
Model Checking

Tom HenzingerTom Henzinger

IST Austria

Specification Omega Automata

Syntax as for finite automata,
in addition one of the following acceptance conditions:

Buchi: BA ⊆ S

coBuchi: CA ⊆ S

Streett: SA ⊆ 2S × 2S

Rabin: RA ⊆ 2S × 2S

Language L(M) of specification omega-automaton

M = (S, S0, →, φ, A) :

infinite trace t0, t1, ... ∈ L(M)

iffiff

there exists an infinite run s0 → s1 → ... of M

such that

1. s0 → s1 → ... satisfies A

2. for all i ≥ 0, ti |= φ(si)

Let Inf(s) = { p | p = si for infinitely many i }.

The infinite run s satisfies the acceptance condition A

iff

Buchi: Inf(s) ∩ BA ≠ ∅Buchi: Inf(s) ∩ BA ≠ ∅

coBuchi: Inf(s) ⊆ CA

Streett: for all (l,r) ∈ SA,
if Inf(s) ∩ l ≠ ∅ then Inf(s) ∩ r ≠ ∅

Rabin: for some (l,r) ∈ RA,
Inf(s) ∩ l = ∅ and Inf(s) ∩ r ≠ ∅

finite: � FA

Buchi: �� BA

coBuchi: �� CAcoBuchi: �� CA

Streett: ∧ (��l ⇒ ��r)

Rabin: ∨ (��¬l ∧ ��r)

Linear semantics of specification omega automata:

omega-language containment

(K,q) |=S M iff L(K,q) ⊆ L(M)

infinite traces

Response specification automaton :

� (a ⇒ �b) assuming (a ∧ b) = false

a ¬b

s1

s2

b¬a

s2

s3

s0

Buchi condition { s0, s3 }

Linear semantics of monitor omega automata:

omega-language emptiness

(K,q) |=M M iff L(K,q) Å L(M) = ;

Response monitor automaton :

� (a ⇒ �b) assuming (a ∧ b) = false

a ¬btrue a ¬b

s1 s2

Buchi condition { s2 }

s0

true

a ¬a

�� a

a ¬a
s0 s1

Buchi condition { s0 }

No coBuchi condition

Streett condition { ({s0,s1}, {s0}) }

Rabin condition { (∅, {s0}) }

a ¬a

�� a

a ¬a
s0 s1

No Buchi condition

coBuchi condition { s0 }

Streett condition { ({s1}, ∅) }

Rabin condition { ({s1}, {s0,s1}) }

a ¬a
s s1

�� a

s0 s1

Buchi condition { s2 }

a

s2

-Buchi and coBuchi automata cannot be determinized

-Streett and Rabin automata can be determinized

nondeterministic Buchi =nondeterministic Buchi =

deterministic Streett = deterministic Rabin =

nondeterministic Streett = nondeterministic Rabin =

omega-regular

Omega automata are strictly more expressive than LTL.

Omega-automata: omega-regular languagesOmega-automata: omega-regular languages

LTL: counter-free omega-regular languages

Omega automata: omega-regular languages
= second-order theory of monadic predicates & successor
= omega-regular expressions

LTL: counter-free omega-regular languages
= first-order theory of monadic predicates & successor
= star-free omega-regular expressions

a true

(∀p) (p ∧ ¬p ∧ �(p ⇔ p) ⇒ �(p ⇒ a))

(∀p) (p(0) ∧ ¬p(1) ∧ (∀t) (p(t) ⇔ p(t+2)) ⇒
(∀t) (p(t) ⇒ a(t)))

(a; true)ω

Structure of the Omega-Regular Languages

Streett =
Rabin

Buchi coBuchiFinitecoFinite

Structure of the Omega-Regular Languages

Streett =
Rabin

Buchi coBuchiFinitecoFinite

counter-free

Structure of the Counter-free Omega-Regular Languages

finite boolean combinations of �� and ��

�� ����

The location of a linear-time property in the
Borel hierarchy indicates how hard
(theoretically as well as conceptually) the (theoretically as well as conceptually) the
corresponding model-checking problem is.

finite boolean combinations of �� and ��

safety

weakly
fair

�� ����
safety

evty.

strongly fair eventuality

Model-checking problem

I |= S

system model:
state-transition graph

system property:
-safety v. weak v. strong fairness

system model:
state-transition graph

system property:
-safety v. weak v. strong fairness
-logic v. spec v. monitor automata
-linear v. branching

Model-checking problem

I |= S

system model:
state-transition graph

system property:
-safety v. weak v. strong fairness

system model:
state-transition graph

system property:
-safety v. weak v. strong fairness
-logic v. spec v. monitor automata
-linear v. branching

easiest
harder
hard

Model-Checking Algorithms = Graph Algorithms

1 Safety:

-solve: ∃U model checking,
finite monitors (� emptiness)

