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ABSTRACT

Descriptive Complexity has been very successful in characterizing complexity classes

of decision problems in terms of the properties definable in some logics. However, de-

scriptive complexity for counting complexity classes, such as FP and #P, has not been

systematically studied, and it is not as developed as its decision counterpart. In this thesis,

we propose a framework based on Weighted Logics to address this issue. Specifically,

by focusing on the natural numbers we obtain a logic called Quantitative Second Order

Logics (QSO), and show how some of its fragments can be used to capture fundamental

counting complexity classes such as FP, #P and FPSPACE, among others. We also use

QSO to define a hierarchy inside #P, identifying counting complexity classes with good

closure and approximation properties, and which admit natural complete problems. Fi-

nally, we add recursion to QSO, and show how this extension naturally captures lower

counting complexity classes such as #L.

Keywords: descriptive complexity, counting complexity classes, weighted log-

ics
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RESUMEN

La complejidad descriptiva ha sido muy exitosa en caracterizar clases de complejidad

de decisión en términos de propiedades definibles en algunas lógicas. Sin embargo, la

complejidad descriptiva para clases de complejidad de conteo, como FP y #P, no ha sido

estudiada sistemáticamente, y no está tan desarrollada como su análogo de decisión. En

este artículo, proponemos un marco teórico basado en lógicas con peso para tratar este

problema. Específicamente, al enfocarnos en los números naturales obtenemos una lógica

llamada Lógica de Segundo Orden Cuantitativa (QSO), y mostramos cómo algunos de sus

fragmentos pueden ser usados para capturar clases de complejidad de conteo fundamen-

tales como FP, #P y FPSPACE, entre otras. También usamos QSO para definir una jerar-

quía dentro de #P, identificando clases de complejidad de conteo con buenas propiedades

de clausura y aproximación, y que admiten problemas completos naturales. Finalmente,

añadimos recursión a QSO, y mostramos cómo esta extensión captura naturalmente clases

de complejidad de conteo inferiores como #L.

Palabras Claves: complejidad descriptiva, clases de complejidad de conteo, lógicas

con peso

xi



Chapter 1. INTRODUCTION

The goal of descriptive complexity is to measure the complexity of a problem in terms

of the logical constructors needed to express it (Immerman, 1999). The starting point

of this branch of complexity theory is Fagin’s theorem (Fagin, 1975), which states that

NP is equal to existential second-order logic. Since then, many more complexity classes

have been characterized in terms of logics (see Grädel, 2007 for a survey) and descrip-

tive complexity has found a variety of applications in different areas (Immerman, 1999;

Libkin, 2004). For instance, Fagin’s theorem was the key ingredient to define the class

MAXSNP (Papadimitriou & Yannakakis, 1991), which was later shown to be a funda-

mental class in the study of hardness of approximation (Arora, Lund, Motwani, Sudan, &

Szegedy, 1998). It is important to mention here that the definition of MAXSNP would not

have been possible without the machine-independent point of view of descriptive com-

plexity, as pointed out in Papadimitriou and Yannakakis (1991).

Counting problems differ from decision problems in that the value of a function has

to be computed. More generally, a counting problem corresponds to computing a func-

tion f from a set of instances (e.g. graphs, formulae, etc) to natural numbers.1 The

study of counting problems has given rise to a rich theory of counting complexity classes

(L. A. Hemaspaandra & Vollmer, 1995; Fortnow, 1997; Arora & Barak, 2009). Some of

these classes are natural counterparts of some classes of decision problems; for example,

FP is the class of all functions that can be computed in polynomial time, the natural coun-

terpart of P. However, other function complexity classes have emerged from the need to

understand the complexity of some computation problems for which little can be said if

their decision counterparts are considered. This is the case of the class #P, a counting

complexity class introduced in Valiant (1979a) to prove that natural problems like count-

ing the number of satisfying assignments of a propositional formula or the number of

1This value is usually associated to counting the number of solutions in a search problem, but here we
consider a more general definition.
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perfect matchings of a bipartite graph (Valiant, 1979a) are difficult, namely, #P-complete.

Starting from #P, many more natural counting complexity classes have been defined, such

as #L, SPANP and GAPP (L. A. Hemaspaandra & Vollmer, 1995; Fortnow, 1997).

Although counting problems play a prominent role in computational complexity, de-

scriptive complexity for this type of problems has not been systematically studied and it

is not as developed as for the case of decision problems. Insightful characterizations of

#P and some of its extensions have been provided (Saluja, Subrahmanyam, & Thakur,

1995; Compton & Grädel, 1996). However, these characterizations do not define function

problems in terms of a logic, but instead in terms of some counting problems associated

to a logic like FO. Thus, it is not clear how these characterizations can be used to provide

a general descriptive complexity framework for counting complexity classes like FP and

FPSPACE (the class of functions computable in polynomial space).

In this thesis, we propose to study the descriptive complexity of counting complex-

ity classes in terms of Weighted Logics (WL) (Droste & Gastin, 2007), a general logical

framework that combines Boolean formulae (e.g. in FO or SO) with operations over a

fixed semiring (e.g. N). Specifically, we propose a restriction of WL over natural num-

bers, called Quantitative Second Order Logics (QSO), and study its expressive power for

defining counting complexity classes over ordered structures. As a proof of concept, we

show that natural syntactical fragments of QSO captures counting complexity classes like

#P, SPANP, FP and FPSPACE. Furthermore, by slightly extending the framework we can

prove that QSO can also capture classes like GAPP and OPTP, showing the robustness of

our approach.

The next step is to use the machine-independent point of view of QSO to search for

subclasses of #P with some fundamental properties. The question here is, what properties

are desirable for a subclass of #P? First, it is desirable to have a class of counting prob-

lems whose associated decision versions are tractable, in the sense that one can decide in

polynomial time whether the value of the function is greater than 0. In fact, this require-

ment is crucial in order to find efficient approximation algorithms for a given function (see

2



Chapter 5). Second, we expect that the class is closed under basic arithmetical operations

like sum, multiplication and subtraction by one. This is a common topic for counting com-

plexity classes; for example, it is known that #P is not closed under subtraction by one

(under some complexity-theoretical assumption). Finally, we want a class with natural

complete problems, which characterize all problems in it.

In this thesis, we give the first results towards defining subclasses of #P that are robust

in terms of existence of efficient approximations, having good closure properties, and

existence of natural complete problems. Specifically, we introduce a syntactic hierarchy

inside #P, called ΣQSOpFOq-hierarchy, and we show that it is closely related to the FO-

hierarchy introduced in Saluja et al. (1995). Looking inside the ΣQSOpFOq-hierarchy,

we propose the class ΣQSOpΣ1[FO]q and show that every function in it has a tractable

associated decision version, and it is closed under sum, multiplication, and subtraction by

one. Unfortunately, it is not clear whether this class admits a natural complete problem.

Thus, we also introduce a Horn-style syntactic class, inspired by Grädel (1992), that has

tractable associated decision versions and a natural complete problem.

After studying the structure of #P, we move beyond QSO by introducing new quan-

tifiers. By adding variables for functions on top of QSO, we introduce a quantitative least

fixed point operator to the logic. Adding finite recursion to a numerical setting is subtle

since functions over natural numbers can easily diverge without finding any fixed point.

By using the support of the functions, we give a natural halting condition that general-

izes the least fixed point operator of Boolean logics. Then, with a quantitative recursion

at hand we show how to capture FP from a different perspective and, moreover, how to

restrict recursion to capture lower complexity classes such as #L, the counting version of

NL.

Organisation. The main terminology used in this thesis is given in Chapter 2. Then the

logical framework is introduced in Chapter 3, and it is used to capture standard counting

complexity classes in Chapter 4. The structure of #P is studied in Chapter 5. Chapter 6 is

3



devoted to define recursion in QSO, and to show how to capture classes below FP. Finally,

we give some concluding remarks in Chapter 7.
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Chapter 2. PRELIMINARIES

2.1. Second-order logic, LFP and PFP

A relational signature R (or just signature) is a finite set tR1, . . . , Rku, where each

Ri (1 ď i ď k) is a relation name with an associated arity greater than 0, which is

denoted by aritypRiq. A finite structure over R (or just finite R-structure) is a tuple A “

xA,RA
1 , . . . , R

A
k y such that A is a finite set and RA

i Ď AaritypRiq for every i P t1, . . . , ku.

Further, an R-structure A is said to be ordered if ă is a binary predicate name in R and

ăA is a linear order on A. We denote by ORDSTRUCTrRs the class of all finite ordered

R-structures. In this thesis we only consider finite ordered structures, so we will usually

omit the word finite or ordered when referring to them.

From now on, assume given disjoint infinite sets FV and SV of first-order variables

and second-order variables, respectively. Notice that every variable in SV has an associ-

ated arity, which is denoted by aritypXq. Then given a signature R, the set of second-order

logic formulae (SO-formulae) over R is given by the following grammar:

ϕ :“ x “ y | Rpūq | J | Xpv̄q |  ϕ | pϕ_ ϕq | Dx. ϕ | DX. ϕ

where x, y P FV, R P R, ū is a tuple of (not necessarily distinct) variables from FV

whose length is aritypRq, J is a reserved symbol to represent a tautology, X P SV, v̄

is a tuple of (not necessarily distinct) variables from FV whose length is aritypXq, and

x P FV.

We assume that the reader is familiar with the semantics of SO, so we only introduce

here some notation that will be used in this thesis. Given a signature R and an R-structure

A with domain A, a first-order assignment v for A is a total function from FV to A,

while a second-order assignment V for A is a total function with domain SV that maps

each X P SV to a subset of AaritypXq. Moreover, given a first-order assignment v for A,

x P FV and a P A, we denote by vra{xs a first-order assignment such that vra{xspxq “ a

5



and vra{xspyq “ vpyq for every y P FV distinct from x. Similarly, given a second-order

assignment V for A, X P SV and B Ď AaritypXq, we denote by V rB{Xs a second-order

assignment such that V rB{XspXq “ B and V rB{XspY q “ V pY q for every Y P SV

distinct from X . We use notation pA, v, V q |ù ϕ to indicate that structure A satisfies ϕ

under v and V .

In this thesis, we consider several fragments or extensions of SO like first-order

logic (FO), least fixed point logic (LFP) and partial fixed point logic (PFP) (Libkin, 2004).

Moreover, for every i P N, we consider the fragment Σi (resp., Πi) of FO, which is the

set of FO-formulae of the form Dx̄1@x̄2 ¨ ¨ ¨ Dx̄i´1@x̄i ψ (resp., @x̄1Dx̄2 ¨ ¨ ¨ @x̄i´1Dx̄i ψ) if i

is even, and of the form Dx̄1@x̄2 ¨ ¨ ¨ @x̄i´1Dx̄i ψ (resp., @x̄1Dx̄2 ¨ ¨ ¨ Dx̄i´1@x̄i ψ) if i is odd,

where ψ is a quantifier-free formula. Finally, we say that a fragment L1 is contained in a

fragment L2, denoted by L1 Ď L2, if for every formula ϕ in L1, there exists a formula ψ in

L2 such that ϕ is logically equivalent to ψ. Besides, we say that L1 is properly contained

in L2, denoted by L1 Ĺ L2, if L1 Ď L2 and L2 Ę L1.

2.2. Counting complexity classes

We consider several counting complexity classes in this thesis, some of the are re-

called here (see Fortnow, 1997; L. Hemaspaandra & Ogihara, 2013). FP is the class of

functions f : Σ˚ Ñ N computable in polynomial time, while FPSPACE is the class of

functions f : Σ˚ Ñ N computable in polynomial space. Given a nondeterministic Turing

Machine (NTM) M , let #acceptMpxq be the number of accepting runs of M with input x.

Then #P is the class of functions f for which there exists a polynomial-time NTMM such

that fpxq “ #acceptMpxq for every input x, while #L is the class of functions f for which

there exists a logarithmic-space NTM M such that fpxq “ #acceptMpxq for every input x.

Given an NTM M with output tape, let #outputMpxq be the number of distinct outputs of

M with input x (notice that M produces an output if it halts in an accepting state). Then

SPANP is the class of functions f for which there exists a polynomial-time NTM M such

6



that fpxq “ #outputMpxq for every input x. Notice that #P Ď SPANP, and this inclusion

is believed to be strict.

7



Chapter 3. A LOGIC FOR QUANTITATIVE FUNCTIONS

We introduce here the logical framework that we use for studying counting complexity

classes. This framework is based on the framework of Weighted Logics (WL) (Droste

& Gastin, 2007) that has been used in the context of weighted automata for studying

functions from words (or trees) to semirings. We propose here to use the framework of

WL over any relational structure and to restrict the semiring to natural numbers. The

extension to any relational structure will allow us to study general counting complexity

classes and the restriction to the natural numbers will simplify the notation in this context

(see Chapter 3.1 for a more detailed discussion).

Given a relational signature R, the set of Quantitative Second-Order logic formulae

(or just QSO-formulae) over R is given by the following grammar:

α :“ ϕ | s | pα ` αq | pα ¨ αq | Σx. α | Πx. α | ΣX.α | ΠX.α (3.1)

where ϕ is an SO-formula over R, s P N, x P FV and X P SV. Moreover, if R is

not mentioned, then QSO refers to the set of QSO formulae over all possible relational

signatures.

The syntax of QSO formulae is divided in two levels. The first level is composed by

SO-formulae over R (called Boolean formulae) and the second level is made by counting

operators of addition and multiplication. For this reason, the quantifiers in SO (e.g. Dx or

DX) are called Boolean quantifiers and the quantifiers that make use of addition and mul-

tiplication (e.g. Σx or ΠX) are called quantitative quantifiers. Furthermore, Σx and ΣX

are called first- and second-order sum, and Πx and ΠX are called first- and second-order

product, respectively. This division between Boolean and quantitative level is essential

for understanding the difference between the logic and the quantitative part. Furthermore,

this will allow us later to parametrize both levels of the logic in order to capture different

counting complexity classes.

8



TABLE 3.1. The semantics of QSO formulae.

JϕKpA, v, V q “

#

1 if pA, v, V q |ù ϕ

0 otherwise

JsKpA, v, V q “ s

Jα1 ` α2KpA, v, V q “ Jα1KpA, v, V q ` Jα2KpA, v, V q

Jα1 ¨ α2KpA, v, V q “ Jα1KpA, v, V q ¨ Jα2KpA, v, V q

JΣx. αKpA, v, V q “
ÿ

aPA

JαKpA, vra{xs, V q

JΠx. αKpA, v, V q “
ź

aPA

JαKpA, vra{xs, V q

JΣX.αKpA, v, V q “
ÿ

BĎAaritypXq

JαKpA, v, V rB{Xsq

JΠX.αKpA, v, V q “
ź

BĎAaritypXq

JαKpA, v, V rB{Xsq

Let R be a signature, A an R-structure with domain A, v a first-order assignment

for A and V a second-order assignment for A. Then the evaluation of a QSO-formula

α over pA, v, V q is defined as a function JαK that on input pA, v, V q returns a number

in N. Formally, the function JαK is recursively defined in Table 3.1. A QSO-formula

α is said to be a sentence if it does not have any free variable, that is, every variable

in α is under the scope of a usual quantifier or a quantitative quantifier. It is important

to notice that if α is a QSO-sentence over a signature R, then for every R-structure A,

first-order assignments v1, v2 for A and second-order assignments V1, V2 for A, it holds

that JαKpA, v1, V1q “ JαKpA, v2, V2q. Thus, in such a case we use the term JαKpAq to

denote JαKpA, v, V q, for some arbitrary first-order assignment v for A and some arbitrary

second-order assignment V for A.

Example 3.1. Let G “ tEp¨, ¨q,ău be the vocabulary for graphs and G be an ordered

G-structure encoding a non-directed graph. Suppose that we want to count the number of

9



triangles in G. Then this can be defined as follows:

α1 :“ Σx.Σy.Σz. pEpx, yq ^ Epy, zq ^ Epz, xq ^ x ă y ^ y ă zq

We encode a triangle in α1 as an increasing sequence of nodes tx, y, zu, in order to count

each triangle once. Then the Boolean subformula Epx, yq ^ Epy, zq ^ Epz, xq ^ x ă

y ^ y ă z is checking the triangle property, by returning 1 if tx, y, zu forms a triangle in

G and 0 otherwise. Finally, the sum quantifiers in α1 aggregates all the values, counting

the number of triangles in G.

Suppose now that we want to count the number of cliques in G. We can define this

function with the following formula:

α2 :“ ΣX. cliquepXq,

where cliquepXq :“ @x. @y. ppXpxq ^Xpyq ^ x ‰ yq Ñ Epx, yqq. In the Boolean sub-

formula of α2 we check whether X is a clique, and with the sum quantifier we add one

for each clique in G. But in contrast to α1, in α2 we need a second-order quantifier in

the quantitative level. This is according to the complexity of evaluating each formula: α1

defines an FP-function while α2 defines a #P-complete function.

Example 3.2. For an example that includes multiplication, let M “ tMp¨, ¨q,ău be

a vocabulary for storing 0-1 matrices; in particular, a structure M over M encodes a

0-1 matrix A as follows: if Ari, js “ 1, then Mpi, jq is true, otherwise Mpi.jq is false.

