Model Checking

Tom Henzinger
IST Austria

Specification Omega Automata

Syntax as for finite automata,
in addition one of the following acceptance conditions:

Buchi: BAO S
coBuchi: CAOS
Streett: SA [02°5x2°
Rabin: RA 25 x 23

Language L(M) of specification omega-automaton
M=(S,S5y -,0A):

infinite trace t,, t1, ... O L(M)
iff
there exists an infinite run sy - s; - ... of M
such that
1. s - s; - ... satisfies A
2. forall i=0, t |=qs)

Let Inf(s)={p | p=s; forinfinitely many i }.

The infinite run s satisfies the acceptance condition A
iff

Buchi: Inf(s) n BA # [

coBuchi: Inf(s) O CA

Streett: for all (I,r) O SA,
if Inf(s)n |20 then Inf(s)nrz0O

Rabin: for some (l,r) ORA,
Inf(s)n =0 and Inf(s) nr# 0O

finite:
Buchi:

coBuchi:
Streett:

Rabin:

<& FA

[1<& BA

OO CA
O0(OS = OCr)
O(CO=1 O OCr)

Linear semantics of specification omega automata:

omega-language containment

(Kq) [=5 M iff L(K,g) O L(M)

|

infinite traces

Response specification automaton :
[(a= Ob) assuming (a Ob) = false

Buchi condition {sj, s5}

Linear semantics of monitor omega automata:

omega-language emptiness

(K.q) |=M M iff L(Kg)ALM)-=;

Response monitor automaton :
[(a= Ob) assuming (a Ob) = false

(e —()—(>)
So S S,

Buchi condition { s, }

1< a

Buchi condition {s;} Streett condition { ({sg,s4}, {so}) }
No coBuchi condition Rabin condition { (O, {sp}) }

OO a

No Buchi condition Streett condition { ({sy}, 0) }
coBuchi condition {sy;} Rabin condition { ({si}. {so.s1}) }

OO a

Buchi condition { s, }

-Buchi and coBuchi automata cannot be determinized

-Streett and Rabin automata can be determinized

nondeterministic Buchi =
deterministic Streett = deterministic Rabin =
nhondeterministic Streett = nondeterministic Rabin =

omega-reqular

Omega automata are strictly more expressive than LTL.

Omega-automata: omega-regular languages

U

LTL: counter-free omega-regular languages

Omega automata: omega-regular languages
= second-order theory of monadic predicates & successor
= omega-regular expressions

U

LTL: counter-free omega-regular languages
= first-order theory of monadic predicates & successor
= star-free omega-reqular expressions

—(X

(Op) (pOO-pOU(p = OOp) = U(p = a))

(Op) (p(0) O=p(1) O(Ot) (p(t) = p(t+2)) =
(O%) (p(t) = a(t)))

(a; true)®

Structure of the Omega-Reqular Languages

S’rr'ee’r’r =

Rabln
(()

Structure of the Omega-Reqular Languages

ﬁrr‘ee’r’r = \

Rabin

N

.

counter-free

Structure of the Counter-free Omega-Regular Languages

ml’re boolean combinations of 1< and <O \

SE=))

The location of a linear-time property in the
Borel hierarchy indicates how hard
(theoretically as well as conceptually) the
corresponding model-checking problem is.

ﬂini’re boolean combinations of 1 and <O \

KS‘rr'ongly fair eventuality

Model-checking problem

I |= S
system model: system property:
state-transition graph -safety v. weak v. strong fairness

-logic v. spec v. monitor automata
-linear v. branching

Model-checking problem

/

system model:
state-transition graph

easiest
harder

hard

Model-Checking Algorithms = Graph Algorithms

1 Safety:

-solve: U model checking,
finite monitors (& emptiness)

-algorithm: reachability (linear)
2 Eventuality under weak fairness:

-solve: weakly fair CTL ([T model checking),
Buchi monitors (I emptiness)

-algorithm: strongly connected components (linear)
3 Liveness:

-solve: strongly fair CTL,
Streett monitors (O (<COOO<) emptiness)

-algorithm: recursively nested SCCs (quadratic)

From specification automata to monitor automata:

determinization (exponential) + complementation (easy)

From LTL to monitor automata:

complementation (easy) + tableau construction (exponential)

O W N =

Five Key Algorithms

Reachability

Strongly connected components
Recursively nested SCCs
Tableau construction

Streett determinization

Finite Emptiness

Given: finite automaton (S, Sy, -, ©, FA)
Find: is there a path from a state in Sy to a state in FA ?

Solution: depth-first or breadth-first search

Application 1: 9U model checking
Application 2: finite monitors

Buchi Emptiness

Given: Buchi automaton (S, Sy, -, ©, BA)

Find: is there an infinite path from a state in S, that
visits some state in BA infinitely often ?

Solution: 1. Compute SCC graph by depth-first search
2. Mark SCC C as fair iff Cn BA #[
3. Check if some fair SCC is reachable from S,

Application 1: CTL model checking over
weakly-fair transition graphs

(note: really need multiBuchi)
Application 2: Buchi monitors

Streett Emptiness

Given: Streett automaton (S, Sy, —, 0, SA)

Find: is there an infinite path from a state in S, that
satisfies all Streett conditions (I,r) in SA ?