-algorithm: reachability (linear)

2 Eventuality under weak fairness:

-solve: weakly fair CTL (∃� model checking),
Buchi monitors (emptiness)

-solve: weakly fair CTL (model checking),
Buchi monitors (�� emptiness)

-algorithm: strongly connected components (linear)

3 Liveness:

-solve: strongly fair CTL,
Streett monitors (∧ (��∨��) emptiness)

-algorithm: recursively nested SCCs (quadratic)

From specification automata to monitor automata:

determinization (exponential) + complementation (easy)

From LTL to monitor automata:

complementation (easy) + tableau construction (exponential)

Five Key Algorithms

1 Reachability

2 Strongly connected components

3 Recursively nested SCCs3 Recursively nested SCCs

4 Tableau construction

5 Streett determinization

Finite Emptiness

Given: finite automaton (S, S0, →, φ, FA)

Find: is there a path from a state in S0 to a state in FA ?

Solution: depth-first or breadth-first search

Application 1: 9U model checking

Application 2: finite monitorsApplication 2: finite monitors

Buchi Emptiness

Given: Buchi automaton (S, S0, →, φ, BA)

Find: is there an infinite path from a state in S0 that
visits some state in BA infinitely often ?

Solution: 1. Compute SCC graph by depth-first search

2. Mark SCC C as fair iff C ∩ BA ≠ ∅

3. Check if some fair SCC is reachable from S0

Application 1: CTL model checking over
weakly-fair transition graphs

(note: really need multiBuchi)(note: really need multiBuchi)

Application 2: Buchi monitors

Streett Emptiness

Given: Streett automaton (S, S0, →, φ, SA)

Find: is there an infinite path from a state in S0 that
satisfies all Streett conditions (l,r) in SA ?

Solution: check if S0 ∩ RecSCC (S, →, SA) ≠ ∅

function RecSCC (S, →, SA) :

X := ∅
for each C ∈ SCC (S, →) do

F := ∅
if →C ≠ ∅ then

for each (l,r) ∈ SA do
if C ∩ r ≠ ∅if C ∩ r ≠ ∅

then F := F ∪ (l,r)
else C := C \ l

if F = SA
then X := X ∪ pre*(C)
else X := X ∪ RecSCC (C, →C, F)

return X

Complexity

n number of states
m number of transitions
s number of Streett pairss number of Streett pairs

Reachability: O(n+m)

SCC: O(n+m)

RecSCC: O((n+m) · s2)

Application 1: CTL model checking over
strongly-fair transition graphs

Application 2: Streett monitorsApplication 2: Streett monitors

Tableau Construction

Given: LTL formula ϕ

Find: Buchi automaton Mϕ such that L(Mϕ) = L(ϕ)Find: Buchi automaton Mϕ such that L(Mϕ) = L(ϕ)

monitors subformulas of ϕ

Fischer-Ladner Closure of a Formula

Sub (a) = { a }

Sub (ϕ∧ψ) = { ϕ∧ψ } ∪ Sub (ϕ) ∪ Sub (ψ)

Sub (¬ϕ) = { ¬ϕ } ∪ Sub (ϕ)

Sub (ϕ) = { ϕ } ∪ Sub (ϕ)

Sub (ϕUψ) = { ϕUψ, (ϕUψ) } ∪ Sub (ϕ) ∪ Sub (ψ)

| Sub (ϕ) | = O(|ϕ|)

s ⊆ Sub (ϕ) is consistent

iff

-if (ψ∧χ) ∈ Sub (ϕ) then
(ψ∧χ) ∈ s iff ψ ∈ s and χ ∈ s(ψ∧χ) ∈ s iff ψ ∈ s and χ ∈ s

-if (¬ψ) ∈ Sub (ϕ) then
(¬ψ) ∈ s iff ψ ∉ s

-if (ψUχ) ∈ Sub (ϕ) then
(ψUχ) ∈ s iff either χ ∈ s

or ψ ∈ s and (ψUχ) ∈ s

Tableau Mϕ = (S, S0, →, φ, BA)

S ... set of consistent subsets of Sub (ϕ)

s ∈ S0 iff ϕ ∈ s

s → t iff for all (ψ) ∈ Sub (ϕ), s → t iff for all (ψ) ∈ Sub (ϕ),
(ψ) ∈ s iff ψ ∈ t

φ(s) ... conjunction of atomic observations in s
and negated atomic observations not in s

For each (ψUχ) ∈ Sub (ϕ),
BA contains { s | χ ∈ s or (ψUχ) ∉ s }

ϕ = (�a) U (�b)