Suppose now that we want to compute the permanent of an n-by-n 0-1 matrix A, that is:

permpAq “
ÿ

σPSn

n
ź

i“1

Ari, σpiqs,

where Sn is the set of all permutations over t1, . . . , nu. The permanent is a fundamental

function on matrices that has found many applications; in fact, showing that this function

is hard to compute was one of the main motivations behind the definition of the class

#P (Valiant, 1979a).

10



To define the permanent of a 0-1 matrix in QSO, assume that for a binary relation

symbol S, permutpSq is an FO-formula that is true if, and only if, S is a permutation,

namely, a total bijective function (the definition of permutpSq is straightforward). Then

the following is a QSO-formula defining the permanent of a matrix:

α3 :“ ΣS. permutpSq ¨ Πx. pDy. Spx, yq ^Mpx, yqq.

Intuitively, the subformula βpSq :“ Πx. pDy. Spx, yq ^ Mpx, yqq calculates the value
śn

i“1Ari, σpiqs whenever S encodes a permutation σ. Moreover, the subformula

permutpSq ¨ βpSq returns βpSq when S is a permutation, and returns 0 otherwise (i.e.

permutpSq behaves like a filter). Finally, the second order sum aggregates these values

iterating over all binary relations and calculating the permanent of the matrix. We would

like to finish with this example by highlighting the similarity of α3 with the permanent

formula. Indeed, an advantage of QSO-formulae is that the first- and second-order quan-

tifiers in the quantitative level naturally reflect the operations used to define mathematical

formulae.

We consider several fragments or extensions of QSO, which are obtained by restrict-

ing the syntax of the Boolean formulae or the use of the quantitative quantifiers. In this

direction, we denote by QFO the fragment of QSO where second-order sum and product

are not allowed. For instance, for the QSO-formulae defined in Example 3.1, we have

that α1 is in QFO and α2 is not. Another interesting fragment of QSO consists of the

QSO-formulae where only sum operators and sum quantifiers are allowed. Formally, we

denote by ΣQSO the fragment of QSO where first- and second-order products (i.e. Πx.

and ΠX. ) are not allowed. For example, α1 and α2 in Example 3.1 are formulae of ΣQSO,

while α3 in Example 3.2 is not. We also consider fragments of QSO by further restricting

the Boolean part of the logic. If L is a fragment of SO, then we define the quantitative

logic QSOpL q to be the fragment of QSO obtained by restricting ϕ in (3.1) to be a for-

mula in L . Moreover, we also restrict other fragments of QSO by using the same idea.

11



For example, we define QFOpFOq to be the fragment of QFO obtained by restricting ϕ in

(3.1) to be an FO-formula, and likewise for ΣQSOpFOq.

In the following section, we use different fragments or extensions of QSO to capture

counting complexity classes. But before doing this, we show the connection of QSO with

previous frameworks for defining functions over relational structures.

3.1. Previous frameworks for quantitative functions

In this section, we discuss some previous frameworks proposed in the literature and

how they differ from our approach. We start by discussing the connection between QSO

and weighted logics (WL) (Droste & Gastin, 2007). As it was previously discussed, QSO

is a fragment of WL. The main difference is that we restrict the semiring used in WL to

natural numbers in order to study counting complexity classes. Another difference of WL

with our approach is that, to the best of our knowledge, this is the first document to study

weighted logics over general relational signatures, in order to do descriptive complexity

for counting complexity classes. Previous works on WL usually restrict the signature of

the logic to strings, trees, and other specific structures (see Droste, Kuich, & Vogler, 2009

for more examples), and they did not study the logic over general structures. Furthermore,

in this thesis we propose further extensions for QSO (see Section 6) which differ from

previous approaches in WL.

Another approach that resembles QSO are logics with counting (Immerman & Lan-

der, 1990; Etessami, 1997; Grädel & Gurevich, 1998; Libkin, 2004), which include op-

erators that extend FO with quantifiers that allow to count in how many ways a formula

is satisfied (the result of this counting is a value of a second sort, in this case the natural

numbers). In contrast to our approach, counting operators are usually used for checking

Boolean properties over structures and not for producing values (i.e. they do not define

a function). In particular, we are not aware of any document that uses this approach for

capturing counting complexity classes.
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Finally, the work in Saluja et al. (1995) and Compton and Grädel (1996) is of par-

ticular interest for our research. In Saluja et al. (1995), it was proposed to define a func-

tion over a structure by using free variables in an SO-formula; in particular, the function

is defined by the number of instantiations of the free variables that are satisfied by the

structure. Formally, Saluja et al. (1995) define a family of counting classes #L for a

fragment L of FO. For a formula ϕpx̄, X̄q over R, the function fϕpx̄,X̄q is defined as

fϕpx̄,X̄qpAq “ |tpā, Āq | A |ù ϕpā, Āqu| for every A P ORDSTRUCTrRs. Then a function

g : ORDSTRUCTrRs Ñ N is in #L if there exists a formula ϕpx̄, X̄q in L such that

g “ fϕpx̄,X̄q. In Saluja et al. (1995), they proved several results about capturing count-

ing complexity classes which are relevant for our work. We discuss and use these results

in Chapters 4 and 5. Notice that for every formula ϕpx̄, X̄q, it holds that fϕpx̄,X̄q is the

same function as JΣX̄.Σx̄. ϕpx̄, X̄qK, that is, the approach in Saluja et al. (1995) can be

seen as a syntactical restriction of our approach based on QSO. Thus, the advantage of

our approach relies on the flexibility to define functions by alternating sum with product

operators and, moreover, by introducing new quantitative operators (see Section 6). Fur-

thermore, we show in the next section how to capture some classes that cannot be captured

by following the approach in Saluja et al. (1995).

13



Chapter 4. COUNTING UNDER QSO

In this section, we show that by syntactically restricting QSO one can capture different

counting complexity classes. In other words, by using QSO we can extend the theory of

descriptive complexity (Immerman, 1999) from decision problems to counting problems.

For this, we first formalize the notion of capturing a complexity class of functions.

Fix a signature R “ tR1, . . . , Rku and assume that A is an ordered R-structure with

a domain A “ ta1, . . . , anu and a1 ă a2 ă . . . ă an. For every i P t1, . . . , ku, define

the encoding of RA
i , denoted by encpRA

i q, as the following binary string. Assume that

` “ aritypRiq and consider an enumeration of the `-tuples over A in the lexicographic

order induced by ă. Then let encpRA
i q be a binary string of length n` such that the i-th

bit of encpRA
i q is 1 if the i-th tuple in the previous enumeration belongs to RA

i , and 0

otherwise. Moreover, define the encoding of A, denoted by encpAq, as the string (Libkin,

2004):

0n 1 encpRA
1 q ¨ ¨ ¨ encpRA

k q.

We can now formalize the notion of capturing a counting complexity class.

Definition 4.1. Let F be a fragment of QSO and C a counting complexity class.

Then F captures C over ordered R-structures if the following conditions hold:

(i) for every α P F , there exists f P C such that JαKpAq “ fpencpAqq for every

A P ORDSTRUCTrRs.

(ii) for every f P C , there exists α P F such that fpencpAqq “ JαKpAq for every

A P ORDSTRUCTrRs.

Moreover, F captures C over ordered structures if F captures C over ordered R-structures

for every signature R.

In Definition 4.1, function f P C and formula α P F must coincide in all the strings

that encode ordered R-structures. Notice that this restriction is natural as we want to
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capture C over a fixed set of structures (e.g. graphs, matrices). Moreover, this restriction

is fairly standard in descriptive complexity (Immerman, 1999; Libkin, 2004), and it has

also been used in the previous work on capturing complexity classes of functions (Saluja

et al., 1995; Compton & Grädel, 1996).

What counting complexity classes can be captured with fragments of QSO? For an-

swering this question, it is reasonable to start with #P, a well-known and widely-studied

counting complexity class (Arora & Barak, 2009). Since #P has a strong similarity with

NP, one could expect a “Fagin-like” Theorem (Fagin, 1975) for this class. Actually,

in Saluja et al. (1995) it was shown that the class #FO captures #P. In our setting, the

class #FO is contained in ΣQSOpFOq, which also captures #P as expected.

Proposition 4.2. ΣQSOpFOq captures #P over ordered structures.

PROOF. We briefly explain that the two conditions of Definition 4.1 are satisfied.

First, for condition (2) Saluja et al. proved that #P “ #FO (Saluja et al., 1995). Hence,

given that every function in #FO can be trivially defined as a formula in ΣQSOpFOq (see

Section 3.1) then condition (2) holds. For condition (1), let α P ΣQSOpFOq over some

signature R. Given a FO formula ϕ, checking whether A |ù ϕ can be done in deterministic

polynomial time on the size of A and the constant function s can be trivially simulated in

#P. These facts, together with the closures under exponential sum and polynomial product

of #P (Fortnow, 1997), suffice to show that the function represented by α is in #P. �

By following the same approach as Saluja et al. (1995), Compton and Grädel

(Compton & Grädel, 1996) show that #(DSO) captures SPANP, where DSO is the exis-

tential fragment of SO. As one could expect, if we parametrize ΣQSO with DSO, we can

also capture SPANP.

Proposition 4.3. ΣQSOpDSOq captures SPANP over ordered structures.

PROOF. To prove the condition (2), we use the fact that SPANP “ #pDSOq. The

condition holds using the same argument as in Proposition 4.2. For condition (1), notice
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that given an DSO formula ϕ, checking whether A |ù ϕ can be done in non-deterministic

polynomial time on the size of A (Fagin, 1974). Therefore, a SPANP machine for ϕ will

simulate the non-deterministic polynomial time machine and produce the same string as

output in each accepting non-deterministic run. Furthermore, the constant function s for

some s P N can be trivially simulated in SPANP and, thus, condition (1) holds analogously

to Proposition 4.2 since SPANP is also closed under exponential sum and polynomial

product (Ogiwara & Hemachandra, 1993). �

Can we capture FP by using #L for some fragment L of SO? A first attempt could

be based on the use of a fragment L of SO that capture either P or NL (Grädel, 1992).

Such an approach fails as #L can encode #P-complete problems in both cases; in the

first case, one can encode the problem of counting the number of satisfying assignments

of a Horn propositional formula, while in the second case one can encode the problem

of counting the number of satisfying assignments of a 2-CNF propositional formula. A

second attempt could be based then on considering a fragment L of FO. But even if

we consider the existential fragment Σ1 of FO the approach fails, as #Σ1 can encode

#P-complete problems like counting the number of satisfying assignments of a 3-DNF

propositional formula (Saluja et al., 1995). One last attempt could be based on disallow-

ing the use of second-order free variables in #FO. But in this case one cannot capture

exponential functions definable in FP such as 2n. Thus, it is not clear how to capture FP

by following the approach proposed in Saluja et al. (1995). On the other hand, if we con-

sider our framework and move out from ΣQSO, we have other alternatives for counting

like first- and second-order products. In fact, the combination of QFO with LFP is exactly

what we need to capture FP.

Theorem 4.4. QFOpLFPq captures FP over ordered structures.

PROOF. In this and the following proofs, we will reuse the symbol ă to denote the

lexicographic order over same-sized tuples. Formally, for x̄ “ px1, . . . , xmq and ȳ “
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py1, . . . , ymq we denote by x̄ ă ȳ the formula:

m
ł

i“1

i´1
ľ

j“1

pxj “ yj ^ xi ă yiq.

Similarly, we use x̄ “ ȳ to denote equality between tuples and x̄ ď ȳ to denote x̄ ă ȳ_x̄ “

ȳ. We will also use some syntactic sugar in QSO to simplify formulas. Specifically, we

will use the conditional count symbol pϕ ÞÑ αq defined as pϕ ¨ αq `  ϕ for any Boolean

formula ϕ and any quantitative formula α. Note that for each A P ORDSTRUCTrRs, and

each first-order (second-order) assignment v (V ) over A:

Jpϕ ÞÑ αqKpA, v, V q “

$

’

&

’

%

JαKpA, v, V q if pA, v, V q |ù ϕ,

1 otherwise.

Furthermore, we use |A| to denote the size of an R-structure A. Now we prove Theo-

rem 4.4. For condition (1), recall that checking whether A |ù ϕ for any LFP formula ϕ

can be done in deterministic polynomial time on the size of A (Immerman, 1983). Fur-

thermore, it is easy to check that FP is closed under polynomial sum and multiplication.

We conclude then that any formula in QFOpLFPq can be computed in FP. For condi-

tion (2), let R be a signature, f P FP and ` P N such that log2 pfpencpAqqq ď |A|` for

every A P ORDSTRUCTrRs (i.e. |A|` is an upper bound for the output size of f over A).

Consider the language:

L “ tpA, āq | ā P Al and the ā-th bit of fpencpAqq is 1u.

where ā encodes a number by following the lexicographic order over Al. Clearly, the

language L is in P and by Immerman (1983) there exists a formula Φpx̄q in LFP such that

A |ù Φpāq if, and only if, pA, āq P L. We use then the following formula to encode f :

α “ Σx̄.Φpx̄q ¨ Πȳ. pȳ ă x̄q ÞÑ 2q

Note that the subformula Πȳ. pȳ ă x̄q ÞÑ 2 takes the value 2m if there exist m tuples in

A` that are smaller than x̄. Adding these values for each ā P A` gives exactly fpencpAqq.
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In other words, Φpx̄q simulates the behavior of the FP-machine and the formula α recon-

structs the binary output bit by bit. Then α is in QFOpLFPq and JαKpAq “ fpencpAqq.

�

At this point it is natural to ask whether one can extend the previous idea to capture

FPSPACE (Ladner, 1989), the class of functions computable in polynomial space. Of

course, for capturing this class one needs a logical core powerful enough, like PFP, for

simulating the run of a polynomial-space TM. Moreover, one also needs more power-

ful quantitative quantifiers as functions like 22n can be computed in polynomial space, so

ΣQSO is not enough for the quantitative layer of a logic for FPSPACE. In fact, by consid-

ering second-order product we obtain the fragment QSOpPFPq that captures FPSPACE.

Theorem 4.5. QSOpPFPq captures FPSPACE over ordered structures.

PROOF. For the first condition of Definition 4.1, notice that each PFP formula can

be evaluated in deterministic polynomial space, the constant function s can be trivially

simulated in FPSPACE, and FPSPACE is closed under exponential sum and multiplica-

tion. This suffices to show that the condition holds. For the second condition, the proof

is similar than in Theorem 4.4. Let f P FPSPACE defined over some R and ` P N such

that log2 pfpencpAqqq ď 2|A|
`

for every A P ORDSTRUCTrRs (i.e. 2|A|
`

is an upper bound

for the output size). Let X be a second-order variable of arity `. Consider the linear order

induced by ă over predicates of arity ` which can be defined by the following formula:

ϕăpX, Y q “ Dū.
“

 Xpūq ^ Y pūq ^ @v̄.
`

ū ă v̄ Ñ pXpūq Ø Y pv̄qq
˘‰

.

Namely, we use relations to encode numbers with at most 2|A|
`

-bits where the empty re-

lation represents 0 and the total-relation represents 22|A|
`

´ 1. Furthermore, we can use a

relation X to index a position in the binary output of fpencpAqq as follows. Define the

language:

L “ tpA, Bq | B Ď A` and the B-th bit of fpencpAqq is 1u.
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Since L is in PSPACE, it can be specified in PFP (Abiteboul & Vianu, 1989) by a formula

ΦpXq where the free variable X encodes relation B in L. Then, similar than the previous

proof we define:

α :“ ΣX.ΦpXq ¨ ΠY. pϕăpY,Xq ÞÑ 2q.

where ΠY. pϕăpY,Xq ÞÑ 2q takes the value 2m if there exist m predicates that are smaller

than X and α reconstruct the output of fpencpAqq by simulating f with ΦpXq. Using an

analogous argument, we conclude that α P QSOpPFPq and JαKpAq “ fpencpAqq. �

From the proof of the previous theorem a natural question follows: what happens

if we use first-order quantitative quantifiers and PFP? In Ladner (1989), Ladner also

introduced the class FPSPACE(POLY) of all functions computed by polynomial-space

TMs with output length bounded by a polynomial. Interestingly, if we restrict to FO-

quantitative quantifiers we can also capture this class.

Corollary 4.6. QFOpPFPq captures FPSPACE(POLY) over ordered structures.

PROOF. In this proof, both conditions are analogous to Theorem 4.4 and 4.5. For the

first condition, each PFP formula ϕ can be evaluated in PSPACE and the class is closed

under first sum and product. For the second condition, we use the same language L defined

in the proof of Theorem 4.4, which in this case is in PSPACE. The same construction of

α, which in turn is in QFOpPFPq, is used to show that the condition holds. �

The results of this section validate QSO as an appropriate logical framework for ex-

tending the theory of descriptive complexity to counting complexity classes. In the follow-

ing sections, we provide more arguments for this claim, by considering some fragments

of ΣQSO and, moreover, by showing how to go beyond ΣQSO to capture other classes.

4.1. Extending QSO to capture classes beyond counting

There exist complexity classes that do not fit in our framework because either the

output of a function in not a natural number (e.g. a negative number) or the class is not

defined purely in terms of arithmetical operations (e.g. min and max). To remedy this
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problem, we show here how QSO can be easily extended to capture such classes that go

beyond sum and product over natural numbers.

