →, SA) ≠ ∅



function RecSCC (S, →, SA) :

X := ∅
for each  C ∈ SCC (S, →)   do

F := ∅
if  →C ≠ ∅ then 

for each  (l,r) ∈ SA  do
if  C ∩ r ≠ ∅if  C ∩ r ≠ ∅

then  F :=  F ∪ (l,r) 
else   C := C \ l 

if  F = SA 
then X := X ∪ pre*(C) 
else X := X ∪ RecSCC (C, →C, F)

return X



Complexity

n number of states
m number of transitions
s number of Streett pairss number of Streett pairs

Reachability: O(n+m)

SCC: O(n+m)

RecSCC: O((n+m) · s2)



Application 1: CTL model checking over 
strongly-fair transition graphs

Application 2: Streett monitorsApplication 2: Streett monitors



Tableau Construction

Given: LTL formula  ϕ

Find:    Buchi automaton  Mϕ such that  L(Mϕ) = L(ϕ)Find:    Buchi automaton  Mϕ such that  L(Mϕ) = L(ϕ)

monitors subformulas of ϕ



Fischer-Ladner Closure of a Formula

Sub (a) = { a }

Sub (ϕ∧ψ) = { ϕ∧ψ } ∪ Sub (ϕ) ∪ Sub (ψ)

Sub (¬ϕ) = { ¬ϕ } ∪ Sub (ϕ)

Sub (ϕ) = { ϕ } ∪ Sub (ϕ)

Sub (ϕUψ) = { ϕUψ, (ϕUψ) } ∪ Sub (ϕ) ∪ Sub (ψ)

| Sub (ϕ) |  =  O(|ϕ|)



s ⊆ Sub (ϕ)  is consistent

iff

-if  (ψ∧χ) ∈ Sub (ϕ)  then
(ψ∧χ) ∈ s  iff  ψ ∈ s  and  χ ∈ s(ψ∧χ) ∈ s  iff  ψ ∈ s  and  χ ∈ s

-if  (¬ψ) ∈ Sub (ϕ)  then
(¬ψ) ∈ s  iff  ψ ∉ s

-if  (ψUχ) ∈ Sub (ϕ)  then
(ψUχ) ∈ s  iff  either  χ ∈ s

or  ψ ∈ s  and  (ψUχ) ∈ s



Tableau  Mϕ = (S, S0, →, φ, BA) 

S  ... set of consistent subsets of  Sub (ϕ)

s ∈ S0   iff  ϕ ∈ s

s → t   iff  for all (ψ) ∈ Sub (ϕ),  s → t   iff  for all (ψ) ∈ Sub (ϕ),  
(ψ) ∈ s  iff  ψ ∈ t

φ(s) ...  conjunction of atomic observations in s
and negated atomic observations not in s

For each  (ψUχ) ∈ Sub (ϕ),
BA contains  { s | χ ∈ s  or  (ψUχ) ∉ s }



ϕ =  (�a) U (�b) 

ϕ,  ϕ
�a, �a

ϕ, ϕ
�a, a

ϕ
�b, b, �b



ϕ =  (�a) U (�b) 

ϕ,  ϕ
�a, �a

ϕ, ϕ
�a, a

ϕ
�b, b, �bϕ

�a, �a       
ϕ

�a, a       �a, �a       
�b, b, �b

�a, a       
�b, b, �b

�b, b, �b



ϕ =  (�a) U (�b) 

ϕ,  ϕ
�a, �a

ϕ, ϕ
�a, a

ϕ
�b, b, �bϕ

�a, �a       
ϕ

�a, a       �a, �a       
�b, b, �b

�a, a       
�b, b, �b

�b, b, �b
�a, �a       

�b, b, �b
�a, a       

�b, b, �b



ϕ =  (�a) U (�b) 

ϕ,  ϕ
�a, �a

ϕ, ϕ
�a, a

ϕ
�b, b, �bϕ

�a, �a       
ϕ

�a, a       �a, �a       
�b, b, �b

�a, a       
�b, b, �b

�b, b, �b
�a, �a       

�b, b, �b
�a, a       

�b, b, �b



Size of  Mϕ is  O(2|ϕ|).

