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The lazy programmer’s approach

Allows us to implement problem solving programs rapidly

problem

representation result

solution

modeling

computation

interpretation

We want to model a problem by compiling it into a suitable
representation s.t. the result of the compiled problem can
be interpreted as a solution to the original problem.
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The topics for today

Normal form translation again

• What are the difficulties with prenexing?

• What to do with the propositional matrix?

How to implement a QSAT solver?

• Only few remarks on QDPLL but

• More on alternative and less explored possibilities

☞ Q-resolution calculus

☞ Gentzen (sequent) systems
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Normal forms again
Prenex normal form (PNF), prefix, matrix, PCNF, closed

Let Qi ∈ {∀,∃} and pi ∈ P. A QBF

Φ = Q1p1 . . .Qnpn ψ

is in prenex (normal) form (PNF) if ψ is purely propositional

Q1p1Q2p2 · · ·Qnpn is the prefix of Φ; ψ is the matrix of Φ.

Φ is in PCNF if ψ is in CNF

Φ is closed if the variables in ψ are in {p1, . . . ,pn}

Convention: Each quantifier binds another variable and bound
variables do not occur free.

6 / 35



Generating PCNFs

Why are formulas in PCNF necessary?

Most QBF solvers require the input being in PCNF

☞ Translation procedure required

• Generate a prenex form

• From the matrix, generate a CNF using Tseitin

☞ All steps here are equivalence-preserving (why?)
(in contrast to, e.g., propositional logic)
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Generating a prenex form (cf predicate logic)

Apply the following rules until a PNF is obtained

R1 Qx Φ ◦ Qy Ψ ⇒ QxQy (Φ ◦ Ψ) x not free in Ψ, y not free in Φ

R2 (Qx Φ) → Ψ ⇒ Q−x (Φ → Ψ) x not free in Ψ

R3 Φ → (Qy Ψ) ⇒ Qy (Φ → Ψ) y not free in Φ

R4 ∀x Φ ∧ ∀ y Ψ ⇒ ∀x (Φ ∧ Ψ[y/x ])

R5 ∃x Φ ∨ ∃y Ψ ⇒ ∃x (Φ ∨ Ψ[y/x ])

Remarks

Q ∈ {∀,∃}, (Q,Q−) is (∀,∃) or (∃,∀) and ◦ ∈ {∧,∨}

In general, the PNF of Φ is not unique
(depends, e.g., on rule choice: R1 vs R4 if both are applicable)

Φ and all of its prenex forms are logically equivalent (why?)
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The polynomial hierarchy (PH) again
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➥ Problem complexity determines quantifier prefix of the target QBF
(number of alternations, starting quantifier)
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How to handle non-prenex QBFs?
Extend the complexity landscape to arbitrary closed QBFs

Take the maximal number of quantifier alternations along a
path in the syntax tree of a QBF into account

Almost all QBFs can be translated into equivalent QBFs in
PNF without increasing the number of quantifier alternations
(Which are the problematic QBFs?)

Translation procedure is fast but non-deterministic

Can heavily influence the performance of QBF solvers

Details in E. et al. Comparing Different Prenexing
Strategies for Quantified Boolean Formulas. Proc. SAT
2003, pp. 214-228.
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Generating CNFs from the matrix

The Tseitin-based algorithm works in three steps

1. Generate a prenex form Ψp : QiXi · · ·QkXk ψ of the input
QBF Ψ with minimal number of quantifier alternations.
Then the matrix ψ is purely propositional.

2. Use Tseitin’s translation to transform ψ into CNF.

3. Place the ∃ quantifiers for the newly introduced variables
ℓ1, · · · ℓm abbreviating ϕ1, . . . , ϕm “correctly”, e.g.,

• place all the new ∃ at the end of the quantifier prefix, or
• place ∃ℓi (1 ≤ i ≤ m) after all quantifiers of those variables

which occur in ϕi .