It is well-known that, under some reasonable complexity-theoretical assumptions, #P

is not closed under subtraction, not even under subtraction by one (Ogiwara & Hemachan-

dra, 1993). To overcome this limitation, GAPP was introduced in (Fenner, Fortnow, &

Kurtz, 1994) as the class of functions f for which there exists a polynomial-time NTM

M such that fpxq “ #acceptMpxq ´ #rejectMpxq, where #rejectMpxq is the number of

rejecting runs of M with input x. That is, GAPP is the closure of #P functions under

subtraction, and its functions can obviously take negative values. Given that our logical

framework was built on top of the natural numbers, we need to extend QSO in order to

capture GAPP. The most elegant way to do this is by allowing constants coming from Z

instead of just N. Formally, we define the logic QSOZ whose syntax is the same as in (3.1)

and whose semantics is the same as in Table 3.1 except that the atomic formula s (i.e. a

constant) comes from Z. Similar than for QSO, we define the fragment ΣQSOZ as the

extension of ΣQSO with constants in Z.

Example 4.7. Recall the setting of Example 3.1 and suppose now that we want to

compute the number of cliques in a graph that are not triangles. This can be easily done

in QSOZ with the formula: α5 :“ α2 ` p´1q ¨ α1.

Adding negative constants is a mild extension to allow subtraction in the logic. It

follows from our characterization of #P that this is exactly what we need to capture GAPP.

Corollary 4.8. ΣQSOZpFOq captures GAPP over ordered structures.

This is an interesting result that shows how robust and versatile is QSO for capturing

different counting complexity classes even beyond N.

A different class of functions comes from considering the optimization version of a

decision problem. For example, one can define MAX-SAT as the problem of determining

the maximum number of clauses, of a given CNF propositional formula, that can be made
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true by an assignment. Here, MAX-SAT is defined in terms of a maximization problem

which in its essence differs from the functions in #P. To formalize this set of optimization

problems, Krentel defined OPTP (1988) as the class of functions computable by taking

the maximum or minimum of the output values over all runs of a polynomial-time NTM

machine with output tape (i.e. each run produces a binary string which is interpreted as

a number). For instance, MAX-SAT is in OPTP as many other optimization versions of

NP-problems. Given that in Krentel (1988) Krentel did not make the distinction between

max and min, in Vollmer and Wagner (1995) they defined the classes MAXP and MINP

as the max and min version of the problems in OPTP (i.e. OPTP “ MAXP YMINP).

In order to capture classes of optimization functions, we extend as follows QSO with

max and min quantifiers (called OptQSO). Given a signature R, the set of OptQSO-

formulae over R is given by extending the syntax in (3.1) with the following operators:

maxtα, αu | mintα, αu | Maxx. α | Minx. α | MaxX.α | MinX.α

where x P FV and X P SV. The semantics of the QSO-operators in OptQSO are

defined as usual. Furthermore, the semantics of the max and min quantifiers are defined

as the natural extension of the sum quantifiers in QSO (see Table 3.1) by maximizing or

minimizing, respectively, instead of computing a sum or a product.

Example 4.9. Recall again the setting of Example 3.1 and suppose now that we want

to compute the size of the largest clique in a graph. This can be done in OptQSO as

follows:

α6 :“ MaxX. p cliquepXq ¨ Σz.Xpzq q

Notice that formula Σz.Xpzq is used to compute the number of nodes in a set X .

Similar than for MAXP and MINP, we have to distinguished between the max and

min fragments of OptQSO. For this, we define the fragment MaxQSO of all OptQSO

formulae constructed from QFO operators and max-formulae maxtα, αu, Maxx. α and

MaxX.α. The class MinQSO is defined analogously changing max with min. Notice that
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in MaxQSO and MinQSO, second-order sum and product are not allowed. For instance,

formula α6 in Example 4.9 is in MaxQSO. As one could expect, MaxQSO and MinQSO

are the needed logics to capture MAXP and MINP.

Theorem 4.10. MaxQSOpFOq and MinQSOpFOq capture MAXP and MINP, re-

spectively, over ordered structures.

PROOF. It is straightforward to prove that MAXP can compute any FO-formula, is

closed under first-order sum and product, and second-order maximization. Therefore,

condition (1) in Definition 4.1 follows similar than in the previous characterizations. Fur-

thermore, one can easily see that the same holds with MinQSOpFOq. The proof for the

other direction is similar than in Kolaitis and Thakur (1994) extended with the ideas of

Theorem 4.4. Let f P MAXP be a function defined over some signature R and ` P N

such that rlog2 fpencpAqqs ď |A|` for each A P ORDSTRUCTrRs. For U Ď A`, we can

interpret the encoding of U (encpUq) as the binary encoding of a number with |A|`-bits.

We denote this value by valpencpUqq. Then, given A P ORDSTRUCTrRs and U Ď A`,

consider the problem of checking whether fpencpAqq ě valpencpUqq. Clearly, this is an

NP-problem and, by Fagin’s theorem, there exists a formula of the form DX̄. ΦpX̄, Y q

with ΦpX̄, Y q in FO and aritypY q “ ` such that fpencpAqq ě valpencpUqq if, and only

if, pA, v, V q |ù DX̄. ΦpX̄, Y q with V pY q “ U . Then we can describe f by the following

MaxQSO formula:

α “ Max X̄. MaxY. ΦpX̄, Y q ¨
`

Σx̄. Y px̄q ¨ Πȳ. px̄ ă ȳ ÞÑ 2q
˘

.

Note that, in contrast with previous proofs, we use x̄ ă ȳ instead of ȳ ă x̄ because the

most significant bit in encpUq correspond to the smallest tuple in U . It is easy to check

that ΦpX̄, Y q simulates the NP-machine and, if ΦpX̄, Y q holds, the formula to the right

reconstructs the binary output from the relation in Y . Then, α is in MaxQSOpFOq over

R and JαKpAq “ fpencpAqq.
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For the case of MinQSOpFOq and a function f P MINP, one has to follow the same

approach but considering the NP-problem of checking whether fpencpAqq ď valpencpUqq.

Then, the formula for describing f is the following:

α “ Min X̄. MinY. Σx̄.
`

pΦpX̄, Y q Ñ Y px̄qq ¨ Πȳ. px̄ ă ȳ ÞÑ 2q
˘

.

In this case, if the formula ΦpX̄, Y q is false, then the output produced by the subformula

inside the min-quantifiers will be the biggest possible value (i.e. 2|A|
`

). On the other hand,

if ΦpX̄, Y q holds, the subformula will produce valpencpUqq. Similar than for max, we

conclude that α is in MinQSOpFOq and JαKpAq “ fpencpAqq. �

It is important to mention that a similar result, following the framework of Saluja et al.

(1995), was proved in Kolaitis and Thakur (1994) for the class MAXPB (resp., MINPB)

of problems in MAXP (resp., MINP) whose output value is polynomially bounded. Inter-

estingly, Theorem 4.10 is stronger since our logic has the freedom to use sum and product

quantifiers, instead of using a max-and-count problem over Boolean formulae. Finally, it

is easy to prove that our framework can also capture MAXPB and MINPB by disallowing

the product Πx in MaxQSOpFOq and MinQSOpFOq, respectively.
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Chapter 5. EXPLORING THE STRUCTURE OF #P THROUGH QSO

The class #P was introduced in Valiant (1979a) to prove that computing the permanent

of a matrix, as defined in Example 3.2, is a #P-complete problem. As a consequence of

this result many counting problems have been proved to be #P-complete (Valiant, 1979b;

Arora & Barak, 2009). Among them, problems having easy decision counterparts play a

fundamental role, as a counting problem with a hard decision version is expected to be

hard. Formally, the decision problem associated to a function f : Σ˚ Ñ N is defined as

Lf “ tx P Σ˚ | fpxq ą 0u, and f is said to have an easy decision version if Lf P P. Many

prominent examples satisfy this property, like computing the number of: perfect match-

ings of a bipartite graph (#PERFECTMATCHING) (Valiant, 1979a), satisfying assignments

of a DNF (#DNF) (Durand, Hermann, & Kolaitis, 2005; Karp & Luby, 1983) or Horn

(#HORNSAT) (Valiant, 1979b) propositional formula, among others.

Counting problems with easy decision versions play a fundamental role in the search

of efficient approximation algorithms for functions in #P. A fully-polynomial randomized

approximation scheme (FPRAS) for a function f : Σ˚ Ñ N is a randomized algorithmA :

Σ˚ ˆ p0, 1q Ñ N such that: (1) for every string x P Σ˚ and real value ε P p0, 1q, the prob-

ability that |fpxq ´Apx, εq| ď ε ¨ fpxq is at least 3
4
, and (2) the running time of A is poly-

nomial in the size of x and 1{ε (Karp & Luby, 1983). Notably, there exist #P-complete

functions that can be efficiently approximated as they admit FPRAS; for instance, there

exist FPRAS for #DNF (Karp & Luby, 1983) and #PERFECTMATCHING (Jerrum, Sin-

clair, & Vigoda, 2004). A key observation here is that if a function f admits an FPRAS,

then Lf is in the randomized complexity class BPP (Gill, 1977). Hence, under the widely

believed assumption that NP Ę BPP, we cannot hope for an FPRAS for a function in #P

whose decision counterpart is NP-complete, and we have to concentrate on the class of

counting problems with easy decision versions.

The importance of the class of counting problems with easy decision counterparts has

motivated the search of robust classes of functions in #P with this property (Pagourtzis &
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Zachos, 2006). But the key question here is what should be considered a robust class. A

first desirable condition has to do with the closure properties satisfied by the class, which is

a common theme when studying function complexity classes (Ogiwara & Hemachandra,

1993; Faliszewski & Hemaspaandra, 2008). As in the cases of P and NP that are closed

under intersection and union, we expect our class to be closed under multiplication and

sum. For a more elaborated closure property, assume that sat_one is a function that returns

one plus the number of satisfying assignments of a propositional formula. Clearly sat_one

is a #P-complete function whose decision counterpartLsat_one is trivial. But should sat_one

be part of a robust class of counting functions with easy decision versions? The key insight

here is that if a function in #P has an easy decision counterpart L, then as L P NP we

expect to have a polynomial-time algorithm that verifies whether x P L by constructing

witnesses for x. Moreover, if such an algorithm for constructing witnesses exists, then we

also expect to be able to manipulate such witnesses and in some cases to remove them. In

other words, we expect a robust class C of counting functions with easy decision versions

to be closed under subtraction by one, that is, if g P C , then the function g´ 1 should also

be in C , where pg ´ 1qpxq is defined as gpxq ´ 1 if gpxq ě 1, and as 0 otherwise. Notice

that, unless P “ NP, no such class can contain the function sat_one because sat_one ´ 1

counts the number of satisfying assignments of a propositional formula.

A second desirable condition of robustness is the existence of natural complete prob-

lems (Papadimitriou, 1994). Special attention has to be paid here to the notion of reduction

used for completeness. Notice that under the notion of Cook reduction, originally used in

Valiant (1979a), the problems #DNF and #SAT are #P-complete. However, #DNF has

an easy decision counterpart and admits an FPRAS, while #SAT does not satisfy these

conditions unless P “ NP. Hence a more strict notion of reduction has to be considered;

in particular, the notion of parsimonious reduction (to be defined later) satisfies that if a

function f is parsimoniously reducible to a function g, then Lg P P implies that Lf P P

and the existence of an FPRAS for g implies the existence of a FPRAS for f .
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In this section, we use the framework developed in this thesis to address the problem

of defining a robust class of functions with easy decision versions. More specifically, we

use the framework to introduce in Section 5.1 a syntactic hierarchy of counting complexity

classes contained in #P. Then this hierarchy is used in Section 5.2 to define a class of

functions with easy decision versions and good closure properties, and in Section 5.3 to

define a class of functions with easy decision versions and natural complete problems.

5.1. The ΣQSOpFOq-hierarchy inside #P

Inspired by the connection between #P and #FO, a hierarchy of subclases of #FO

was introduced in Saluja et al. (1995) by restricting the alternation of quantifiers in Boolean

formulae. Specifically, the #FO-hierarchy consists of the the classes #Σi and #Πi for

every i ě 0, where #Σi (resp., #Πi) is defined as #FO but restricting the formulae used

to be in Σi (resp., Πi). By definition, we have that #Π0 “ #Σ0. Moreover, it is shown

in (Saluja et al., 1995) that:

#Σ0 Ĺ #Σ1 Ĺ #Π1 Ĺ #Σ2 Ĺ #Π2 “ #FO

In light of the framework introduced in this thesis, natural extensions of these classes

are obtained by considering ΣQSOpΣiq and ΣQSOpΠiq for every i ě 0, which form the

ΣQSOpFOq-hierarchy. Clearly, we have that #Σi Ď ΣQSOpΣiq and #Πi Ď ΣQSOpΠiq.

Indeed, each formula ϕpX̄, x̄q in #Σi is equivalent to the formula ΣX̄.Σx̄. ϕpX̄, x̄q in

ΣQSOpΣiq, and likewise for #Πi and ΣQSOpΠiq. But what is the exact relationship

between these two hierarchies? To answer this question, we first introduce two normal

forms for ΣQSOpL q that helps us to characterize the expressive power of this quantitative

logic. A formula α in ΣQSOpL q is in L -prenex normal form (L -PNF) if α is of the form

ΣX̄.Σx̄. ϕpX̄, x̄q, where X̄ and x̄ are sequences of zero or more second-order and first-

order variables, respectively, (as expected, ΣX̄. is the respective nesting of ΣX. ’s) and

ϕpX̄, x̄q is a formula in L . Notice that a formula ϕpX̄, x̄q in #L is equivalent to the
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formula ΣX̄.Σx̄. ϕpX̄, x̄q in L -PNF. Moreover, a formula α in ΣQSOpL q is in L -sum

normal form (L -SNF) if α is of the form
řn
i“1 αi where each αi is in L -PNF.

Proposition 5.1. Every formula in ΣQSOpL q can be rewritten in L -SNF.

PROOF. Recall that a formula in ΣQSOpL q is defined by the following grammar:

α “ ϕ | s | pα ` αq | Σx. α | ΣX.α

where ϕ is a formula in L and s P N. To find an equivalent formula in L -SNF for every

α P ΣQSOpL q, we give a recursive function τ such that τpαq is in L -SNF and τpαq ” α.

Specifically, if α “ ϕ, define τpαq “ α; if α “ s, define τpαq “ pJ ` s times. . . ` Jq; if

α “ pα1 ` α2q, define τpαq “ pτpα1q ` τpα2qq; if α “ Σx. β, assume τpβq “
řk
i“1 βi

such that each βi is in L -PNF, and define τpαq “
řk
i“1 Σx. βi; and if α “ ΣX. β, then

we proceed analogously as in the previous case. This covers all possible cases for α and

we conclude the proof by taking τpαq as the desired rewrite of α. �

If a formula is in L -PNF then clearly the formula is in L -SNF. Unfortunately, for

some L there exist formulae in ΣQSOpL q that cannot be rewritten in L -PNF. Therefore,

to unveil the relationship between the #FO-hierarchy and the ΣQSOpFOq-hierarchy, we

need to understand the boundary between PNF and SNF. We do this in the following

theorem.

Theorem 5.2. For i “ 0, 1, there exists a formula αi in ΣQSOpΣiq that is not equiv-

alent to any formula in Σi-PNF. On the other hand, if Π1 Ď L and L is closed under

conjunction and disjunction, then every formula in ΣQSOpL q can be rewritten in L -

PNF.

PROOF. From now on, for every first-order tuple x̄ or second-order tuple X̄ we write

|x̄| or |X̄| as the number of variables in x̄ or X̄ respectively. We divide the proof in three

parts.
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First, we prove that the formula α0 “ pΣX. 1q ` 1 with aritypXq “ 1 (i.e. the

function 2|A| ` 1) is not equivalent to any formula in Σ0-PNF. Suppose that there exists

some formula α “ ΣX̄.Σx̄. ϕpX̄, x̄q in Σ0-PNF that is equivalent to α0. In Saluja et al.

(1995), it was proved that if |X̄| ą 0, the function defined by α is always even for big

enough structures, which is not possible in our case. On the other hand, if α is of the form

Σx̄. ϕpx̄q, then α defines a polynomially bounded function which leads to a contradiction.

Second, we prove that the formula α1 “ 2 (i.e. Jα1K is the constant function 2) is

not equivalent to any formula in Σ1-PNF. Suppose that there exists some formula α “

ΣX̄.Σx̄. Dȳ ϕpX̄, x̄, ȳq in Σ1-PNF that is equivalent to α1. First, if |X̄| “ |x̄| “ 0, then

the function defined by α is never greater than 1. Therefore, suppose that |X̄| ą 0 or

|x̄| ą 0, and consider some ordered structure A. Since JαKpAq “ 2, there exist at least two

assignments pB̄1, b̄1, ā1q, pB̄2, b̄2, ā2q to pX̄, x̄, ȳq such that for both, A |ù ϕpB̄i, b̄i, āiq.

Now consider the ordered structure A1 that is obtained by taking the disjoint union of

A twice. Indeed, each half of A1 is isomorphic to A. Note that A1 |ù ϕpB̄i, b̄i, āiq for

i “ 1, 2 and there exists a third assignment pB̄11, b̄
1
1, ā

1
1q that is isomorphic to pB̄1, b̄1, ā1q,

in the other half of the structure, such that A1 |ù ϕpB̄11, b̄
1
1, ā

1
1q. As a result, we have that

JαKpA1q ě 3 which leads to a contradiction.

