Quantified Boolean Formulas
Part 2

Uwe Egly

Knowledge-Based Systems Group
Institute of Information Systems
Vienna University of Technology

1 /125

The lazy programmer’s approach

Allows us to implement problem solving programs rapidly

pr0b|em B S solution

modeling interpretation
computation

We want to model a problem by compiling it into a suitable
representation s.t. the result of the compiled problem can
be interpreted as a solution to the original problem.

21125

The lazy programmer’s approach

Allows us to implement problem solving programs rapidly

PSpace (.......................

reducing interpretation

QSAT/QBF solver

(input often in PCNF)

We want to model a problem by compiling it into a suitable
representation s.t. the result of the compiled problem can
be interpreted as a solution to the original problem.

2/2E

The lazy programmer’s approach

Allows us to implement problem solving programs rapidly

PSpace (.......................

reducing<{ — — — — to be implemented — — — — ~interpretation

QSAT/QBF solver

(input often in PCNF)

We want to model a problem by compiling it into a suitable
representation s.t. the result of the compiled problem can
be interpreted as a solution to the original problem.

A/7E

The topics for today

m Normal form translation again
e What are the difficulties with prenexing?

e What to do with the propositional matrix?

m How to implement a QSAT solver?
e Only few remarks on QDPLL but

e More on alternative and less explored possibilities
0 Q-resolution calculus

0 Gentzen (sequent) systems

£ /25

Normal forms again

Prenex normal form (PNF), prefix, matrix, PCNF, closed

m LetQ; € {V,3} and pj € P. AQBF

® = Q1P1...QnPn ¢
is in prenex (normal) form (PNF) if ¢ is purely propositional
B Q1p1Q2ps - - - Qnpn is the prefix of ®; ¢ is the matrix of ¢.
m ¢ isin PCNFif ¢ isin CNF

m ¢ is closed if the variables in ¢ are in {p1,...,pn}

Convention: Each quantifier binds another variable and bound
variables do not occur free.

A5

Generating PCNFs

Why are formulas in PCNF necessary?
m Most QBF solvers require the input being in PCNF

0 Translation procedure required
e Generate a prenex form

e From the matrix, generate a CNF using Tseitin

O All steps here are equivalence-preserving (why?)
(in contrast to, e.g., propositional logic)

7 /125

Generating a prenex form (cf predicate logic)

Apply the following rules until a PNF is obtained

R1
Rz
R3
Ry
Rs

QxdoQy WV
(Qx®) — v
¢ — (Qy V)
VXPAVY WV
Ixoviyw

Remarks
B Qe {V,3},(Q,Q)is(V,I) or(3,V)and o € {A,V}
m In general, the PNF of @ is not unique

A

QxQy (¢ o V) X not free in ¥, y not free in ¢
Q x(d—V) X not free in ¥

Qy (¢ — V) y not free in ¢

VX (P A V[y/X])

Ix (¢ Vv Wy /x])

(depends, e.g., on rule choice: Ry vs Ry if both are applicable)

m ® and all of its prenex forms are logically equivalent (why?)

Q/125

The polynomial hierarchy (PH) again

Y7 NP Nf{ = coNA

AT Zp

Q/125

The polynomial hierarchy (PH) again

PSPACE
PH

3v3 P e =L

v zg/xg v3

O Problem complexity determines quantifier prefix of the target QBF
(number of alternations, starting quantifier)

10/ 25

How to handle non-prenex QBFs?

Extend the complexity landscape to arbitrary closed QBFs

m Take the maximal number of quantifier alternations along a
path in the syntax tree of a QBF into account

m Almost all QBFs can be translated into equivalent QBFs in
PNF without increasing the number of quantifier alternations
(Which are the problematic QBFs?)

m Translation procedure is fast but non-deterministic
m Can heavily influence the performance of QBF solvers

m Details in E. et al. Comparing Different Prenexing
Strategies for Quantified Boolean Formulas. Proc. SAT
2003, pp. 214-228.

11 /25

Generating CNFs from the matrix

The Tseitin-based algorithm works in three steps

1. Generate a prenex form W, : Q;X; - - - QX ¢ of the input
QBF V¥ with minimal number of quantifier alternations.
Then the matrix ¢ is purely propositional.

2. Use Tseitin’s translation to transform ¢ into CNF.

3. Place the d quantifiers for the newly introduced variables
L1, -- £y abbreviating ¢4, ..., om “correctly”, e.g.,

e place all the new 3 at the end of the quantifier prefix, or
e place 3¢ (1 <i < m) after all quantifiers of those variables
which occur in ;.