ϕ, ϕ
�a, �a

ϕ, ϕ
�a, a

ϕ
�b, b, �b

ϕ = (�a) U (�b)

ϕ, ϕ
�a, �a

ϕ, ϕ
�a, a

ϕ
�b, b, �bϕ

�a, �a
ϕ

�a, a �a, �a
�b, b, �b

�a, a
�b, b, �b

�b, b, �b

ϕ = (�a) U (�b)

ϕ, ϕ
�a, �a

ϕ, ϕ
�a, a

ϕ
�b, b, �bϕ

�a, �a
ϕ

�a, a �a, �a
�b, b, �b

�a, a
�b, b, �b

�b, b, �b
�a, �a

�b, b, �b
�a, a

�b, b, �b

ϕ = (�a) U (�b)

ϕ, ϕ
�a, �a

ϕ, ϕ
�a, a

ϕ
�b, b, �bϕ

�a, �a
ϕ

�a, a �a, �a
�b, b, �b

�a, a
�b, b, �b

�b, b, �b
�a, �a

�b, b, �b
�a, a

�b, b, �b

Size of Mϕ is O(2|ϕ|).

CTL model checking: linear / quadratic

LTL model checking: PSPACE-complete

Graph Algorithms

Given: labeled graph (Q, →, A, [])

Cost: each node access and edge access has unit cost

Complexity: in terms ofComplexity: in terms of

|Q| = n ... number of nodes

|→| = m ... number of edges

Reachability and s.c.c.s: O(m+n)

The Graph-Algorithmic View is Problematic

-The graph is given implicitly (by a program) not
explicitly (e.g., by adjacency lists).

-Building an explicit graph representation is
exponential, but usually unnecessary (“on-the-fly” exponential, but usually unnecessary (“on-the-fly”
algorithms).

-The explicit graph representation may be so big, that
the “unit-cost model” is not realistic.

-A class of algorithms, called “symbolic algorithms”, do
not operate on nodes and edges at all.

Symbolic Model-Checking Algorithms

Given: a “symbolic theory”, that is, an abstract data
type called region with the following operations:

pre, ∀pre, post, ∀post : region → region pre, ∀pre, post, ∀post : region → region

∩, ∪, \ : region × region → region

⊆ , = : region × region → bool

< >, > < : A → region

∅, Q : region

Intended Meaning of Symbolic Theories

region ... set of states

∩, ∪, \, ⊆, =, ∅ ... set operations

<a> = { q ∈ Q | [q] = a } <a> = { q ∈ Q | [q] = a }

>a< = { q ∈ Q | [q] ≠ a }

pre (R) = { q ∈ Q | (∃ r ∈ R) q → r }

∀pre (R) = { q ∈ Q | (∀ r)(q → r ⇒ r ∈ R)}

post (R) = { q ∈ Q | (∃ r ∈ R) r → q }

∀post (R) = { q ∈ Q | (∀ r)(r → q ⇒ r ∈ R)}

If the state of a system is given by variables of type
Vals, and the transitions of the system can be described
by operations Ops on Vals, then the first-order theory
FO (Vals, Ops) is an adequate symbolic theory:

region ... formula of FO (Vals, Ops)

∩, ∪, \, ⊆, =, ∅, Q ... ∧, ∨, , ⇒ validity, ⇔ validity, f, t

pre (R(X)) = (∃ X’)(Trans(X,X’) ∧ R(X’))

∀pre (R(X)) = (∀ X’)(Trans(X,X’) ⇒ R(X’))

post (R(X)) = (∃ X”)(R(X”) ∧ Trans(X”,X))

∀post (R(X)) = (∀ X”)(Trans(X”,X) ⇒ R(X’’))

If FO (Vals, Ops) admits quantifier elimination, then
the propositional theory ZO (Vals, Ops) is an adequate
symbolic theory:symbolic theory:

each pre/post operation is a quantifier elimination

Example: Boolean Systems

-all system variables X are boolean

-region: quantifier-free boolean formula over X-region: quantifier-free boolean formula over X

-pre, post: boolean quantifier elimination

Complexity: PSPACE

Example: Presburger Systems

-all system variables X are integers

-the transition relation Trans(X,X’) is defined -the transition relation Trans(X,X’) is defined
using only ≤ and +

-region: quantifier-free formula of (Z, ≤, +)

-pre, post: quantifier elimination

An iterative language for writing
symbolic model-checking algorithms

-only data type is region-only data type is region

-expressions: pre, post, ∩, ∪, \ , ⊆ , =, < >, ∅, Q

-assignment, sequencing, while-do, if-then-else

Example: Reachability ∃�a

S := ∅

R := <a>R := <a>

while R ⊆ S do

S := S ∪ R

R := pre(R)