CTL model checking: linear / quadratic

LTL model checking: PSPACE-complete



Graph Algorithms

Given: labeled graph  (Q, →, A, [ ] )

Cost: each node access and edge access has unit cost

Complexity:   in terms ofComplexity:   in terms of

|Q| = n  ... number of nodes

|→| = m  ...  number of edges

Reachability and s.c.c.s:   O(m+n)



The Graph-Algorithmic View is Problematic

-The graph is given implicitly (by a program) not 
explicitly (e.g., by adjacency lists).

-Building an explicit graph representation is 
exponential, but usually unnecessary (“on-the-fly” exponential, but usually unnecessary (“on-the-fly” 
algorithms). 

-The explicit graph representation may be so big, that 
the “unit-cost model” is not realistic.

-A class of algorithms, called “symbolic algorithms”, do 
not operate on nodes and edges at all.



Symbolic Model-Checking Algorithms

Given: a “symbolic theory”, that is, an abstract data 
type called region with the following operations:

pre, ∀pre, post, ∀post :  region → region pre, ∀pre, post, ∀post :  region → region 

∩, ∪, \ :  region × region → region 

⊆ , = :  region × region → bool 

< >,  > < :  A → region 

∅, Q :  region



Intended Meaning of Symbolic Theories

region    ... set of states

∩, ∪, \, ⊆, =, ∅ ... set operations

<a> = { q ∈ Q | [q] = a } <a> = { q ∈ Q | [q] = a } 

>a< = { q ∈ Q | [q] ≠ a }

pre (R) = { q ∈ Q | (∃ r ∈ R) q → r } 

∀pre (R) = { q ∈ Q | (∀ r)( q → r  ⇒ r ∈ R )} 

post (R) = { q ∈ Q | (∃ r ∈ R) r → q } 

∀post (R) = { q ∈ Q | (∀ r)( r → q  ⇒ r ∈ R )} 



If the state of a system is given by variables of type 
Vals, and the transitions of the system can be described 
by operations Ops on Vals, then the first-order theory 
FO (Vals, Ops) is an adequate symbolic theory:

region    ... formula of FO (Vals, Ops) 

∩, ∪, \, ⊆, =, ∅, Q ... ∧, ∨, , ⇒ validity, ⇔ validity, f, t

pre (R(X))       =  (∃ X’)( Trans(X,X’) ∧ R(X’) )

∀pre (R(X))     =  (∀ X’)( Trans(X,X’)  ⇒ R(X’) )

post (R(X))      =  (∃ X”)( R(X”)  ∧ Trans(X”,X) )

∀post (R(X))   =  (∀ X”)( Trans(X”,X)  ⇒ R(X’’) )



If FO (Vals, Ops) admits quantifier elimination, then 
the propositional theory ZO (Vals, Ops) is an adequate 
symbolic theory:symbolic theory:

each pre/post operation is a quantifier elimination



Example: Boolean Systems

-all system variables X are boolean

-region: quantifier-free boolean formula over X-region: quantifier-free boolean formula over X

-pre, post: boolean quantifier elimination

Complexity:  PSPACE



Example: Presburger Systems

-all system variables X are integers

-the transition relation Trans(X,X’) is defined -the transition relation Trans(X,X’) is defined 
using only ≤ and +

-region: quantifier-free formula of (Z, ≤, +)

-pre, post: quantifier elimination



An iterative language for writing              
symbolic model-checking algorithms

-only data type is region-only data type is region

-expressions: pre, post, ∩, ∪, \ , ⊆ , =, < >, ∅, Q

-assignment, sequencing, while-do, if-then-else



Example:  Reachability ∃�a

S := ∅

R := <a>R := <a>

while  R ⊆ S do

S := S ∪ R

R := pre(R) 