0 The use of quantifiers results in an equivalent CNF

12 /125

Some problem sets and their quantifier structure

m Test sets for non-normal form solvers not easy to find

(most test sets are already in PCNF)

m Chosen 3 sets (w increasing complexity of quantifier structure)
S1 Encodings for sat in modal logic K (given by Pan and Vardi)
S2 Encodings for answer set (AS) correspondence checks
S3 Encodings of reasoning with nested counterfactuals

w-<-w-< &

s3
oy

N
I

12?/125

Prenexing strategies and the quantifier structure

m prenexing: "linearize" quantifier dependencies
without increasing the number of alternations
m We need two strategies here

T: Place the quantifiers as outermost (high) as possible
1: Place the quantifiers as innermost (low) as possible

S1 preSl S2 S2T S2| S3 pre S3
A A A Y A Y
I I /N | I P \
3 3 3 3 3 3 v~ _3 many
I I | | | / | \
VoY v 3 v /v\
| | | | | |
3 3 3 A4 3 Y 3
| |
3 3

14/ 25

S2: Encodings for AS correspondence checks

m Generation of the instances for the I'IE problems (S22)
(from [Janhunen & Oikarinen 2004])

e QBF generated randomly & translated to LP (similar to S24)
e Take logic program, remove one clause and check equiv
(problem has much “propositional” structure!!!)

Depth of the QBFs: 2, i.e. only 1 quantifier alternation
Grouped in 8 subsets (QBFs with 10, 12, ..., 24 variables)
Number of instances in each subset: 100

In approx. 50%, the equivalence holds

Only translation T used
m No specific prenexing strategy (problem is on the 2nd level)

http://www.kr.tuwien.ac.at/research/systems/eq/index.html

1E /25

Experimental results for the I1

N T

problems

120 c
qpro
QUBE =====sn
Semprop e
sKizzo
100 Quantor i
s AT e e i
60 -
40 - -
20 F B
o hamzzmzas—— . /
10 12 14 16 18 20 22 24

16 /25

S3: Encodings for nested counterfactuals

A counterfactual (cf) p > q is a conditional query ...
...if we put p to our theory 7, can we derive q

If p,q are cfs, then p > q is called nested cf

Nested counterfactuals span the polynomial hierarchy
Nested counterfactuals can be encoded as QBFs.
Random generation of the problems like before

17/25

Statistics for problems from S3

Grouped in 5 sets (with depth of QBFs from 4 to 8)
Approximately 60% are valid

Number of instances per set: 50

Number of variable: 183, 245, 309, 375, 443

Number of vars (after PCNF trans): 464, 600, 786, 934, 1132

Many prenexing strategies tried but . ..

... we show best strategy for each solver in the graphic

1Q/125

Experimental results for nested counterfactuals

Nested Counterfactuals
100

90

Quantor

80 -
oF
60 -
50 -
40 |
30

20f

10

19/25

Experimental results for nested counterfactuals

Nested Counterfactuals
100

90 Semprop eeerss 4

Quantor

Nowadays, many solvers can solve ncf problems
(by analyzing “dependencies between variables”)

20 /25

Outline

A resolution calculus for QBFs

21 /28

Why do we need a resolution calculus for QBFs?

W

m We need a QSAT solver in our rapid implementation
approach. Why not Q-resolution?

m Although you will usually not see it, but in nearly every
QDPLL solver, there is Q-resolution inside

m Some QDPLL solvers deliver Q-resolution “refutations” as
certificates for unsatisfiability.

m From these proofs, one can generate witness functions (as
mentioned earlier)

29 /125

A resolution calculus for QBFs

Definition (Propositional resolution rule)

Let C v x and D Vv —x be two clauses, where C, D are disjunctions of
literals. With the propositional resolution rule

Cvx DvV-x

CvD PRes

we derive the resolvent C v D from the indicated parent clauses.

Definition (Propositional factor)

Let C; V/V Cy VLV Cs be aclause with possibly empty subclauses
C1,C5,C3 and let £ be a literal. With the propositional factor rule

CiVIVCyV IV Cs
CivivC,VCs

PFac

the factor C; VvV ¢ v C, V C3 of the indicated clause can be derived.

22 /128

A resolution calculus for QBFs (cont'd)

Definition (Quantification level)

Let Q be a sequence of quantifiers. Associate to each

alternation its level as follows. The left-most quantifier block

gets level 1, and each alternation increments the level.
VX1VX2 dy13y2dys VX3 dys
S~~~ =

level 1 level 2 level 3 level 4

Definition (V¥ reduction)

Let C Vv £ be a non-tautological clause, ¢ a universal literal and
no other literal in C has higher level. Then, with V reduction

Cv?

CVR

we can derive C from C Vv /.

24/ 25

A resolution calculus for QBFs (cont'd)

Definition (Q-resolution calculus)

The Q-resolution calculus consists of the propositional
resolution and factor rule and the V reduction rule. Resolution
operations are only allowed over existential literals and
tautological resolvents are deleted immediately.

Theorem (Kleine Biining, Karpinski, Flégel, Inf. Comput., 1995)

A PCNF is false iff there is a derivation of the empty clause [J in
the Q-resolution calculus.