For the last part of the proof, we show that if L contains Π1 and is closed under con-

junction and disjunction, then for every formula α in ΣQSOpL q there exists an equivalent

formula in L -PNF. Similarly to Theorem 5.1, we show a recursive function τ that pro-

duces such a formula. Assume that α “
řn
i“1 αi is in L -SNF where each αi is in L -PNF.

Without loss of generality, we assume that each αi “ ΣX̄.Σx̄. ϕipX̄, x̄q with |X̄| ą 0 and

|x̄| ą 0. If that is not the case, we can replace each αi by the equivalent formula

ΣX̄.ΣY.Σx̄.Σy. pϕipX̄, x̄q ^ @z. Y pzq ^ @z. z ď yq.

Now we begin describing the function τ . If α “ ΣX̄.Σx̄. ϕpX̄, x̄q, then the formula

is already in L -PNF so we define τpαq “ α. If α “ α1 ` α2, then we assume that

τpα1q “ ΣX̄.Σx̄. ϕpX̄, x̄q and τpα2q “ ΣȲ .Σȳ. ψpȲ , ȳq. Our construction works by
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identifying a “first” assignment for both pX̄, x̄q and pȲ , ȳq and a “last” assignment for

both pX̄, x̄q and pȲ , ȳq using the following formulas:

γfirstpX̄, x̄q “

|X̄|
ľ

i“1

@z̄. Xipz̄q ^ @z̄. px̄ ď z̄q,

γlastpX̄, x̄q “

|X̄|
ľ

i“1

@z̄. Xipz̄q ^ @z̄. pz̄ ď x̄q.

Similarly, we can define the formulas γfirstpȲ , ȳq and γlastpȲ , ȳq. In other words, the “first”

assignment is the one where every second-order predicate is empty and the first-order

assignment is the lexicographically smallest, and the “last” assignment is the one where

every second-order predicate is full and the first-order assignment is the lexicographically

greatest. We also need to identify the assignments that are not first and the ones that are not

last. We do this by negating the two formulas above and grouping together the first-order

variables:

γnot-firstpX̄, x̄q “ Dz̄. pz̄0 ă x̄_

|X̄|
ł

i“1

Xpz̄iqq,

γnot-lastpX̄, x̄q “ Dz̄. px̄ ă z̄0 _

|X̄|
ł

i“1

 Xpz̄iqq,

where z̄ “ pz̄0, z̄1, . . . , z̄|X̄|q. Then the following formula is equivalent to α:

ΣX̄.Σx̄.ΣȲ .Σȳ. rpϕpX̄, x̄q ^ γnot-firstpX̄, x̄q ^ γfirstpȲ , ȳqq_ (5.1)

pϕpX̄, x̄q ^ γfirstpX̄, x̄q ^ γlastpȲ , ȳqq_ (5.2)

pψpȲ , ȳq ^ γfirstpX̄, x̄q ^ γnot-lastpȲ , ȳqq_ (5.3)

pψpȲ , ȳq ^ γlastpX̄, x̄q ^ γlastpȲ , ȳqqs. (5.4)

To show that the formula is indeed equivalent to α, note that the formulas in lines

(5.1) and (5.2) form a partition over the assignments of pX̄, x̄q, while fixing an assignment

for pȲ , ȳq, and the formulas in lines (5.3) and (5.4) form a partition over the assignments
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#Σ0

#Σ1

Ĺ

ΣQSOpΣ0q

Ĺ
ΣQSOpΣ1q

Ĺ

Ĺ

ΣQSOpΠ1qĹ

#Π1

“

ΣQSOpΣ2qĹ

#Σ2

“

ΣQSOpΠ2qĹ

#Π2

“

#FO“

FIGURE 5.1. The relationship between the #FO-hierarchy and the ΣQSOpFOq-
hierarchy, where #Σ1 and ΣQSOpΣ0q are incomparable.

of pȲ , ȳq, while fixing an assignment for pX̄, x̄q. Altogether the four lines define pairwise

disjoint assignments for pX̄, x̄q, pȲ , ȳq. With this, it is straightforward to show that the

above formula is equivalent to α. However, the formula is not yet in the correct form since

it has existential quantifiers in the sub-formulas γnot-first and γnot-last. To solve this, we can

replace each existential quantifier by a first order sum that counts just the first assignment

that satisfies the inner formula and this can be defined in Π1. A similar construction was

used in Saluja et al. (1995).

Finally, consider a ΣQSOpL q formula α in L -SNF. If α “
řn
i“1 αi, then by induc-

tion we consider α “ α1 ` p
řn
i“2 αiq and use τpα1 ` τp

řn
i“2 αiqq as the rewrite of α,

which satisfies the hypothesis. �

As a consequence of Proposition 5.1 and Theorem 5.2, we obtain that for i “ 0, 1

it holds that #Σi Ĺ ΣQSOpΣiq, and that #L “ ΣQSOpL q for L equal to Π1, Σ2

or Π2. The following proposition completes our picture of the relationship between the

#FO-hierarchy and the ΣQSOpFOq-hierarchy.

Proposition 5.3. The following properties hold:

‚ ΣQSOpΣ0q and #Σ1 are incomparable, that is, #Σ1 Ę ΣQSOpΣ0q and

ΣQSOpΣ0q Ę #Σ1,

‚ ΣQSOpΣ1q Ĺ ΣQSOpΠ1q.

PROOF. We give this proof in three parts. First, we show that #Σ1 Ę ΣQSOpΣ0q.

Towards a contradiction, let R “ tău and suppose that there is a ΣQSOpΣ0q formula α
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over R which is equivalent to the #Σ1 formula Σx. Dy. px ă yq. This is, for every finite

R-structure A, JαKpAq “ |A| ´ 1.

Suppose that α is in SNF, namely, α “
řk
i“1 αi for some fixed k. Since α is not null,

consider some αi that describes a non-null function. Let αi “ ΣX̄.Σx̄. ϕpX̄, x̄q where ϕ

is quantifier-free. Note that if |X̄| ą 0, then the function JαK is in Ωp2|A|q, as it was proven

in (Saluja et al., 1995). Therefore, we have that αi “ Σx̄. ϕpx̄q. We conclude our proof

with the following claim.

Claim 5.4. Let α “ Σx̄. ϕpx̄q where ϕ is quantifier free. Then the function JαK is

either null, greater or equal to n, or is in Ωpn2q, where n is the size of the input structure.

PROOF. Note that each atomic sub-formula in ϕpx̄q is either px “ yq, px ă yq, J or a

negation thereof, where x, y P x̄. Suppose JαK is not null and consider some R-structure

A such that JαKpAq ą 0. Let ā be an assignment to x̄ such that A |ù ϕpāq. It can be

seen that each assignment ā1 that has the same order over its variables1 as ā also satisfies

A |ù ϕpā1q. If this order has k partitions then
`

|A|
k

˘

assignments for x̄ satisfy this order,

and therefore, JαK ě
`

|A|
k

˘

. If k “ 1, then
`

|A|
k

˘

“ |A|, and if k ě 2, then
`

|A|
k

˘

P Ωp|A|2q,

which proves the claim. �

Now we show that ΣQSOpΣ0q Ę #Σ1. Note that every formula in #Σ1 can be

expressed in Σ1-PNF. However, in Theorem 5.2 we proved that there is no formula in

Σ1-PNF equivalent to the formula α “ 2. We obtain that 2 P ΣQSOpΣ0q and 2 R #Σ1.

Finally, we prove that ΣQSOpΣ1q Ĺ ΣQSOpΠ1q. For inclusion, let α be a for-

mula in ΣQSOpΣ1q. Suppose that it is in Σ1-SNF, namely, α “
řn
i“1 αi. Let αi “

ΣX̄.Σx̄. Dȳ. ϕipX̄, x̄, ȳq, where each ϕi is quantifier-free. We use the same construction

used in Saluja et al. (1995) for each αi, and we obtain that the formula Dȳ. ϕipX̄, x̄, ȳq is

equivalent to Σȳ. rϕipX̄, x̄, ȳq ^ @ȳ
1. pϕipX̄, x̄, ȳ

1q Ñ ȳ ď ȳ1qs for every assignment to

pX̄, x̄q. We do this replacement for each αi, and we obtain an equivalent formula to α in

ΣQSOpΠ1q.

1For example, if ā “ pa1, a2, a3, a4q, such order may be a1 ą a3 “ a4 ą a2, which has tree partitions.
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To prove that the inclusion is proper, consider the ΣQSOpΠ1q formula Σx. @y. py “ xq.

This formula defines the following function over each ordered structure A:

JαKpAq “

$

’

&

’

%

1 A has one element

0 otherwise.

Suppose that there exists an equivalent formula α in ΣQSOpΣ1q. Also, suppose that it

is in L-PNF, so α “
řn
i“1 ΣX̄.Σx̄. Dȳ. ϕipX̄, x̄, ȳq. Consider a structure A1 with one

element. We have that for some i, there exists an assignment pB̄, b̄, āq for pX̄, x̄, ȳq such

that A1 |ù ϕipB̄, b̄, āq. Consider now the structure A2 that is obtained by duplicating A1, as

we did for Theorem 5.2. Note that A2 |ù ϕipB̄, b̄, āq, which implies that JαKpA1ZA2q ą 1,

which leads to a contradiction. �

The relationship between the two hierarchies is summarized in Figure 5.1. Our hierar-

chy and the one proposed in Saluja et al. (1995) only differ in Σ0 and Σ1. Interestingly, we

show next that this difference is crucial for finding classes of functions with easy decision

versions and good closure properties.

5.2. Defining a class of functions with easy decision versions and good closure prop-

erties

We use the ΣQSOpFOq-hierarchy to define syntactic classes of functions with good

algorithmic and closure properties. But before doing this, we introduce a more strict notion

of counting problem with easy decision version. Recall that a function f : Σ˚ Ñ N has

an easy decision counterpart if Lf “ tx P Σ˚ | fpxq ą 0u is a language in P. As the goal

of this section is to define a syntactic class of functions in #P with easy decision versions

and good closure properties, we do not directly consider the semantic condition Lf P P,

but instead we consider a more restricted syntactic condition. More precisely, a function

f : Σ˚ Ñ N is said to be in the complexity class TOTP (Pagourtzis & Zachos, 2006)

if there exists a polynomial-time NTM M such that fpxq “ #totalMpxq ´ 1 for every

x P Σ˚, where #totalMpxq is the total number of runs of M with input x. Notice that one
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is subtracted from #totalMpxq to allow for fpxq “ 0. Besides, notice that TOTP Ď #P and

that f P TOTP implies that Lf P P.

The complexity class TOTP contains many important counting problems with easy

decision counterparts, such as #PERFECTMATCHING, #DNF, and #HORNSAT among

others (Pagourtzis & Zachos, 2006). Besides, TOTP has good closure properties as it is

closed under sum, multiplication and subtraction by one. However, some functions in

TOTP do not admit FPRAS under standard complexity-theoretical assumptions2, and no

natural complete problems are known for this class (Pagourtzis & Zachos, 2006). Hence,

we use the ΣQSOpFOq-hierarchy to find restrictions of TOTP with good approximation

and closure properties.

It was proved in Saluja et al. (1995) that every function in #Σ1 admits an FPRAS.

Besides, it can be proved that #Σ1 Ď TOTP. However, this class is not closed under sum,

and then it is not robust under basic closure properties.

Proposition 5.5. There exist functions f, g P #Σ1 such that pf ` gq R #Σ1.

PROOF. Towards a contradiction, assume that #Σ1 is closed under binary sum. Con-

sider the formula α “ Σx. px “ xq P #Σ1 over some signature R. This defines the

function JαKpAq “ |A|. From our assumption, there exists some formula in #Σ1 equiva-

lent to the formula α ` α, which describes the function 2|A|. Let ΣX̄.Σx̄. Dȳ ϕpX̄, x̄, ȳq

be this formula, where ϕ is in first-order and quantifier-free. For each R-structure A, we

have the following inequality:

JΣX̄.Σx̄.Σȳ. ϕpX̄, x̄, ȳqKpAq ď JΣX̄.Σx̄. Dȳ ϕpX̄, x̄, ȳqKpAq ¨ |A||ȳ| ď 2|A||ȳ|`1

2As an example consider the problem of counting the number of independent sets in a graph, and the widely
believed assumption that NP is not equal to the randomized complexity class RP (Randomized Polynomial-
Time (Gill, 1977)). This counting problem is in TOTP, and it is known that NP “ RP if there exists an
FPRAS for it (Dyer, Frieze, & Jerrum, 2002).
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Note that the formula ΣX̄.Σx̄.Σȳ. ϕpX̄, x̄, ȳq defines a function in #Σ0. Therefore, as

it was proven in Saluja et al. (1995), if |X̄| ą 0 then the function is in Ωp2|A|q, which

violates the inequality.

We now have that |X̄| “ 0. Consider a structure 1 with only one element. We have

that JΣx̄. Dȳ ϕpx̄, ȳqKp1q “ 2 JDȳ ϕpx̄, ȳqKp1q ď 1, which implies that |x̄| ą 0. But since

the structure has only one element, there is only one possible assignment to x̄. And so,

JΣx̄. Dȳ ϕpx̄, ȳqKp1q ď 1, which leads to a contradiction. �

To overcome this limitation, one can consider the class ΣQSOpΣ1q, which is closed

under sum by definition. In fact, the following proposition shows that the same good

properties as for #Σ1 hold for ΣQSOpΣ1q, together with the fact that it is closed under

sum and multiplication.

Proposition 5.6. ΣQSOpΣ1q Ď TOTP and every function in ΣQSOpΣ1q has an

FPRAS. Moreover, ΣQSOpΣ1q is closed under sum and multiplication.

PROOF. Saluja et al. (1995) proved that there exists a product reduction from ev-

ery function in #Σ1 to a restricted version of #DNF. This is, if α P #Σ1 over some

signature R, there exist polynomially computable functions g : ORDSTRUCTrRs Ñ

ORDSTRUCTrRDNFs and h : N Ñ N such that for every R-structure A, it holds that

JαKpAq “ #DNFpencpgpAqqq ¨ hp|A|q. We use this fact in the following arguments.

To show that ΣQSOpΣ1q is contained in TOTP, let α be a ΣQSOpΣ1q formula and

assume that it is in Σ1-SNF. This is, α “
řn
i“1 αi where each αi is in Σ1-PNF. Consider

the following nondeterministic procedure that on input encpAq generates JαKpAq branches.

For each αi “ ϕ, where ϕ is a Σ1 formula, it checks if A |ù ϕ in polynomial time and

generates a new branch if that is the case. For each αi “ ΣX̄.Σx̄. ϕ, this formula is

also in #Σ1. We use the reduction to #DNF provided in Saluja et al. (1995) and we ob-

tain gpencpAqq, which is an instance to #DNF. Since #DNF is also in TOTP (Pagourtzis

& Zachos, 2006), we simulate the corresponding nondeterministic procedure that gen-

erates exactly #DNFpencpgpAqqq branches. Since, FP Ď TOTP(Pagourtzis & Zachos,
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2006), each polynomially computable function is also in TOTP, and then on each of these

branches we simulate the corresponding nondeterministic procedure to generate hp|A|q

more. The number of branches for each αi is JαiKpAq “ #DNFpencpgpAqqq ¨ hp|A|q, and

the total number of branches is equal to JαKpAq. We conclude that α P TOTP.

To show that every function in ΣQSOpΣ1q has an FPRAS, let α be a ΣQSOpΣ1q

formula and assume that it is in Σ1-SNF. This is, α “
řn
i“1 αi where each αi is in Σ1-

PNF. Note that each αi that is equal to some Σ1 formula ϕ has an FPRAS given by the

procedure that simply checks if A |ù ϕ and returns 1 if it does and 0 otherwise. Also, each

remaining αi has an FPRAS since αi P #Σ1 (Saluja et al., 1995). If two functions have an

FPRAS, then their sum also has one given by the procedure that simulates them both and

sums the results. We conclude that α has an FPRAS.

Finally, we show that ΣQSOpΣ1q is closed under sum and multiplication. Since

ΣQSOpΣ1q is closed under sum by definition, we focus only in proving that it is closed

under multiplication. We prove this for a more general case for ΣQSOpL q where L is a

fragment of SO.

Lemma 5.7. If L is a fragment closed under conjunction, then ΣQSOpL q is closed

under binary multiplication.

PROOF. Given two formulas α, β in ΣQSOpL q we will show a formula in the gram-

mar which is equivalent to pα ¨ βq. From what was proven in Proposition 5.1, we may as-

sume that α and β are in L -SNF. Let α “
řn
i“1 ΣX̄i.Σx̄i. ϕipX̄i, x̄iq, and let

β “
řm
i“1 ΣȲi.Σȳi. ψipȲi, ȳiq. Expanding the product in pα ¨ βq and reorganizing results

in the equivalent formula

n
ÿ

i“1

m
ÿ

j“1

ΣX̄i.ΣȲj.Σx̄i.Σȳj. pϕipX̄i, x̄iq ^ ψipȲj, ȳjqq,

which is in L -SNF, and therefore, in ΣQSOpL q. �
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Since Σ1 is closed under conjunction, then Lemma 5.7 holds for ΣQSOpΣ1q. This

concludes the proof. �

Hence, it only remains to prove that ΣQSOpΣ1q is closed under subtraction by one.