Solution: check if Sy n RecSCC (S, —», SA) # [

function RecSCC (S, -, SA):

X = [
for each C O SCC (S, -») do
F:=0
if -.#z0 then
for each (I,r) 0 SA do

if Cnrzl[
then F:= FO(l,r)
else C:=C\|
if F=SA

then X := X O pre*(C)
else X := X 0 RecSCC (C, -, F)
return X

Complexity

n number of states
m number of transitions
S number of Streett pairs

Reachability: O(n+m)
SCC: O(n+m)
RecSCC: O((n+m) - s?)

Application 1: CTL model checking over
strongly-fair transition graphs

Application 2: Streett monitors

Tableau Construction

Given: LTL formula ¢
Find: Buchi automaton M, such that L(M,) = L(¢)

monitors subformulas of ¢

Fischer-Ladner Closure of a Formula

Sub (a) = {a}

Sub (60p) = { oW } O Sub (¢) O Sub (V)

Sub (-¢) = {=¢}D Sub (¢)

Sub(O¢9) = {O¢} 0O Sub ()

Sub (pUY) = { oUy, O(¢UY) } U Sub (¢) U Sub ()

| Sub (¢) | = O(lo])

s O Sub (¢) is consistent
iff

-if (YOx) O Sub (¢) then
(WOx)Os iff yOs and x O's

-if (=) O Sub (¢) then
(-p)Os iff pOs

-if (YUx) O Sub (¢) then
(WUx) Os iff either xOs
or yOs and O(YUx) Os

Tableau M, = (S, Sg, —, ¢, BA)

S ... set of consistent subsets of Sub (¢)
sOSy iff $0Os

s » t iff forall (Ow) O Sub (¢),
(OY)Os iff pO+

@(s) ... conjunction of atomic observations in s
and negated atomic observations not in s

For each (WUx) O Sub (¢),
BA contains {s | xOs or (YUx)Os}

¢ = (<$a)U (Ub)

¢

¢ = (<$a)U (Ub)

¢ = (<$a)U (Ub)

¢ = (<$a)U (Ub)

Size of M, is O(2!¢).

CTL model checking: linear / quadratic
LTL model checking: PSPACE-complete

Graph Algorithms

Given: labeled graph (Q, -, A,[])
Cost: each node access and edge access has unit cost
Complexity: in terms of
|Q| = n ... number of nodes
| > | =m .. number of edges
Reachability and s.c.c.s: O(m+n)

The Graph-Algorithmic View is Problematic

-The graph is given implicitly (by a program) not
explicitly (e.g., by adjacency lists).

-Building an explicit graph representation is
exponential, but usually unnecessary (“on-the-fly"
algorithms).

-The explicit graph representation may be so big, that
the "unit-cost model” is not realistic.

-A class of algorithms, called "symbolic algorithms”, do
not operate on nodes and edges at all.

Symbolic Model-Checking Algorithms

Given: a "symbolic theory”, that is, an abstract data
type called region with the following operations:

pre, Upre, post, Lpost : region — region
n, U, \ ! region x region — region

[,=: region x region - bool

<> ><: A - region

[0, Q: region

Intended Meaning of Symbolic Theories

region set of states
n,d,\,Od,=0 set operations
«@={q0Q|[[q]=a}
sac={q0Q|[q]#a)

pre R)={qO0Q | (OrOR)q - r}

pre R)={qU Q| (Or)(q - r =rOR)}
post R)={qO0Q | (OrOR)r - q}

post R)={q Q| (Or)r -~ q =r0OR)

If the state of a system is given by variables of type
Vals, and the transitions of the system can be described
by operations Ops on Vals, then the first-order theory
FO (Vals, Ops) is an adequate symbolic theory:

region formula of FO (Vals, Ops)
n,0,\,0,=0,Q .. 0,0, , = validity, = validity, f, T
pre (R(X)) = (OX)(Trans(X,X) OR(X"))

Opre (R(X)) = (O X)(Trans(X,X') = R(X))
post (R(X)) = (OX")(R(X") O Trans(X".X))
Opost (R(X)) = (O X")(Trans(X" X) = R(X"))

If FO (Vals, Ops) admits quantifier elimination, then
the propositional theory ZO (Vals, Ops) is an adequate
symbolic theory:

each pre/post operation is a quantifier elimination

Example: Boolean Systems

-all system variables X are boolean
-region: quantifier-free boolean formula over X

-pre, post: boolean quantifier elimination

Complexity: PSPACE

Example: Presburger Systems

-all system variables X are integers

-the transition relation Trans(X,X') is defined
using only < and +

-region: quantifier-free formula of (Z, <, +)

-pre, post: quantifier elimination

An iterative language for writing
symbolic model-checking algorithms

-only data type is region
-expressions: pre, post, n, 0, \ ,0,=,<> 0, Q

-assignment, sequencing, while-do, if-then-else

Example: Reachability (K>a

S:i=0

R := <@

while R [1' S do
S:=S5S0OR

R := pre(R)