Example
On blackboard

29E 2L

A resolution calculus for QBFs (cont'd)

Is the following rule allowed/sound?

Definition (Possible resolution rule over ¥ variables)

Let C v x and D v —x be two clauses, where C,D are
disjunctions of literals and x is a universal variable. With the V
resolution rule

Cvx DvVv-—x
CvD

VRes

we derive the resolvent C v D from the indicated parent
clauses.

26 /25

Outline

Gentzen/sequent systems for QBFs

27 /28

Why sequent systems?

m Give a nice way for non-normal form theorem proving
(not only for QBFs; also for propositional/FO/non-classical logic)

m Vast amount of proof theoretical knowledge about them
m Easy to implement (as we will see [J gpro)

Definition (Sequent)

A sequent S is an ordered pair of the form I' = A, where I’
(antecedent) and A (succedent) are finite multisets of formulas.
We write “ A” or “I =" whenever I or A is the empty
sequence, respectively.

2Q /125

The propositional rules of a sequent calculus for QBFs

r-A

orrav

M, o, o, FA
M,®, M FA

reae
O, T - A

LOJR R B VAN

AN

&TFA WUTFA

r-A

rTraoe™

ME Ao, 0, A

re A o |

M= A, d, A

-

TrEA® TFAW

SVV.T A
r-A® Wl E-A

VT FA

FFAGAY Ar

M Ao, v
-

'_
Fa vy T

O T F AWV

TFao—w

20 /25

The axioms and quantifier rules for the calculus

The axioms: ¢ F & Ax 1 = 1l T Tr

Some possible quantifier rules:

r+ A, o{p/q} ur ®{p/q},T + A -

T FAvpd e o T F A e

ofp/vi.T + A [A ofp/v}

Y N EVNER

®{p/T}, &{p/L}, T - A vl FE A o{p/T) o{p/L} o
Voo, T F A s A Jpo °

FE A o{p/TAe{p/L} ¢{p/Ttve{p/L}, T - A |
FFA o fs Jo.TF A s

g does not occur as a free variable in the conclusion of Vre / dlg

20 /25

The basic algorithm

m Based on DPLL (successful in SAT-/QBF-solving in (P)CNF)

m Relatively simple extension for nonprenex QBFs in NNF
(implementation follows the semantics using s quantifier rules)

BOOLEAN split(QBF ¢ in NNF) {

switch (simplify (¢)): /* sinplify works inside ¢ */
case T: return True;
case 1: return Fal se;

case (1 Vap): return (split(¢y) || split(¢n));

case (g1 A¢p): return (split(¢) && split(er));

case (QXy): select x €X;
if Q=3 return (split(3IXy[x/L]) || split(IXY[x/T])):
if Q=V return (split(VXy[x/Ll]) && split(VXy[x/T]));

21 /28

Simplifying formulas

simplify(¢): returns ¢’ simplified wrt some equivalences:

@ - T=1 —-L1L=T,;

b)) TAdp=0¢;, LAp=1L, TVeo=T, LVo= o,
(c) (Qx @) = ¢, if Q € {V,3}, and x does not occur in ¢;

(d) YX(6 A1) = (¥X) A (¥X);

(e) Vx(o V) = (Yx¢) V ¢, whenever x does not occur in 1;
() Ix(d V) = (Ixe) V (Ix);
((

(9) Ix(od AY) = (Ix¢) Ay, whenever x does not occur in .

~— ~— ~— ~—

Rewritings (d)—(g) are known as miniscoping

292 /25

Additional mechanisms

m Basic procedure clearly not sufficient for competitive solver

m Desirable extension: generalization of pruning techniques
e Unit literal elimination
e Pure literal elimination

Dependency-directed backtracking
(works for true and false subproblems)

Learning

O split looks like an implementation of a sequent calculus

O Extensions of spl i t formalized as a sequent calculus (for NNF)

Q2 /25

The Logical Rules of the Sequent Calculus GQBF;

o ; F " Fo 9
ove) Fevg) oy M
Folx/L] oy Belx/T] o, Folx/L] Fex/T]
Faxe) TFaxg) VX0)

m The logical rules (I-rules) simulate the basic algorithm

m Sequents consist of one formula only
m Axioms of GQBF, are T and - -1

0 Use proofs in GQBF; to prove properties of techniques like
DDB more elegantly

[0 Are such proofs in GQBF, useful for applications?

24 /125

Simplification Rules

m GQBF; extended by simplification rules like

(T V) Fo(L V)
% (S4) no occurrences of x in vy

m Very important that they work inside formulas
(circumventing the usual decomposition strategy)

m Allow for short proofs for (simple) formulas like
I Vyn - VYL (Xn VY V- VX VYs)

m ...which have only long proofs in GQBF;

QAE /26

	The story so far
	Normal form translation again
	A resolution calculus for QBFs
	Gentzen/sequent systems for QBFs