Unfortunately, it is not clear whether this property holds; in fact, we conjecture that it is

not the case. Thus, we need to find an extension of ΣQSOpΣ1q that keeps all the previ-

ous properties and is closed under subtraction by one. It is important to notice that #P

is believed not to be closed under subtraction by one by some complexity-theoretical as-

sumption3. So, the following proposition rules out any logic that extends Π1 for a possible

extension of ΣQSOpΣ1q with the desired closure property.

Proposition 5.8. If Π1 Ď L Ď FO and ΣQSOpL q is closed under subtraction by

one, then #P is closed under subtraction by one.

PROOF. Let L be a fragment of FO that contains Π1. Then we have that every func-

tion in #Π1 is expressible in ΣQSOpL q. In particular, #3-CNF P ΣQSOpL q. Suppose

that ΣQSOpL q is closed under subtraction by one. Then, the function #3-CNF ´ 1,

which counts the number of satisfying assignments of a 3-CNF formula minus one, is also

in ΣQSOpL q. Recall also that ΣQSOpL q Ď ΣQSOpFOq “ #P and that #3-CNF is #P-

complete under parsimonious reductions4. Let f be a function in #P, and consider the non-

deterministic polynomial-time procedure that on input encpAq computes the correspond-

ing reduction gpencpAqq into #3-CNF and simulates the #P procedure for #3-CNF ´ 1

on input gpencpAqq. This is a #P procedure that computes f ´ 1, from which we conclude

that #P is closed under subtraction by one. �

Therefore, the desired extension has to be achieved by allowing some local extensions

to Σ1. More precisely, we define Σ1[FO] as Σ1 but allowing atomic formulae over a
3A decision problem L is in the randomized complexity class SPP if there exists a polynomial-time NTM
M such that for every x P L it holds that #acceptM pxq ´ #rejectM pxq “ 2, and for every x R L it holds
that #acceptM pxq “ #rejectM pxq (Ogiwara & Hemachandra, 1993; Fenner et al., 1994). It is believed that
NP Ę SPP. However, if #P is closed under subtraction by one, then it holds that NP Ď SPP (Ogiwara &
Hemachandra, 1993).
4It can be easily verified that the standard reduction from SAT to 3-CNF (or 3-SAT) preserves the number
of satisfying assignments
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signature R to be of the form either u “ v or Xpūq, where X is a second-order variable,

or ϕpūq, where ϕpūq is a first-order formula over R (in particular, it does not mention any

second-order variable). With this extension we obtain a class with the desired properties.

Theorem 5.9. The class ΣQSOpΣ1[FO]q is closed under sum, multiplication and

subtraction by one. Moreover, ΣQSOpΣ1[FO]q Ď TOTP and every function in

ΣQSOpΣ1[FO]q has an FPRAS.

PROOF. For the sake of readability, we divide the proof in three parts. The last part,

i.e. subtraction by one, is probably the most technical proof of the thesis.

Closed under sum and multiplication. By the previous results, it is straightforward to

prove that ΣQSOpΣ1[FO]q is closed under sum and multiplication. Indeed, ΣQSOpL q is

closed under sum by definition for every fragment L , and since Σ1[FO] is closed under

conjunction, from Lemma 5.7 it follows that ΣQSOpΣ1[FO]q is closed under multiplica-

tion.

Easy decision version and FPRAS. We show here that ΣQSOpΣ1[FO]q Ď TOTP and

every function in ΣQSOpΣ1[FO]q has an FPRAS. We do this by showing a parsimonious

reduction from a function in ΣQSOpΣ1[FO]q to some function in ΣQSOpΣ1q, and using

the result of Proposition 5.6. First, we define a function that converts a formula α in

ΣQSOpΣ1[FO]q over a signature R into a formula λpαq in ΣQSOpΣ1q over a signature

Rα. Afterwards, we define a function gα that receives an R-structure A and outputs an

Rα-structure gαpAq.

Let α be in ΣQSOpΣ1[FO]q. The signature Rα is obtained by adding the symbol Rψ

to R for every FO formula ψpz̄q in α. Each symbol Rψ represents a predicate with arity

|z̄|. Then, λpαq is defined as α where each FO formula ψpz̄q has been replaced by Rψpz̄q.

We now define the function gα with a polynomial time procedure. Let A be a R-structure

with domain A. Let A1 be an Rα-structure obtained by copying A and leaving each RA
ψ

empty. For each FO-formula ψpz̄q with |z̄| open first-order variables, we iterate for every
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tuple ā P A|z̄|. If A |ù ψpāq (this can be done in P), then the tuple ā is added to RA1

ψ . This

concludes the construction of A1. Note that the number of FO subformulas, arity and tuple

size is fixed in α, so computing this function takes polynomial time over the size of the

structure. Moreover, the encoding of A1 has polynomial size over the size of encpAq. We

define gαpAq “ A1 and we have that for each R-structure A: JαKpAq “ JλpαqKpgαpAqq.

Therefore, we have a parsimonious reduction from α to the ΣQSOpΣ1q formula λpαq.

To show that α is in TOTP, we can convert α and encpAq into λpαq and encpgαpAqq,

respectively, and run the procedure in Proposition 5.6. Similarly, to show that α has an

FPRAS, we do the same as before and simulates the FPRAS for λpαq in Proposition 5.6.

These procedures also takes polynomial time and satisfies the required conditions.

Closed under subtraction by one. We prove here that ΣQSOpΣ1[FO]q is closed un-

der subtraction by one. For this, given α P ΣQSOpΣ1[FO]q over a signature R, we

will define a ΣQSOpΣ1[FO]q-formula κpαq such that for each finite structure A over R:

JκpαqKpAq “ JαKpAq .́ 1. Without lost of generality, we assume that α is in Σ1[FO]-SNF,

that is, α “
řn
i“1 ΣX̄.Σx̄. ϕi where each ϕi is in Σ1[FO]. Moreover, we assume that

|x̄| ą 0 since, if this is not the case, we can replace ΣX̄. ϕi for the equivalent formula

ΣX̄.Σy. ϕi ^ firstpyq.

The proof will be separated in two parts. In the first part, we will assume that α is in

Σ1[FO]-PNF, namely, α “ ΣX̄.Σx̄. ϕ for some ϕ in Σ1[FO]. Then we will show how

to define a formula ϕ1 that satisfies the following condition: for each A, if pA, V, vq |ù

ϕpX̄, x̄q for some V and v over A, then there exists exactly one assignment to pX̄, x̄q that

satisfies ϕ and not ϕ1. From this, we clearly have that κpαq “ ΣX̄.Σx̄. ϕ1 will be the

desired formula. In the second part, we suppose that α is of the form β ` ΣX̄.Σx̄. ϕ

with β the sum of one or more formulas in Σ1[FO]-PNF. We define a formula ϕ1 that

satisfies the following condition: if pA, V, vq |ù ϕpX̄, x̄q and JβKpAq “ 0, then there exists

exactly one assignment to pX̄, x̄q that satisfies ϕ and not ϕ1. From here, we can define
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κpαq recursively as κpαq “ κpβq`ΣX̄.Σx̄. ϕ1 and the property of subtraction by one will

be proven.

Part (1). Let α “ ΣX̄.Σx̄. ϕpX̄, x̄q where ϕ is an FO-formula. Note that, if α is of the

form α “ Σx̄. ϕpx̄q (i.e. |X̄| “ 0), we can define κpαq “ Σx̄. rϕpx̄q^Dz̄.pϕpz̄q^ z̄ ă x̄qs,

which is in ΣQSOpΣ1[FO]q and fulfills the desired condition. Therefore, for the rest of

the proof we can assume that |X̄| ą 0 and |x̄| ą 0.

To simplify the analysis of ϕ, the first step is to rewrite ϕ in a DNF formula. More

precisely, we rewrite ϕ into an equivalent formula of the form
Žm

i“1 ϕi for some m P

N where each ϕipX̄, x̄q “ Dȳ. ϕ1ipX̄, x̄, ȳq and ϕ1ipX̄, x̄, ȳq is a conjunction of atomic

formulas or negation of atomic formulas. Furthermore, we assume that each ϕ1ipX̄, x̄, ȳq

has the form:

ϕ1ipX̄, x̄, ȳq “ ϕFO
i px̄, ȳq

loooomoooon

an FO formula

^ ϕ`i pX̄, x̄, ȳq
looooomooooon

conjunction of Xj ’s

^ ϕ´i pX̄, x̄, ȳq
looooomooooon

conjunction of  Xj ’s

.

Note that atomic formulas, like Rpz̄q for R P R, will appear in the subformula ϕFO
i px̄, ȳq.

Now, we define a series of rewritings to ϕ that will make each formula ϕi satisfy

the following three conditions: (a) no variable from x̄ are mentioned in ϕ´i pX̄, x̄, ȳq ^

ϕ`i pX̄, x̄, ȳq, (b) ϕFO
i px̄, ȳq defines an ordered partition over the variables in px̄, ȳq (see

below for the formal definition of ordered partition) and (c) if Xjpz̄q and  Xjpw̄q are

mentioned, then the ordered partition should not satisfy z̄ “ w̄. We explain below how to

rewrite ϕi in order to satisfy each condition.

(a) In order to satisfy the first condition, consider some instance of a Xjpw̄q in

ϕi, where w̄ is a subtuple of px̄, ȳq. We add |w̄| new variables z1, . . . , z|w̄| to the

formula and let z̄ “ pz1, . . . , z|w̄|q. We redefine ϕ`i pX̄, x̄, ȳq by replacingXjpw̄q

with Xjpz̄q (denoted by ϕ`i pX̄, x̄, ȳqrXjpw̄q Ð Xjpz̄qs and then the formula ϕi

is equivalently defined as:

ϕipX̄, x̄q :“ Dȳ.Dz̄.pz̄ “ w̄^ϕFO
i px̄, ȳqq^ϕ

`
i pX̄, x̄, ȳqrXjpw̄q Ð Xjpz̄qs^ϕ

´
i pX̄, x̄, ȳq.
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We repeat this process for each instance of a Xjpw̄q in ϕi, and we obtain a

formula where none of the Xj’s acts over any variable in x̄. We add the new

first-order variables to ȳ and we redefine ϕi as:

ϕipX̄, x̄q :“ Dȳ. ϕFO
i px̄, ȳq ^ ϕ

´
i pX̄, ȳq ^ ϕ

`
i pX̄, ȳq.

For example, if x̄ “ x, ȳ “ y and ϕi “ Dȳ. x ă y ^Xpx, yq ^  Xpx, xq, then

we redefine ȳ “ py, v1, v2, v3, v4q and:

ϕi :“ Dȳ. v1 “ x^ v2 “ y ^ v3 “ x^ v4 “ x^ x ă y ^Xpv1, v2q ^  Xpv3, v4q.

(b) An ordered partition on a set S is defined by an equivalence relation „ over S,

and a linear order over S{„. For example, let x̄ “ px1, x2, x3, x4q. A possible

ordered partition would be defined by the formula θpx̄q “ x2 ă x1^x1 “ x4^

x4 ă x3. On the other hand, the formula θ1px̄q “ x1 ă x2 ^ x1 ă x4 ^ x2 “ x3

does not define an ordered partition since both tx1u ă tx2, x3u ă tx4u and

tx1u ă tx2, x3, x4u satisfy θ1. For a given k, let Bk be the number of possible

ordered partitions for a set of size k. For 1 ď j ď B|px̄,ȳq| let θjpx̄, ȳq be the

formula that defines the j-th ordered partition over px̄, ȳq. Thus, the formula

ϕpX̄, x̄q is then redefined as:

ϕpX̄, x̄q :“
m
ł

i“1

B|px̄,ȳq|
ł

j“1

Dȳ. rθjpx̄, ȳq ^ ϕFO
i px̄, ȳq ^ ϕ

´
i pX̄, ȳq ^ ϕ

`
i pX̄, ȳqs,

Note that each θjpx̄, ȳq is an FO-formula. Then, by redefining ϕFO
i px̄, ȳq as

θjpx̄, ȳq ^ ϕFO
i px̄, ȳq, we can suppose that each ϕFO

i px̄, ȳq forces an ordered

partition over the variables in px̄, ȳq.

(c) Finally, to rewrite the formula such that no Xjpz̄q and  Xjpw̄q are mentioned

in ϕi with z̄ and w̄ equivalent in the ordered partition (i.e. ϕi is inconsistent),

we do the following. If there exists an instance of Xjpz̄q in ϕ`i , an instance of

 Xjpw̄q in ϕ´i and the ordered partition in ϕFO
i satisfies z̄ “ w̄, then the entire

formula ϕi is removed from ϕ.

40



It is important to notice that the resulting ϕ is equivalent to the initial one, and it is

still a formula in ΣQSOpΣ1[FO]q. From now on, we assume that each ϕipX̄, x̄q “

Dȳ. ϕ1ipX̄, x̄, ȳq satisfies conditions (a), (b) and (c), and ϕ1ipX̄, x̄, ȳq has the form:

ϕ1ipX̄, x̄, ȳq “ ϕFO
i px̄, ȳq ^ ϕ

`
i pX̄, ȳq ^ ϕ

´
i pX̄, ȳq

where ϕ` and ϕ´i do not depend on x̄.

Claim 5.10. For an ordered structure A and a FO assignment v for A, pA, vq |ù

ϕFO
i px̄, ȳq if, and only if, there exists a SO assignment V for A such that pA, V, vq |ù

ϕ1ipX̄, x̄, ȳq.

PROOF. Let A be an ordered structure with domain A and let v be a first-order as-

signment for A, such that pA, vq |ù ϕFO
i px̄, ȳq. Define B̄ “ pB1, . . . , B|X̄|q as Bj “

tvpw̄q | Xjpw̄q is mentioned in ϕ`i pX̄, ȳqu, and let V be a second-order assignment for

which V pX̄q “ B̄. Towards a contradiction, suppose that pA, V, vq ­|ù ϕFO
i px̄, ȳq ^

ϕ`i pX̄, ȳq^ϕ
´
i pX̄, ȳq. By the choice of v, and construction of V it is clear that pA, V, vq |ù

ϕFO
i px̄, ȳq ^ ϕ

`
i pX̄, ȳq, so we necessarily have that pA, V, vq ­|ù ϕ´i pX̄, ȳq. Let Xt be such

that  Xtpw̄q is mentioned in ϕ´i pX̄, ȳq and pA, V, vq ­|ù  Xtpw̄q, namely, vpw̄q P Bt.

However, by the construction of Bt, there exists a subtuple z̄ of ȳ such that Xtpz̄q appears

in ϕ`i pX̄, ȳq and vpz̄q “ vpw̄q. Since pA, vq |ù ϕFO
i px̄, ȳq and vpz̄q “ vpw̄q, then the

ordered partition in ϕFO
i satisfies z̄ “ w̄. This violates condition (c) above since  Xtpw̄q

appears in ϕ´i and Xtpz̄q appears in ϕ`i , which leads to a contradiction.

For the other direction, if pA, V, vq |ù ϕ1ipX̄, x̄, ȳq for a second order assignment V for

A, then it is easy to check pA, vq |ù ϕFO
i px̄, ȳq since ϕFO

i px̄, ȳq is a subformula of ϕ1i. �

The previous claim and proof motivates the following definitions. For a structure

A and a first-order assignment v for A, define B̄v “ pBv
1 , . . . , B

v
|X̄|
q where each Bv

j “

tvpw̄q | Xjpw̄q is mentioned in ϕ`i pX̄, ȳqu. One can easily check that for every assign-

ments pV, vq such that pA, V, vq |ù ϕ1ipX̄, x̄, ȳq, it holds that pA, B̄v, vq |ù ϕ1ipX̄, x̄, ȳq and

B̄v Ď V pX̄q, namely, B̄v is a valid candidate for X̄ and, furthermore, it is contained in
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all assignments of X̄ when v is fixed. This motivates the main idea of Part (1): by choos-

ing one particular v the plan is to remove B̄v as an assignment over X̄ in ϕi. For this,

we choose the minimal v that satisfies ϕFO
i px̄, ȳq which can be defined with the following

formula:

min-ϕFO
i px̄, ȳq “ ϕFO

i px̄, ȳq ^ @x̄
1. @ȳ1. pϕFO

i px̄
1, ȳ1q Ñ px̄ ď x̄1 ^ ȳ ď ȳ1qq.

If ϕFO
i is satisfiable, let v be the only assignment such that pA, vq |ù min-ϕFO

i px̄, ȳq.

Furthermore, let V ˚ be the second order assignment and v˚ the first order assignment

that satisfy V ˚pX̄q “ B̄v and v˚px̄q “ vpx̄q. By the previous discussion, pA, V ˚, v˚q |ù

ϕipX̄, x̄q.