☞ The use of quantifiers results in an equivalent CNF
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Some problem sets and their quantifier structure

Test sets for non-normal form solvers not easy to find
(most test sets are already in PCNF)

Chosen 3 sets (w increasing complexity of quantifier structure)
S1 Encodings for sat in modal logic K (given by Pan and Vardi)

S2 Encodings for answer set (AS) correspondence checks

S3 Encodings of reasoning with nested counterfactuals
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Prenexing strategies and the quantifier structure

prenexing: "linearize" quantifier dependencies
without increasing the number of alternations

We need two strategies here
↑: Place the quantifiers as outermost (high) as possible
↓: Place the quantifiers as innermost (low) as possible

S1 pre S1 S2 S2↑ S2↓ S3 pre S3
∀

∃

∀

∃

∀

∃

∀

∃

∀

∃

∀

∃

∃

∀

∃

∃

∀

∃

∀

∃

∀

∃

∃

∀

∀ ∃

∃ ∀

∀ ∃ ∃

∀

∃ many

14 / 35



S2: Encodings for AS correspondence checks

Generation of the instances for the ΠP
2 problems (S22)

(from [Janhunen & Oikarinen 2004])

• QBF generated randomly & translated to LP (similar to S24)
• Take logic program, remove one clause and check equiv

(problem has much “propositional” structure!!!)

Depth of the QBFs: 2, i.e. only 1 quantifier alternation

Grouped in 8 subsets (QBFs with 10, 12, . . . , 24 variables)

Number of instances in each subset: 100

In approx. 50%, the equivalence holds

Only translation T used

No specific prenexing strategy (problem is on the 2nd level)

http://www.kr.tuwien.ac.at/research/systems/eq/index.html
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Experimental results for the Π
P
2 problems
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S3: Encodings for nested counterfactuals

A counterfactual (cf) p > q is a conditional query . . .
. . . if we put p to our theory T , can we derive q

If p,q are cfs, then p > q is called nested cf

Nested counterfactuals span the polynomial hierarchy

Nested counterfactuals can be encoded as QBFs.

Random generation of the problems like before
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Statistics for problems from S3

Grouped in 5 sets (with depth of QBFs from 4 to 8)

Approximately 60% are valid

Number of instances per set: 50

Number of variable: 183, 245, 309, 375, 443

Number of vars (after PCNF trans): 464, 600, 786, 934, 1132

Many prenexing strategies tried but . . .

. . . we show best strategy for each solver in the graphic
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Experimental results for nested counterfactuals
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Outline

The story so far
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Why do we need a resolution calculus for QBFs?

We need a QSAT solver in our rapid implementation
approach. Why not Q-resolution?

Although you will usually not see it, but in nearly every
QDPLL solver, there is Q-resolution inside

Some QDPLL solvers deliver Q-resolution “refutations” as
certificates for unsatisfiability.

From these proofs, one can generate witness functions (as
mentioned earlier)
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A resolution calculus for QBFs

Definition (Propositional resolution rule)
Let C ∨ x and D ∨ ¬x be two clauses, where C,D are disjunctions of
literals. With the propositional resolution rule

C ∨ x D ∨ ¬x
C ∨ D

PRes

we derive the resolvent C ∨ D from the indicated parent clauses.

Definition (Propositional factor)
Let C1 ∨ ℓ ∨ C2 ∨ ℓ ∨ C3 be a clause with possibly empty subclauses
C1,C2,C3 and let ℓ be a literal. With the propositional factor rule

C1 ∨ ℓ ∨ C2 ∨ ℓ ∨ C3

C1 ∨ ℓ ∨ C2 ∨ C3
PFac

the factor C1 ∨ ℓ ∨ C2 ∨ C3 of the indicated clause can be derived.
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A resolution calculus for QBFs (cont’d)

Definition (Quantification level)

Let Q be a sequence of quantifiers. Associate to each
alternation its level as follows. The left-most quantifier block
gets level 1, and each alternation increments the level.