Now, we have all the ingredients in order to define κpαq. Intuitively, we want to

exclude the assignment pV ˚, v˚q from the satisfying assignments of ϕipX̄, x̄q. Towards

this goal, we can define a formula ψipX̄, x̄q such that pA, V, vq |ù ψipX̄, x̄q if, and only if,

if ϕipX̄, x̄q is satisfiable, then V ‰ V ˚ or v ‰ v˚. This property can be defined as follows:

ψipX̄, x̄q :“
`

Dx̄. Dȳ. ϕFO
i px̄, ȳq

˘

Ñ (5.5)
´

Dȳ. min-ϕFO
i px̄, ȳq ^

`

ϕ1ipX̄, x̄, ȳq Ñ
ł

XPX̄

Dz̄. rXpz̄q ^
ľ

Xpw̄q Pϕ`i pX̄,v̄q

w̄ ‰ z̄ s
˘

_

(5.6)

p Dx̄1. Dȳ. ϕ1ipX̄, x̄
1, ȳq ^ x̄1 ă x̄ q

¯

(5.7)

To understand the formula, first notice that the premise of the implication at (5.5) is true if,

and only if, ϕipX̄, x̄q is satisfiable. Indeed, by Claim 5.10 we know that if Dx̄.Dȳ.ϕFO
i px̄, ȳq

is true, then there exists assignments V and v such that pA, V, vq |ù ϕ1ipX̄, x̄, ȳq. Then, the

conclusion of the implication (divided into (5.6) and (5.7)), take care that V pX̄q ‰ V ˚pX̄q

or vpx̄q ‰ v˚px̄q. Here, the first disjunct (5.6) checks that V pX̄q ‰ V ˚pX̄q by defining

that if ϕ1ipX̄, x̄, ȳq is satisfied then V ˚pX̄q Ĺ V pX̄q. The second disjunct (5.7) is satisfied

when vpx̄q is not the lexicographically smallest tuple that satisfies ϕi (i.e. vpx̄q ‰ v˚px̄q).
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Finally, from the previous discussion one can easily check that ψipX̄, x̄q satisfies the desire

property.

We are ready to define the formula κpαq as ΣX̄.Σx̄.
Žm

i“1 ϕ
˚
i pX̄, x̄qwhere each mod-

ified disjunct ϕ˚i pX̄, x̄q is constructed as follows. For the sake of simplification, define the

auxiliary formula χi “  Dx̄. Dȳ. ϕFO
i px̄, ȳq. This formula basically checks if ϕi is not

satisfiable (recall Claim 5.10). Define the first formula ϕ˚1 as:

ϕ˚1pX̄, x̄q :“ ϕ1pX̄, x̄q ^ ψ1pX̄, x̄q.

This formula accepts all the assignments that satisfy ϕ1, except for the assignment pV ˚, v˚q

of ϕ1. The second formula ϕ˚2 is defined as:

ϕ˚2pX̄, x̄q :“ ϕ2pX̄, x̄q ^ ψ1pX̄, x̄q ^ pχ1 Ñ ψ2pX̄, x̄qq.

This models all the assignments that satisfy ϕ2, except for the assignment pV ˚, v˚q of

ϕ1. Moreover, if ϕ1 is not satisfiable, then ψ1pX̄, x̄q and χ1 will hold, and the formula

ψ2pX̄, x̄q will forbid the assignment pV ˚, v˚q of ϕ2. One can easily generalize this con-

struction for each ϕi as follows:

ϕ˚i pX̄, x̄q :“ ϕipX̄, x̄q ^ ψ1pX̄, x̄q^

pχ1 Ñ ψ2pX̄, x̄qq ^ ppχ1 ^ χ2q Ñ ψ3pX̄, x̄qq ^ ¨ ¨ ¨ ^ p
j“i´1
ľ

j“1

χj Ñ ψipX̄, x̄qq.

From the construction of κpαq, one can easily check that JκpαqKpAq “ JαKpAq ´ 1 for

each A.

Part (2). Let α “ β ` ΣX̄.Σx̄. ϕpX̄, x̄q for some ΣQSOpΣ1[FO]q formula β. We define

κpαq as follows. First, rewrite ϕpX̄, x̄q as in Part (1). Let ϕ “
Žm

i“1 ϕipX̄, x̄q where

each ϕi satisfies conditions (a), (b) and (c) defined above. Also, consider the previously

defined formulas χi and ψi, for each i ď m. We construct a function λ that receives a

quantitative formula β and produces a logic formula λpβq that satisfies A |ù λpβq if, and
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only if, JβKpAq “ 0. If β “ Σx̄. ϕpx̄q, then λpβq “  Dx̄1.ϕpx̄1q. If β “ ΣX̄.Σx̄. ϕpX̄, x̄q,

then define λpβq “ χ1 ^ ¨ ¨ ¨ ^ χm. If β “ pβ1 ` β2q, then λpβq “ λpβ1q ^ λpβ2q. Now,

following the same ideas as in Part (1) we define a formula ϕ˚i pX̄, x̄q that removes the

minimal pV ˚, v˚q of ϕi whenever β cannot be satisfied (i.e. λpβq is true). Formally, we

define ϕ˚i as follows:

ϕ˚i pX̄, x̄q :“ ϕipX̄, x̄q ^
´

λpβq Ñ
´

ψ1pX̄, x̄q^

pχ1 Ñ ψ2pX̄, x̄qq ^ ppχ1 ^ χ2q Ñ ψ3pX̄, x̄qq ^ ¨ ¨ ¨ ^ p
j“i´1
ľ

j“1

χj Ñ ψipX̄, x̄qq
¯¯

.

Finally, κpαq is defined as κpαq “ κpβq ` ΣX̄.Σx̄.
Žm

i“1 ϕ
˚
i pX̄, x̄q, which is in

ΣQSOpΣ1[FO]q and satisfies the desired conditions. This concludes the proof. �

The proof that ΣQSOpΣ1[FO]q is closed under subtraction by one is the most in-

volved of the thesis. We think the main technique used in this proof, which is based on

considering some witnesses of logarithmic size, is of independent interest.

5.3. Defining a class of functions with easy decision versions and natural complete

problems

The goal of this section is to define a class of functions in #P with easy decision

counterparts and natural complete problems. To this end, we consider the notion of par-

simonious reduction. Formally, a function f : Σ˚ Ñ N is parsimoniously reducible to a

function g : Σ˚ Ñ N if there exists a function h : Σ˚ Ñ Σ˚ such that h is computable in

polynomial time and fpxq “ gphpxqq for every x P Σ˚. As mentioned at the beginning of

this section, if f can be parsimoniously reduced to g, then Lg P P implies that Lf P P and

the existence of an FPRAS for g implies the existence of an FPRAS for f .

In the previous section, we show that the class ΣQSOpΣ1[FO]q has good closure

and approximation properties. Unfortunately, it is not clear whether it admits a natural
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complete problem under parsimonious reductions, where natural means any of the count-

ing problems defined in this section or any other well-known counting problem (not one

specifically designed to be complete for the class). Hence, in this section we follow a

different approach to find a class of functions in #P with easy decision counterparts and

natural complete problems, which is inspired by the approach followed in Grädel (1992)

that uses a restriction of second-order logic to Horn clauses for capturing P (over ordered

structures). The following example shows how our approach works.

Example 5.11. Let R “ tPp¨, ¨q,Np¨, ¨q,Vp¨q,NCp¨q,ău. This vocabulary is used as

follows to encode a Horn formula. A fact Ppc, xq indicates that propositional variable x

is a disjunct in a clause c, while Npc, xq indicates that  x is a disjunct in c. Furthermore,

Vpxq holds if x is a propositional variable, and NCpcq holds if c is a clause containing

only negative literals, that is, c is of the form p x1 _ ¨ ¨ ¨ _  xnq.

To define #HORNSAT, we consider an SO-formula ϕpTq over R, where T is a unary

predicate, such that for every Horn formula θ encoded by an R-structure A, the number

of satisfying assignments of θ is equal to JΣT. ϕpTqKpAq. In particular, Tpxq holds if, and

only if, x is a propositional variable that is assigned value true. More specifically,

ϕpTq :“ @x. pTpxq Ñ Vpxqq ^

@c. pNCpcq Ñ Dx. pNpc, xq ^  Tpxqqq ^

@c. @x. prPpc, xq ^ @y. pNpc, yq Ñ Tpyqqs Ñ Tpxqq.

We can rewrite ϕpTq in the following way:

@x. p Tpxq _ Vpxqq ^

@c. p NCpcq _ Dx. pNpc, xq ^  Tpxqqq ^

@c. @x. p Ppc, xq _ Dy. pNpc, yq ^  Tpyqq _ Tpxqq.
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Moreover, by introducing an auxiliary predicate A defined as:

@c. @x. p Apc, xq Ø rNpc, xq ^  Tpxqsq,

we can translate ϕpTq into the following equivalent formula:

ψpT,Aq :“ @x. p Tpxq _ Vpxqq ^

@c. p NCpcq _ Dx. Apc, xqq ^

@c. @x. p Ppc, xq _ Dy. Apc, yq _ Tpxqq ^

@c. @x. p Npc, xq _ Tpxq _  Apc, xqq ^

@c. @x. pApc, xq _ Npc, xqq ^

@c. @x. pApc, xq _  Tpxqq.

More precisely, we have that:

JΣT. ϕpTqKpAq “ JΣT.ΣA. ψpT,AqKpAq,

for every R-structure A encoding a Horn formula. Therefore, the formula ψpT,Aq also

defines #HORNSAT. More importantly, ψpT,Aq resembles a conjunction of Horn clauses

except for the use of negative literals of the form Dv. Apu, vq.

The previous example suggests that to define #HORNSAT, we can use Horn formulae

defined as follows. A positive literal is a formula of the form Xpx̄q, where X is a second-

order variable and x̄ is a tuple of first-order variables, and a negative literal is a formula of

the form Dv̄. Xpū, v̄q, where ū and v̄ are tuples of first-order variables. Given a signature

R, a clause over R is a formula of the form @x̄.pϕ1_¨ ¨ ¨_ϕnq, where each ϕi (1 ď i ď n)

is either a positive literal, a negative literal or an FO-formula over R. A clause is said to

be Horn if it contains at most one positive literal, and a formula is said to be Horn if it is

a conjunction of Horn clauses. With this terminology, we define Π1-HORN as the set of

formulae ψ such that ψ is a Horn formula over a signature R.
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As we have seen, we have that #HORNSAT P ΣQSOpΠ1-HORNq. Moreover, one can

show that ΣQSOpΠ1-HORNq forms a class of functions with easy decision counterparts,

namely, ΣQSOpΠ1-HORNq Ď TOTP. Thus, ΣQSOpΠ1-HORNq is a new alternative in our

search for a class of functions in #P with easy decision counterparts and natural complete

problems. Moreover, an even larger class for our search can be generated by extending the

definition of Π1-HORN with outermost existential quantification. Formally, a formula ϕ is

in Σ2-HORN if ϕ is of the form Dx̄. ψ with ψ a Horn formula.

Proposition 5.12. ΣQSOpΣ2-HORNq Ď TOTP.

For the sake of simplification, we postpone the proof the previous proposition after

the proof of Theorem 5.14.

Interestingly, we have that both #HORNSAT and #DNF belong to ΣQSOpΣ2-HORNq.

An imperative question at this point is whether in the definitions of Π1-HORN and

Σ2-HORN, it is necessary to allow negative literals of the form Dv̄. Xpū, v̄q. Actually, this

forces our Horn classes to be included in ΣQSOpΠ2q and not necessarily in ΣQSOpΣ2q.

The following result shows that this is indeed the case.

Proposition 5.13. #HORNSAT R ΣQSOpΣ2q.

PROOF. Suppose that the statement is false, this is, #HORNSAT P ΣQSOpΣ2q. Con-

sider the signature R from Example 5.11 and let α P ΣQSOpΣ2q be a formula over R that

defines #HORNSAT. By Proposition 5.1 we know that every formula in ΣQSOpΣ2q can be

rewritten in Σ2-PNF, so we can assume that α is of the form ΣX̄.Σx̄. Dȳ.@z̄.ϕpX̄, x̄, ȳ, z̄q.

Now, consider the following Horn formula:

Φ “ p^
n
ľ

i“1

pti ^ pÑ qq ^  q,

such that n “ |x̄| ` |ȳ| ` 1 and let AΦ be the encoding of this formula over R. One

can easily check that Φ is satisfiable, so JαKpAΦq ě 1. Let pB̄, b̄, āq be an assignment to

pX̄, x̄, ȳq such that AΦ |ù @z̄. ϕpB̄, b̄, ā, z̄q and let t` be such that it does not appear in b̄
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or ā (recall that n ą |x̄| ` |ȳ|). Consider the induced substructure A1Φ that is obtained by

removing t` from AΦ and B̄1 as the subset of B̄ obtained by deleting each appearance of

t` in B̄. We have that A1Φ |ù @z̄. ϕpB̄
1, b̄, ā, z̄q since universal formulas are monotone over

induced substructures. Then it follows that JαKpA1Φq ě 1 which is not possible since A1Φ

encodes the formula

Φ1 “ p^
`´1
ľ

i“1

pti ^ pÑ qq ^ ppÑ qq ^
n
ľ

i“``1

pti ^ pÑ qq ^  q,

which is unsatisfiable. This leads to a contradiction and we conclude that #HORNSAT is

not in ΣQSOpΣ2-HORNq. �

We conclude this section by showing that ΣQSOpΣ2-HORNq is the class we were

looking for, as not only every function in ΣQSOpΣ2-HORNq has an easy decision counter-

part, but also ΣQSOpΣ2-HORNq admits a natural complete problem under parsimonious

reductions. More precisely, define #DISJHORNSAT as the problem of counting the satis-

fying assignments of a formula Φ that is a disjunction of Horn formulae. Then we have

that:

Theorem 5.14. #DISJHORNSAT is ΣQSOpΣ2-HORNq-complete under parsimonious

reductions.

PROOF. First we prove that #DISJHORNSAT is in ΣQSOpΣ2-HORNq. Recall that

each instance of #DISJHORNSAT is a disjunction of Horn formulas. Let R be a rela-

tional signature such that R “ tPp¨, ¨q,Np¨, ¨q,Vp¨q,NCp¨q,Dp¨, ¨qu. Each symbol in this

vocabulary is used to indicate the same as in Example 5.11, with the addition of Dpd, cq

which indicates that c is a clause in the formula d. Define ψ as in Example 5.11 such that

ΣT.ΣA. ψpT,Aq defines #HORNSAT. In order to encode #DISJHORNSAT, we extend
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ψpT,Aq by adding the information of Dpd, cq as follows:

ψ1pT,Aq :“ Dd.
“

@x. p Tpxq _ Vpxqq ^

@c. p Dpc, dq _  NCpcq _ Dx. Apc, xqq ^

@c. @x. p Dpc, dq _  Ppc, xq _ Dy. Apc, yq _ Tpxqq ^

@c. @x. p Dpc, dq _  Npc, xq _ Tpxq _  Apc, xqq ^

@c. @x. p Dpc, dq _ Apc, xq _ Npc, xqq ^

@c. @x. p Dpc, dq _ Apc, xq _  Tpxqq
‰

.

One can check that ψ1pT,Aq effectively defines #DISJHORNSAT as for every disjunction

of Horn formulas θ “ θ1 _ ¨ ¨ ¨ _ θm encoded by an R-structure A, the number of sat-

isfying assignments of θ is equal to JΣT.ΣA. ψ1pT,AqKpAq. Therefore, we conclude that

#DISJHORNSAT P ΣQSOpΣ2-HORNq.

Next, we prove that #DISJHORNSAT is hard for ΣQSOpΣ2-HORNq over a signa-

ture R under parsimonious reductions. For each ΣQSOpΣ2-HORNq formula α over R,

we will define a polynomial-time function gα that receives an R-structure A and outputs

an instance of #DISJHORNSAT such that JαKpAq “ #DISJHORNSATpgαpAqq. By Propo-

sition 5.1, we can assume that α is of the form:

α “

m
ÿ

i“1

ΣX̄i.Σx̄. Dȳ.
n
ľ

j“1

@z̄. ϕijpX̄i, x̄, ȳ, z̄q,

where each ϕij is a Horn-clause, and each X̄i is a sequence of second-order variables.

Consider X̄ as the union of all X̄i. We replace each of the m addends in α for

ΣX̄.Σx̄. Dȳ.
n
ľ

j“1

@z̄. ϕijpX̄i, x̄, ȳ, z̄q ^
ľ

XRX̄i

@ū. Xpūq,

whose sum is equivalent to α. Now, consider a finite R-structure A with domain A. The

next transformation of α and A towards a disjunction of Horn-formulas is to expand each

first-order quantifier (i.e. Σx̄, Dȳ, and @z̄) as we replace their variables with first-order
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constants. Specifically, we obtain the following formula which defines the same function

as α and is of polynomial size with respect to A:

αA “

m
ÿ

i“1

ÿ

ā PA|x̄|

ΣX̄.
ł

b̄ PA|ȳ|

n1
ľ

j“1

ľ

c̄ PA|z̄|

ϕijpX̄, ā, b̄, c̄q.

Note that each first-order sub-formula in ϕijpX̄, ā, b̄, c̄q has no free variables and, therefore,

we can evaluate each of them in polynomial time and replace by K and J wherever it cor-

responds. In other words, in polynomial time we can replace ϕij by a disjunction of  Xh

and at most one Xh, evaluated on constants. After simplifying, grouping and reordering

the previous formula, we can obtain an equivalent formula α1A of the form:

α1A :“
m1
ÿ

i“1

ΣX̄.

n11
ł

j“1

n12
ľ

k“1

ψij,kpX̄q

where every ψij,kpX̄q is a disjunction of  Xh and at most one Xh. The reader can easily

check that JαKpAq “ Jα1AKpAq.

The idea for the rest of the proof is to show how to obtain gαpAq, i.e. an instance

of #DISJHORNSAT, from α1A. First, if α1A is equal to ΣX̄.
Žn11

j“1

Źn12
k“1 ψj,kpX̄q, then we

can define gαpAq equal to the propositional formula
Žn11

j“1

Źn12
k“1 ψj,kpX̄q over the propo-

sitional alphabet tXpēq | X P X̄ and ē P AaritypXqu which has exactly JαKpAq satisfying

assignments and is precisely a disjunction of Horn formulas. Otherwise, if m1 ą 1 we can

use m1 new fresh variables t1, . . . , tm1 and define:

gαpAq :“
m1
ł

i“1

n11
ł

j“1

n12
ľ

k“1

ψij,kpX̄q ^ ti ^
ľ

`‰i

 t`

over the propositional alphabet tXpēq | X P X̄ and ē P AaritypXqu Y tt1, . . . , tm1u. Intu-

itively, variables t1, . . . , tm1 are used to count from 1 to m1 each subformula

ΣX̄.
Žn11

j“1

Źn12
k“1 ψ

i
j,kpX̄q in α1A. One can easily check that gαpAq is a disjunction of Horn

formulas, and the number of satisfying assignments is exactly JαKpAq. This covers all

possible cases for α, and the entire procedure takes polynomial time. �
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Proof of Proposition 5.12. Pagourtzis and Zachos (2006) gave a TOTP procedure that

computes the number of satisfying assignments of a DNF formula. This procedure can be

easily extended to receive Horn formulas, and furthermore, a disjunction of Horn formu-

las. Hence #DISJHORNSAT is in TOTP. As we saw in Theorem 5.14, #DISJHORNSAT

is complete for ΣQSOpΣ2-HORNq under parsimonious reductions. Let α be a formula

in ΣQSOpΣ2-HORNq and let gα be the reduction to #DISJHORNSAT. Then the TOTP

procedure consist in computing gαpencpAqq for each input encpAq and then simulate the

TOTP procedure for #DISJHORNSAT on input gαpencpAqq. Therefore, we conclude that

α defines a function in TOTP. �
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Chapter 6. ADDING RECURSION TO QSO

We have used weighted logics to give a framework for descriptive complexity of

counting complexity classes. Here, we go beyond weighted logics and give the first steps

on defining recursion at the quantitative level. This goal is not trivial not only because we

want to add recursion over functions, but also because it is not clear what could be the

right notion of “fixed point”. To this end, we show first how to extend QSO with function

symbols that are later used to define a natural generalization for functions of the notion of

least fixed point of LFP. As a proof of concept, we show that how this notion can be used

to captures FP. Moreover, we use this concept to define an operator for counting paths in

a graph, a natural generalization of the transitive closure operator (Immerman, 1999), and

show that this gives rise to a logic that captures #L.

We start by defining an extension of QSO with function symbols. Assume that FS is

an infinite set of function symbols, where each h P FS has an associated arity denoted by

arityphq. Then the set of FQSO formulae over a signature R is defined by the following

grammar:

α :“ ϕ | s | hpx1, . . . , x`q | pα ` αq | pα ¨ αq | Σx. α | Πx. α | ΣX.α | ΠX.α,

(6.1)

where h P FS, arityphq “ ` and x1, . . . , x` is a sequence of (not necessarily distinct)

first-order variables. Given an R-structure A with domain A, we say that F is a function

assignment for A if for every h P FS with arityphq “ `, we have that F phq : A` Ñ N.

The notion of function assignment is used to extend the semantics of QSO to the case

of a quantitative formula of the form hpx1, . . . , x`q. More precisely, given first-order and

second-order assignments v and V for A, respectively, we have that:

Jhpx1, . . . , x`qKpA, v, V, F q “ F phqpvpx1q, . . . , vpx`qq.

As for the case of QFO, we define FQFO disallowing quantifiers ΣX and ΠX in (6.1).
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It is worth noting that function symbols in FQSO represent functions from tuples

to natural numbers, so they are different from the classical notion of function symbol in

FO (Libkin, 2004). Furthermore, a function symbol can be seen as an “oracle” that is

instantiated by the function assignment. To the best of our knowledge, this is the first doc-

ument to propose this extension on weighted logics, which should be further investigated.

We define an extension of LFP (Immerman, 1986; Vardi, 1982) to allow counting.

More precisely, the set of RQFOpFOq formulae over a signature R, where RQFO stands

for recursive QFO, is defined as an extension of QFOpFOq that includes the formula

rlsfp βpx̄, hqs, where (1) x̄ “ px1, . . . , x`q is a sequence of ` distinct first-order variables,

(2) βpx̄, hq is an FQFOpFOq-formula over R whose only function symbol is h, and (3)

arityphq “ `. The free variables of the formula rlsfp βpx̄, hqs are x1, . . . , x`; in particular,

h is not considered to be free.

Fix an R-structure with domain A and a quantitative formula rlsfp βpx̄, hqs with

arityphq “ `, and assume that F is the set of functions f : A` Ñ N. To define the

semantics of rlsfp βpx̄, hqs, we first show how βpx̄, hq can be interpreted as an operator

Tβ on F . More precisely, for every f P F and tuple ā “ pa1, . . . , a`q P A
`, the function

Tβpfq satisfies that:

Tβpfqpāq “ Jβpx̄, hqKpA, v, F q,

where v is a first-order assignment for A such that vpxiq “ ai for every i P t1, . . . , `u, and

F is a function assignment for A such that F phq “ f .

As for the case of LFP, it would be natural to consider the point-wise partial order

ď on F defined as f ď g if, and only if, fpiq ď gpiq for every i P t1, . . . , `u, and

let the semantics of rlsfp βpx̄, hqs be the least fixed point of the operator Tβ . However,

pF ,ďq is not a complete lattice, so we do not have a Knaster-Tarski Theorem ensuring

that such a fixed point exists. Instead, we generalize the semantics of LFP as follows.

In the definition of the semantics of LFP, an operator T on relations is considered, and

the semantics is defined in terms of the least fixed point of T , that is, a relation R such
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that: (a) T pRq “ R, and (b) R Ď S for every S such that T pSq “ S (Immerman, 1986;

Vardi, 1982). We can view T as an operator on functions if we consider the characteristic

function of a relation. Given a relation R Ď A`, let χR be its characteristic function,

that is χRpāq “ 1 if ā P R, and χRpāq “ 0 otherwise. Then define an operator T ‹ on

characteristic functions as T ‹pχRq “ χT pRq. Moreover, we can rewrite the conditions

defining a least fixed point of T in terms of the operator T ‹ if we consider the notion of

support of a function. Given a function f P F , define the support of f , denoted by supppfq,

as tā P A` | fpāq ą 0u. Then given that supppχRq “ R, we have that the conditions (a)

and (b) are equivalent to the following conditions on T ‹: (a) supppT ‹pχRqq “ supppχRq,

and (b) supppχRq Ď supppχSq for every S such that supppT ‹pχSqq “ supppχSq. To define

a notion of fixed point for Tβ we simply generalized these conditions. More precisely, a

function f P F is a s-fixed point of Tβ if supppTβpfqq “ supppfq, and f is a least s-fixed

point of Tβ if f is a s-fixed point of Tβ and for every s-fixed point g of Tβ it holds that

supppfq Ď supppgq. The existence of such fixed point is ensured by the following lemma:

Lemma 6.1. If f, g P F and supppfq Ď supppgq, then supppTβpfqq Ď supppTβpgqq.

PROOF. For FQFOpFOq. Let R be a signature. We prove the statement for

FQFOpFOq over R.

We prove inductively that for each formula βpx̄, hq in FQFOpFOq over R, for a

given pair of functions f, g such that supppfq Ď supppgq, it holds that supppTβpfqq Ď

supppTβpgqq. Let |x̄| “ `.

We separate the proof in each case determined by the FQFO grammar. For each of

the following cases.

1. β is either equal to a constant s or an FO formula ϕ. Then h does not appear.

Then, for each structure A, each first-order assignment v and functional assign-

ments F,G over A, we have that Jβpx̄, hqKpA, v, F q “ Jβpx̄, hqKpA, v, Gq. As a

result, supppTβpfqq “ supppTβpgqq for every pair of functions f, g.
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2. β is equal to hpȳq for some subtuple ȳ of x̄. Then Tβpfq “ f and Tβpgq “ g

and the condition holds trivially.

Suppose that the statement holds for each formula smaller than β.

3. β “ pβ1 ` β2q. It is easy to see that for each ā P A` and function f : A` Ñ N:

Tβpfqpāq “ Tβ1pfqpāq ` Tβ2pfqpāq. Suppose supppfq Ď supppgq and let ā P

supppTβpfqq, or in other words, Tβpfqpāq ą 0. Then, for some βi it holds that

Tβipfqpāq ą 0. From the supposition we have that Tβipgqpāq ą 0 from which

the statement follows.

4. β “ pβ1 ¨ β2q. It is easy to see that for each ā in A` and function f : A` Ñ N:

Tβpfqpāq “ Tβ1pfqpāq ¨ Tβ2pfqpāq. Suppose supppfq Ď supppgq and let ā be

such that Tβpfqpāq ą 0. Then Tβipfqpāq ą 0 for both βi. From the supposition

we have that Tβipgqpāq ą 0 for both βi and the statement holds.

5. β “ Σy. δpy, x̄, hq. Here we extend the grammar slightly to allow constants, and

we use the notation δra{ys to denote the formula obtained by replacing each in-

stance of y by the constant a. It can be seen that Tβpfqpāq “
ř

aPA Tδra{yspfqpāq.

Suppose supppfq Ď supppgq and let ā be such that Tβpfqpāq ą 0. Then for some

a P A we have Tδry{aspfqpāq ą 0. The statement now follows as in the case 3.

6. β “ Πy. δpy, x̄, hq. It can be seen that Tβpfqpāq “
ś

aPA Tδra{yspfqpāq. The

statement follows using the same argument from cases 4 and 5.

This covers all possible cases for β and we finish the proof of the statement for FQFOpFOq.

For RQFOpFOq. The only additional case is where β “ rlsfp δpȳ, h1qs for some

subtuple ȳ of x̄. We have that β does not mention h, and so, the statement follows directly

as we showed in the previous part of the proof. �

In fact, as for the case of LFP, this lemma gives us a simple way to compute a least s-

fixed point of Tβ . Let f0 P F be a function such that f0pāq “ 0 for every ā P A` (i.e. f0 is

the only function with empty support), and let function fi`1 be defined as Tβpfiq for every

i P N. Then there exists j ě 0 such that supppfjq “ supppTβpfjqq. Let k be the smallest
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natural number such that supppfkq “ supppTβpfkqq. We have that fk is a least s-fixed point

of Tβ , which is used to defined the semantics of rlsfp βpx̄, hqs. More specifically, for an

arbitrary first-order assignment v for A:

Jrlsfp βpx̄, hqsKpA, vq “ fkpvpx̄qq

Example 6.2. We would like to define an RQFOpFOq-formula that, given a directed

acyclic graph G with n nodes and a pair of nodes b, c in G, counts the number of paths of

length at most n from b to c in G. To this end, assume that graphs are encoded using the

signature R “ tEp¨, ¨q,ău, and then define formula αpx, y, fq as follows:

Epx, yq ` Σz. fpx, zq ¨ Epz, yq.

We have that rlsfpαpx, y, fqs defines our counting function. In fact, assume that A is an

R-structure with n elements in its domain encoding an acyclic directed graph. Moreover,

assume that b, c are elements of A and v is a first-order assignment over A such that

vpxq “ b and vpyq “ c. Then we have that Jrlsfpαpx, y, fqsKpA, vq is equal to the number

of paths in A from b to c of length at most n.

Assume now that we need to extend our previous counting function to the case of

arbitrary directed graphs. To this end, suppose that ϕfirstpxq and ϕsuccpx, yq are the FO-

formulae for defining the first and successor predicates, respectively, of ă. Moreover,

define formula βpx, y, t, gq as follows:

pEpx, yq ` Σz. gpx, z, tq ¨ Epz, yqq ¨ ϕfirstptq ` Σt1. ϕsuccpt
1, tq ¨ pΣx1.Σy1. gpx1, y1, t1qq

Then our extended counting function is defined by:

Σt. pϕfirstptq ¨ rlsfp βpx, y, t, gqsq.

In fact, the number of paths of length at most n from a node x to a node y is recur-

sively computed by using the formula pEpx, yq ` Σz. gpx, z, tq ¨ Epz, yqq ¨ ϕfirstptq, which

stores this value in gpx, y, tq with t the first element in the domain. The other formula
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Σt1. ϕsuccpt
1, tq ¨ pΣx1.Σy1. gpx1, y1, t1qq is just an auxiliary artifact that is used as a counter

to allow reaching a fixed point in the support of g in n steps. Notice that the use of the

filter ϕsuccpt
1, tq prevents this formula for incrementing the value of gpx, y, tq when t is the

first element in the domain.

In contrast with LFP, to reach a fixed point we do not need to impose any positive re-

striction on the formula βpx̄, hq. Indeed, since β is constructed from monotones operations

(i.e. sum and product) over the natural numbers, the resulting operator Tβ is monotone as

well.

Now that a least fixed point operator over functions is defined, the next step is to

understand its expressive power. In the following theorem, we show that this operator can

be used to capture FP.

Theorem 6.3. RQFOpFOq captures FP over ordered structures.

PROOF. Given the definition of the semantics of RQFOpFOq, it is clear that a fixed

formula rlsfp βpx̄, hqs can be evaluated in polynomial time, from which it is possible to

conclude that each fixed formula in RQFOpFOq can be evaluated in polynomial time.

Thus, to prove that RQFOpFOq captures FP, we only need to prove the second condition

in Definition 4.1.

Let f be a function in FP. We address the case when f is defined for the encodings

of the structures of a relational signature R “ tEp¨, ¨qu, as the proof for an arbitrary

signature is analogous. Let M be a deterministic polynomial-time TM with a working

tape and an output tape, such that the output of M on input encpAq is fpencpAqq for each

R-structure A. We assume that M “ pQ, t0, 1u, q0, δq, where Q “ tq0, . . . , q`u, and

δ : Q ˆ t0, 1, B,$u Ñ Q ˆ t0, 1, B,$u ˆ tÐ,Ñu ˆ t0, 1,Hu is a partial function. In

particular, the tapes of M are infinite to the right so the symbol $ is used to indicate the

first position in each tape, and M does not have any final states, as it produces an output

for each input. Moreover, the only allowed operations in the output tape are: (1) writing

0 and moving the head one cell to the right, (2) writing 1 and moving the head one cell
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to the right, or (3) doing nothing. These operations are represented by the set t0, 1,Hu.

Finally, assume that M , on input encpAq with domain A “ t1, . . . , nu, executes exactly

nk steps for some k ě 1.

We construct a formula α in an extension of the grammar of RQFOpFOq such that

JαKpAq “ fpencpAqq for each R-structure A. This extension allows defining the operator

lsfp for multiple functions, analogously to the notion of simultaneous LFP (Libkin, 2004).

Let x̄ “ px1, . . . , xkq and t̄ “ pt1, . . . , tkq. Then α is defined as:

α “ Σt̄. rlsfp outpt̄q :αT0pt̄, x̄, T0, T1, TB, T$, h, ĥ, sq0 , . . . , sq` , outq,

αT1pt̄, x̄, T0, T1, TB, T$, h, ĥ, sq0 , . . . , sq` , outq,

αTBpt̄, x̄, T0, T1, TB, T$, h, ĥ, sq0 , . . . , sq` , outq,

αT$pt̄, x̄, T0, T1, TB, T$, h, ĥ, sq0 , . . . , sq` , outq,

αhpt̄, x̄, T0, T1, TB, T$, h, ĥ, sq0 , . . . , sq` , outq,

αĥpt̄, x̄, T0, T1, TB, T$, h, ĥ, sq0 , . . . , sq` , outq,

αsq0
pt̄, T0, T1, TB, T$, h, ĥ, sq0 , . . . , sq` , outq,

...

αsq` pt̄, T0, T1, TB, T$, h, ĥ, sq0 , . . . , sq` , outq,

αoutpt̄, T0, T1, TB, T$, h, ĥ, sq0 , . . . , sq` , outqs ¨ lastpt̄q.

Function T0 is used to indicate whether the content of a cell of the working tape is 0 at

some point of time, that is, T0pt̄, x̄q ą 0 if the cell at position x̄ of the working tape

contains the symbol 0 at step t̄, and T0pt̄, x̄q “ 0 otherwise. Functions T1, TB and T$ are

defined analogously. Function h is used to indicate whether the head of the working tape

is in some position at some point of time, that is, hpt̄, x̄q ą 0 if the head of the working

tape is at position x̄ at step t̄, and hpt̄, x̄q “ 0 otherwise. Function ĥ is used to indicate

whether the head of the working tape is not in some position at some point of time, that

is, ĥpt̄, x̄q ą 0 if the head of the working tape is not at position x̄ at step t̄, and hpt̄, x̄q “ 0
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otherwise. For each i P t0, . . . , `u, function sqi is used to indicate whether the TM M is

in state qi at some point of time, that is, sqipt̄q ą 0 if the TM M is in state qi at step t̄, and

sqipt̄, x̄q “ 0 otherwise. Finally, function out stores the output of the TM M ; in particular,

outpt̄q is the value returned by M when t̄ is the last step (that is, when lastpt̄q holds).