Example: ∀x1∀x2
︸ ︷︷ ︸

level 1

∃y1∃y2∃y3
︸ ︷︷ ︸

level 2

∀x3
︸︷︷︸

level 3

∃y4
︸︷︷︸

level 4

ϕ

Definition (∀ reduction)

Let C ∨ ℓ be a non-tautological clause, ℓ a universal literal and
no other literal in C has higher level. Then, with ∀ reduction

C ∨ ℓ
C ∀R

we can derive C from C ∨ ℓ.
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A resolution calculus for QBFs (cont’d)

Definition (Q-resolution calculus)

The Q-resolution calculus consists of the propositional
resolution and factor rule and the ∀ reduction rule. Resolution
operations are only allowed over existential literals and
tautological resolvents are deleted immediately.

Theorem ( Kleine Büning, Karpinski, Flögel, Inf. Comput., 1995)
A PCNF is false iff there is a derivation of the empty clause � in
the Q-resolution calculus.

Example
On blackboard
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A resolution calculus for QBFs (cont’d)

Is the following rule allowed/sound?

Definition (Possible resolution rule over ∀ variables)

Let C ∨ x and D ∨ ¬x be two clauses, where C,D are
disjunctions of literals and x is a universal variable. With the ∀
resolution rule

C ∨ x D ∨ ¬x
C ∨ D ∀Res

we derive the resolvent C ∨ D from the indicated parent
clauses.
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Why sequent systems?

Give a nice way for non-normal form theorem proving
(not only for QBFs; also for propositional/FO/non-classical logic)

Vast amount of proof theoretical knowledge about them

Easy to implement (as we will see ➥ qpro)

Definition (Sequent)
A sequent S is an ordered pair of the form Γ ⊢ ∆, where Γ
(antecedent) and ∆ (succedent) are finite multisets of formulas.
We write “⊢ ∆” or “Γ ⊢” whenever Γ or ∆ is the empty
sequence, respectively.
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The propositional rules of a sequent calculus for QBFs

Γ ⊢ ∆
Φ, Γ ⊢ ∆

wl
Γ ⊢ ∆

Γ ⊢ ∆, Φ
wr

Γ1, Φ, Φ, Γ2 ⊢ ∆

Γ1, Φ, Γ2 ⊢ ∆
cl

Γ ⊢ ∆1, Φ, Φ, ∆2

Γ ⊢ ∆1, Φ, ∆2
cr

Γ ⊢ ∆, Φ

¬Φ, Γ ⊢ ∆
¬l

Φ, Γ ⊢ ∆

Γ ⊢ ∆, ¬Φ
¬r

Φ, Ψ, Γ ⊢ ∆

Φ ∧ Ψ, Γ ⊢ ∆
∧l

Γ ⊢ ∆, Φ Γ ⊢ ∆, Ψ

Γ ⊢ ∆, Φ ∧ Ψ
∧r

Φ, Γ ⊢ ∆ Ψ, Γ ⊢ ∆

Φ ∨ Ψ, Γ ⊢ ∆
∨l

Γ ⊢ ∆, Φ, Ψ

Γ ⊢ ∆, Φ ∨ Ψ
∨r

Γ ⊢ ∆, Φ Ψ, Γ ⊢ ∆

Φ → Ψ, Γ ⊢ ∆
→l

Φ, Γ ⊢ ∆, Ψ

Γ ⊢ ∆, Φ → Ψ
→r
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The axioms and quantifier rules for the calculus

The axioms: Φ ⊢ Φ Ax ⊥ ⊢ ⊥l ⊢ ⊤ ⊤r

Some possible quantifier rules:

Γ ⊢ ∆, Φ{p/q}
Γ ⊢ ∆, ∀p Φ

∀re
Φ{p/q}, Γ ⊢ ∆

∃p Φ, Γ ⊢ ∆
∃le

Φ{p/Ψ}, Γ ⊢ ∆

∀p Φ, Γ ⊢ ∆
∀lf

Γ ⊢ ∆, Φ{p/Ψ}

Γ ⊢ ∆, ∃p Φ
∃rf

Φ{p/⊤}, Φ{p/⊥}, Γ ⊢ ∆

∀p Φ, Γ ⊢ ∆
∀ls

Γ ⊢ ∆, Φ{p/⊤},Φ{p/⊥}

Γ ⊢ ∆, ∃p Φ
∃rs

Γ ⊢ ∆, Φ{p/⊤} ∧ Φ{p/⊥}

Γ ⊢ ∆, ∀p Φ
∀rs

Φ{p/⊤} ∨ Φ{p/⊥}, Γ ⊢ ∆

∃p Φ, Γ ⊢ ∆
∃ls

q does not occur as a free variable in the conclusion of ∀re / ∃le
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The basic algorithm

Based on DPLL (successful in SAT-/QBF-solving in (P)CNF)

Relatively simple extension for nonprenex QBFs in NNF
(implementation follows the semantics using s quantifier rules)

BOOLEAN split(QBF φ in NNF) {

switch (simplify (φ)): /* simplify works inside φ */
case ⊤: return True;
case ⊥: return False;

case (φ1 ∨ φ2): return (split(φ1) ‖ split(φ2));
case (φ1 ∧ φ2): return (split(φ1) && split(φ2));

case (QXψ): select x ∈ X;
if Q = ∃ return (split(∃Xψ[x/⊥]) ‖ split(∃Xψ[x/⊤]));
if Q = ∀ return (split(∀Xψ[x/⊥]) && split(∀Xψ[x/⊤]));

}
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Simplifying formulas

simplify(φ): returns φ′ simplified wrt some equivalences:

(a) ¬⊤ ⇒ ⊥; ¬⊥ ⇒ ⊤;

(b) ⊤ ∧ φ⇒ φ; ⊥ ∧ φ⇒ ⊥; ⊤ ∨ φ⇒ ⊤; ⊥∨ φ⇒ φ;

(c) (Qx φ) ⇒ φ, if Q ∈ {∀,∃}, and x does not occur in φ;

(d) ∀x(φ ∧ ψ) ⇒ (∀xφ) ∧ (∀xψ);

(e) ∀x(φ ∨ ψ) ⇒ (∀xφ) ∨ ψ, whenever x does not occur in ψ;

(f) ∃x(φ ∨ ψ) ⇒ (∃xφ) ∨ (∃xψ);

(g) ∃x(φ ∧ ψ) ⇒ (∃xφ) ∧ ψ, whenever x does not occur in ψ.

Rewritings (d)–(g) are known as miniscoping
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Additional mechanisms

Basic procedure clearly not sufficient for competitive solver

Desirable extension: generalization of pruning techniques

• Unit literal elimination

• Pure literal elimination

• Dependency-directed backtracking
(works for true and false subproblems)

• Learning

➥ split looks like an implementation of a sequent calculus

➥ Extensions of split formalized as a sequent calculus (for NNF)
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The Logical Rules of the Sequent Calculus GQBF1

⊢ φ

⊢ φ ∨ ψ
(∨′)

⊢ ψ

⊢ φ ∨ ψ
(∨′′)

⊢ φ ⊢ ψ

⊢ φ ∧ ψ
(∧)

⊢ φ[x/⊥]

⊢ ∃xφ
(∃′)

⊢ φ[x/⊤]

⊢ ∃xφ
(∃′′)

⊢ φ[x/⊥] ⊢ φ[x/⊤]

⊢ ∀xφ
(∀)

The logical rules (l-rules) simulate the basic algorithm

Sequents consist of one formula only

Axioms of GQBF1 are ⊢ ⊤ and ⊢ ¬⊥

➥ Use proofs in GQBF1 to prove properties of techniques like
DDB more elegantly

➥ Are such proofs in GQBF1 useful for applications?
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Simplification Rules

GQBF1 extended by simplification rules like

⊢ φ(⊤)

⊢ φ(⊤ ∨ ψ)
(S3a)

⊢ φ(ψ)

⊢ φ(⊥ ∨ ψ)
(S3b)

⊢ φ(ψ)

⊢ φ(Qxψ)
(S4) no occurrences of x in ψ

Very important that they work inside formulas
(circumventing the usual decomposition strategy)

Allow for short proofs for (simple) formulas like

∃xn∀yn · · · ∃x1∀y1 (xn ∨ yn ∨ · · · ∨ x1 ∨ y1)

. . . which have only long proofs in GQBF1
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