Formulas αT0 , αT1 , αTB and αT$ are defined as follows, assuming that ȳ “ py1, . . . , ykq:

αT0pt̄, x̄, T0, T1, TB, T$,h, ĥ, sq0 , . . . , sq` , outq “

pfirstpt̄q ^ Dȳpfirstpy1, . . . , yk´2q ^  Epyk´1, ykq ^ succpȳ, x̄qqq`

Σt̄1. psuccpt̄1, t̄q ¨ ĥpt̄1, x̄q ¨ T0pt̄
1, x̄qq`

ă

δpq,aq“pq1,0,op,vq

Σt̄1. psuccpt̄1, t̄q ¨ hpt̄1, x̄q ¨ Tapt̄1, x̄q ¨ sqpt̄1qq,

αT1pt̄, x̄, T0, T1, TB, T$,h, ĥ, sq0 , . . . , sq` , outq “

pfirstpt̄q ^ Dȳpfirstpy1, . . . , yk´2q ^ Epyk´1, ykq ^ succpȳ, x̄qqq`

Σt̄1. psuccpt̄1, t̄q ¨ ĥpt̄1, x̄q ¨ T1pt̄
1, x̄qq`

ă

δpq,aq“pq1,1,op,vq

Σt̄1. psuccpt̄1, t̄q ¨ hpt̄1, x̄q ¨ Tapt̄1, x̄q ¨ sqpt̄1qq,

αTBpt̄, x̄, T0, T1, TB, T$,h, ĥ, sq0 , . . . , sq` , outq “

pfirstpt̄q ^ DȳDȳ1pfirstpy1, . . . , yk´2q ^ lastpyk´1, ykq^

succpȳ, ȳ1q ^ ȳ1 ă x̄qq`

Σt̄1. psuccpt̄1, t̄q ¨ ĥpt̄1, x̄q ¨ TBpt̄1, x̄qq`
ă

δpq,aq“pq1,B,op,vq

Σt̄1. psuccpt̄1, t̄q ¨ hpt̄1, x̄q ¨ Tapt̄1, x̄q ¨ sqpt̄1qq,

αT$pt̄, x̄, T0, T1, TB, T$,h, ĥ, sq0 , . . . , sq` , outq “

pfirstpt̄q ^ firstpx̄qq ` Σt̄1. psuccpt̄1, t̄q ¨ ĥpt̄1, x̄q ¨ T$pt̄1, x̄qq`
ă

δpq,aq“pq1,$,op,vq

Σt̄1. psuccpt̄1, t̄q ¨ hpt̄1, x̄q ¨ Tapt̄1, x̄q ¨ sqpt̄1qq.
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Formulas αh and αĥ are defined as:

αhpt̄, x̄, T0, T1, TB, T$, h, ĥ, sq0 , . . . , sq` , outq “

pfirstpt̄q ^ succpt̄, x̄qq`
ă

δpq,aq“pq1,b,Ð,vq

Σt̄1.Σx̄1. psuccpt̄1, t̄q ¨ succpx̄, x̄1q ¨ Tapt̄1, x̄1q ¨ hpt̄1, x̄1q ¨ sqpt̄1qq`

ă

δpq,aq“pq1,b,Ñ,vq

Σt̄1.Σx̄1. psuccpt̄1, t̄q ¨ succpx̄1, x̄q ¨ Tapt̄1, x̄1q ¨ hpt̄1, x̄1q ¨ sqpt̄1qq,

αĥpt̄, x̄, T0, T1, TB, T$, h, ĥ, sq0 , . . . , sq` , outq “

pfirstpt̄q ^  succpt̄, x̄qq`
ă

δpq,aq“pq1,b,Ð,vq

Σt̄1.Σx̄1.Σx̄2. psuccpt̄1, t̄q ¨ Tapt̄1, x̄1q ¨ hpt̄1, x̄1q ¨ sqpt̄1q¨

succpx̄2, x̄1q ¨ px̄ ‰ x̄2qq`
ă

δpq,aq“pq1,b,Ñ,vq

Σt̄1.Σx̄1.Σx̄2. psuccpt̄1, t̄q ¨ Tapt̄1, x̄1q ¨ hpt̄1, x̄1q ¨ sqpt̄1q¨

succpx̄1, x̄2q ¨ px̄ ‰ x̄2qq.

Formula αq0 is defined as:

αq0pt̄, T0, T1, TB, T$,h, ĥ, sq0 , . . . , sq` , outq “ firstpt̄q`
ă

δpq,aq“pq0,b,op,vq

Σt̄1.Σx̄1. psuccpt̄1, t̄q ¨ Tapt̄1, x̄1q ¨ hpt̄1, x̄1q ¨ sqpt̄1qq.

Moreover, for every i P t1, . . . , `u, formula αqi is defined as:

αqipt̄, T0, T1, TB, T$,h, ĥ, sq0 , . . . , sq` , outq “
ă

δpq,aq“pqi,b,op,vq

Σt̄1.Σx̄1. psuccpt̄1, t̄q ¨ Tapt̄1, x̄1q ¨ hpt̄1, x̄1q ¨ sqpt̄1qq.
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Finally, formula αout is defined as:

αoutpt̄,T0, T1, TB, T$, h, ĥ, sq0 , . . . , sq` , outq “
ă

δpq,aq“pq1,b,op,0q

Σt̄1.Σx̄1. psuccpt̄1, t̄q ¨ hpt̄1, x̄1q ¨ Tapt̄1, x̄1q ¨ sqpt̄1q ¨ 2 ¨ outpt̄1qq`

ă

δpq,aq“pq1,b,op,1q

Σt̄1.Σx̄1. psuccpt̄1, t̄q ¨ hpt̄1, x̄1q ¨ Tapt̄1, x̄1q ¨ sqpt̄1q ¨ p2 ¨ outpt̄1q ` 1qq`

ă

δpq,aq“pq1,b,op,Hq

Σt̄1.Σx̄1. psuccpt̄1, t̄q ¨ hpt̄1, x̄1q ¨ Tapt̄1, x̄1q ¨ sqpt̄1q ¨ outpt̄1qq.

Clearly, at each iteration of the LSFP operator, the tuple t̄ represents the step the machine is

currently in. From the construction of the formula, and since the machine is deterministic,

it can be seen that in each function g P tT0, T1, TB, T$, h, ĥu, at the ā-th iteration of the

LSFP operator, it holds that gpā, b̄q ď 1 for each b̄ P Ak, that gpā ` 1, b̄q “ 0 for each b̄ P

Ak. Also, at the ā-th iteration, gpāq ď 1 and gpā`1q “ 0 for each g P tsq1 , . . . , sq`u. From

this, we have that at each iteration ā of the operator, outpāq is equal to either 2 ¨outpā´1q,

2 ¨ outpā ´ 1q ` 1, or outpā ´ 1q, which represents precisely the value in the output

tape at each step of M running on input encpAq. From this argument, it can be seen that

JαKpAq “ fpencpAqq.

To conclude the proof, we show that for each formula α in the previously defined

extension of RQFOpFOq, there exists an equivalent formula confirming to the grammar

of RQFOpFOq defined in Section 6. It suffices to consider a formula α of the form

αpx̄1q “ rlsfp f1px̄1q : α1px̄1, f1, . . . , fnq, α2px̄2, f1, . . . , fnq, . . . , αnpx̄n, f1, . . . , fnqs,

and show an equivalent formula defined by a LSFP operator which uses one formula less

in its definition.

We construct the equivalent formula as follows. We use a new function symbol f with

arity |x̄1| ` |x̄2|. For every i P t1, . . . , nu, let α1i be the formula obtained by performing
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the following replacements in αi:

f1pȳ1q is replaced by Σȳ2. fpȳ1, ȳ2q ¨ rfirstpȳ1q ¨ lastpȳ2q ` p firstpȳ1qq ¨ firstpȳ2qs,

f2pȳ2q is replaced by Σȳ1. fpȳ1, ȳ2q ¨ rfirstpȳ1q ¨ firstpȳ2q ` lastpȳ1q ¨ p firstpȳ2qqs.

Moreover, let β be a formula defined as:

βpx̄1, x̄2q “α
1
1px̄1q ¨ pfirstpx̄1q ¨ lastpx̄2q ` p firstpx̄1qq ¨ firstpx̄2qq`

α12px̄2q ¨ pfirstpx̄1q ¨ firstpx̄2q ` lastpx̄1q ¨ p firstpx̄2qqq.

It can be seen that all values of f1, besides the first one, are stored in the first assignment of

x̄2, while the first value of f1 is stored in the last assignment of x̄2. Moreover, all values of

f2, besides the first one, are stored in the last assignment of x̄1, while the first value of f2

is stored in the first assignment of x̄1. We use formula β to define the following formula:

α1px̄1q “ Σx̄2. rlsfp fpx̄1, x̄2q : βpx̄1, x̄2, f, f3, . . . , fnq,

α13px̄3, f, f3, . . . , fnq, . . . , α
1
npx̄n, f, f3, . . . , fnqs

pfirstpx̄1q ¨ lastpx̄2q ` p firstpx̄1qq ¨ firstpx̄2qq

It can be seen that α1px̄1q is equivalent to αpx̄1q, which concludes the proof. �

Our last goal in this section is to use the new characterization of FP to explore classes

below it. It was shown in Immerman (1986, 1988) that FO extended with a transitive

closure operator captures NL. Inspired by this work, we show that a restricted version

of RQFO can be used to capture #L, the counting version of NL. Specifically, we use

RQFO to define an operator for counting the number of paths in a directed graph, which

is what is needed to capture #L.

Given a relation signature R, the set of transitive QFO formulae (TQFO-formulae)

is defined as an extension of QFO with the formula rpath ψpx̄, ȳqs, where ψpx̄, ȳq is an

FO-formula over R, and x̄ “ px1, . . . , xkq, ȳ “ py1, . . . , ykq are tuples of pairwise distinct
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first-order variables. The semantics of rpath ψpx̄, ȳqs can easily be defined in terms of

RQFOpFOq as follows. Given an R-structure A with domain A, define a (directed) graph

GψpAq “ pN,Eq such that N “ Ak and for every pair b̄, c̄ P N , it holds that pb̄, c̄q P E if,

and only if, A |ù ψpb̄, c̄q. Similar than for Example 6.2, we can count the paths of length

at most |Ak| in GψpAq with the formula βψpx̄,ȳqpx̄, ȳ, t̄, gq:

pψpx̄, ȳq`Σz̄. gpx̄, z̄, t̄q ¨ψpz̄, ȳqq ¨ϕfirst-lexpt̄q `Σt̄1. ϕsucc-lexpt̄
1, t̄q ¨ pΣx̄1.Σȳ1. gpx̄1, ȳ1, t̄1qq ,

where ϕfirst-lex and ϕsucc-lex are FO-formulae defining the first and successor predicates

over tuples in Ak, following the lexicographic order induced by ă. Then the semantics

of the path operator can be defined by using the following definition of rpath ψpx̄, ȳqs in

RQFO:

rpath ψpx̄, ȳqs :“ Σt̄. pϕfirstpt̄q ¨ rlsfp βψpx̄,ȳqpx̄, ȳ, t̄, gqsq.

In other words, Jrpath ψpx̄, ȳqsKpA, vq counts the number of paths from vpx̄q to vpȳq in

the graph GψpAq whose length is at most |Ak|. As it was previously said, the operator for

counting paths is exactly what we need to capture #L.

Theorem 6.4. TQFOpFOq captures #L over ordered structures.

PROOF. TQFOpFOq can be computed in #L. Let R be some relational signature.

Let α be a formula in TQFOpFOq. We will construct a nondeterministic logspace algo-

rithmMα that on input encpAq, where a first-order assignment v is being stored in memory,

accepts in JαKpA, vq paths. Suppose the domain of A is A “ t1, . . . , nu. The algorithm

needs c ¨ log2pnq bits of memory to store v, where c is the total number of first-order vari-

ables in α. If α “ ϕ, we check if pA, vq |ù ϕ in deterministic logarithmic space, and

accept if and only if it does. If α “ s, we generate s branches and accept in all of them.

If α “ pα1 ` α2q, we simulate Mα1 and Mα2 on separate branches. If α “ pα1 ¨ α2q,

we simulate α1 and if it accepts, instead of doing so, we simulate α2. If α “ Σx. β, for

each a P A we generate a different branch where we simulate Mβ while storing vra{xs. If

α “ Πx. β, we simulate Mβ while storing vr1{ns, and on each accepting branch, instead
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of accepting we replace the assignment on x to 2, to simulate Mβ while storing vr2{xs,

and so on. If α “ rpath ϕpx̄, ȳqs where ϕ is an FO formula, we simulate the #L proce-

dure that counts the number of paths for a graph of a given size. This procedure starts by

setting ā “ vpx̄q. On each iteration, nondeterministically chooses an assignment ā for x̄,

continues if pA, vq |ù ϕpā1, āq where ā1 is the previously chosen value for ā, and rejects

otherwise. If at any point we obtain that ā “ vpȳq, we generate an accepting branch, and

continue simulating the procedure in the current branch. We simulate n|x̄| iterations of the

procedure, and this generates exactly Jrpath ϕpx̄, ȳqsKpA, vq accepting branches. This

ends the construction of the algorithm. Consider f as the #L function associated to this

procedure and we have that for each finite R-structure A: fpencpAqq “ JαKpAq.

#L can be modelled in TQFOpFOq. Let f be a function in #L and let M be a

nondeterministic logspace machine such that accMpencpAqq “ fpencpAqq. We assume

that M has only one accepting state and upon accepting it immediately stops. Moreover,

we assume that there exists only one accepting configuration altogether. We make use

of transitive closure logic (TC) to simplify our proof (Grädel, 2007). We have that TC

captures NL (Immerman, 1983), so there exists a formula such that A |ù ϕ if and only if

M accepts encpAq. This formula can be expressed as:

ϕ “ DūDz̄pfirstpūq ^ ψaccpz̄q ^ rtcx̄,ȳ ψnextpx̄, ȳqspū, z̄qq,

where ψaccpz̄q is an FO formula that expresses that z̄ is an accepting configuration, and

ψnextpx̄, ȳq is an FO formula that expresses that ȳ is the next configuration from x̄ (Grädel,

2007). Here, there is a 1-1 correspondence between configurations of M and assignments

to z̄. As a consequence, given a structure A, and a first-order assignment v to A where

vpx̄q is the starting configuration and vpȳq is the sole accepting configuration, the value of

Jrpath ψnextpx̄, ȳqsKpA, vq is equal to accMpencpAqq. Finally, we define the TQFOpFOq

formula

α “ Σū.Σz̄. pfirstpūq ¨ ψaccpz̄q ¨ rpath ψnextpū, z̄qsq,
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which satisfies JαKpAq “ fpencpAqq for each structure A. This concludes the proof. �

This last result perfectly illustrates the benefits of our logical framework for the de-

velopment of descriptive complexity for counting complexity classes. The distinction in

the language between the Boolean and the quantitative level allows us to define opera-

tors at the later level that cannot be defined at the former. As a example showing how

fundamental this separation is, consider the issue of extending QFOpFOq at the Boolean

level in order to capture #L. The natural alternative to do this is to use FO extended with

a transitive closure operator, which is denoted by TC. But then the problem is that for

every language L P NL, it holds that its characteristic function χL is in QFOpTCq, where

χLpxq “ 1 if x P L, and χLpxq “ 0 otherwise. Thus, if we assume that QFOpTCq

captures #L (over ordered structures), then we have that χL P NL for every L P NL.

This implies that NL “ UL,1 and thus contradicts the widely believed assumption that

UL Ĺ NL.

1A decision language L is in UL is there exists a logarithmic-space NTM M accepting L and satisfying that
#acceptM pxq “ 1 for every x P L.
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Chapter 7. CONCLUDING REMARKS AND FUTURE WORK

We proposed a framework based on Weighted Logics to develop a descriptive com-

plexity theory for complexity classes of functions. We consider the results of this thesis as

a first step in this direction. In this sense, there are several directions for future research,

some of which are mentioned here. TOTP is an interesting counting complexity class

as it naturally defiortnownes a class of functions in #P with easy decision counterparts.

However, we do not have a logical characterization of this class. In the same direction,

we are missing logical characterizations of other fundamental complexity classes such as

SPANL. We would also like to define a larger syntactic subclass of #P where each function

admits an FPRAS; notice that #PERFECTMATCHING is an important problem admitting

an FPRAS (Jerrum et al., 2004) that is not included in the classes defined in Section 5.2.

Moreover, by following the approach proposed in Immerman (1983), we would like to in-

clude second-order free variables in the operator for counting paths introduced in Section

6, so to have alternative ways to capture FPSPACE and even #P. Finally, the least fixed

point operator introduced in Section 6 clearly deserves further investigation.
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