
TECHNICAL UNIVERSITY MUNICH
Department of Informatics

BACHELOR’S THESIS IN INFORMATICS

The Satisfiability Problem for Fragments
of PCTL

Alexej ROTAR

http://www.tum.de
http://www.in.tum.de

TECHNICAL UNIVERSITY MUNICH
Department of Informatics

BACHELOR’S THESIS IN INFORMATICS

The Satisfiability Problem for Fragments
of PCTL

Das Erfüllbarkeitsproblem für Fragmente
von PCTL

Author: Alexej ROTAR

Supervisor: Prof. Dr. Jan KŘETÍNSKÝ

Advisor: Prof. Dr. Jan KŘETÍNSKÝ

Submission date: March 15, 2018

http://www.tum.de
http://www.in.tum.de

iii

Declaration of Authorship
I confirm that this bachelor’s thesis is my own work and I have documented all

sources and material used.

v

Abstract
The satisfiability of PCTL-formulae in general is a long standing open problem.
Variations of the problem, such as the satisfiability of qualitative PCTL-formulae
(Brázdil, Forejt, Křetínskỳ, and Kucera, 2008), the bounded satisfiability (Bertrand,
Fearnley, and Schewe, 2012), or the satisfiability for bounded PCTL-formulae
(Chakraborty and Katoen, 2016) have been solved already. In this thesis, we tackle
the satisfiability problem for various fragments of the quantitative PCTL. For this,
we develop several techniques to reduce the size and complexity of models in order
to obtain models of regular shape. Thereby, we show the small model property
of the considered fragments. In particular, we prove that for those fragments, the
general satisfiability problem and the finite satisfiability problem are equivalent.
We also provide examples of obstacles for more general fragments. Besides the
solutions presented in this thesis, the methods that we develop may serve as
a framework to solve other fragments, as they are applicable to more general
formulae.

vii

Contents

Declaration of Authorship iii

Abstract v

1 Introduction 1
1.1 Related Work . 1
1.2 Our Contribution . 2

2 Background on Probability Theory 3
2.1 Probability Spaces and Markov Chains 3
2.2 Markov Chains and their underlying Graphs 5

3 Probabilistic Computational Tree Logic 7
3.1 Syntax . 7
3.2 Semantics . 9
3.3 Normal Form . 11

4 General Model Properties 15
4.1 Hintikka Chains . 15
4.2 General Collapsing Methods . 20

4.2.1 Horizontal Collapse . 20
4.2.2 Vertical Collapse . 23

5 PCTL Fragments 29
5.1 Conjunctive FqG1-fragment . 29

5.1.1 Solution for G-formulae . 29
5.1.2 General Solution . 37

5.2 Finite satisfiability for G-formulae within the FqGq-Fragment 38
5.3 General FqG1-Fragment . 41

5.3.1 FqG1-Fragment with qualitative Fs in Gs 43
5.4 Semi-recursive Uq-Fragment . 47

6 Conclusion and Future Work 49

A Alternative Proof for Theorem 5.2 51

B Hintikka Minimization Algorithm 57

Bibliography 59

ix

List of Figures

4.1 Example of a simple infinite model . 22
4.2 Reduced version of the model in figure 4.1 22
4.3 Illustration of reductions . 23
4.4 Example of a finite model . 26
4.5 Collapsed version of the model in figure 4.4 26
4.6 Example of a selection for an infinite model 27
4.7 Reduction of the model in figure 4.7 . 28

5.1 Example of a nested G-formula . 30
5.2 Normalized version of the formula in figure 5.1 30
5.3 Model for the formula in figure 5.2 . 33
5.4 Counterexample for equality (5.1) . 36
5.5 Reduction of models for conjunctive FqG1-formulae 39
5.6 Large finite model for a FqGq-formula 41
5.7 Simplified version of the model in figure 5.6 41
5.8 Large model for (5.2) . 42
5.9 Small model for (5.2) . 42
5.10 Reduction of models for FqG1-formulae 44
5.11 Example of a model for a FqG1-formula 46
5.12 Reduced version of the model in figure 5.11 46
5.13 Corrected version of the model in figure 5.12 47
5.14 Example of a model for a semi-recursive Uq-formula 48
5.15 Reduced version of the model in figure 5.14 48

1

1 Introduction

For complex systems, it can be rather hard to manually determine, whether or not
they meet certain requirements. On the other hand, there are systems, such as safety
critical ones, where such guarantees are vital. Therefore, the need for automatic
tools to aid the process arises. In this context, various temporal logics, as a means
of formalizing requirements to systems, have been thoroughly studied. Examples
for such logics include LTL, CTL, TCTL, or PCTL, to name a few. The model check-
ing problem is then to determine, whether some representation of a system meets a
requirement—i.e. whether the system is a model for the logical formula. In order to
construct a system which behaves as specified, one could first formalize the speci-
fication in terms of an appropriate logic and then try to iteratively find a model for
the resulting formula.

What if, however, the formula cannot be satisfied at all; i.e. the specification is
inconsistent and the corresponding formula a contradiction. For complex specifica-
tions, contradicting statements can be far from obvious. The procedure of creating
a well-behaved system, will become a rather frustrating task—no matter which sys-
tem one comes up with, it would never satisfy the formula. The task to determine,
if there is a model for some formula or not, is called the satisfiability problem. If a
solver for this problem existed, one could first check, whether some specification is
consistent before trying to find a model for it.

One could go even further and search for a model automatically. That means, we
need to solve the following problem: Given a satisfiable logical formula, construct a sys-
tem which models the formula. We will refer to this as the model construction problem.
The satisfiability problem is typically solved by showing how to construct a model
for a satisfiable formula and, therefore, solve the model construction problem.

The model checking problem has been solved for all of the mentioned tempo-
ral logics (Baier and Katoen, 2008). The satisfiability problem turns out to be more
complicated. It has been solved for LTL (Baier and Katoen, 2008) and CTL (Emer-
son and Halpern, 1982). In contrast, finite satisfiability of TCTL formulae has been
proven to be undecidable (Alur, Courcoubetis, and Dill, 1993). In the case of PCTL,
no general decision procedure has been given so far but neither has its existence
been disproved. In the following section, we will discuss some existing approaches
to this problem.

1.1 Related Work

We will call formulae of PCTL qualitative if they have only the bounds 0 and 1. For
these cases, the satisfiability problem and the finite satisfiability problem have been
proven to be EXPTIME-complete and therefore decidable (Brázdil, Forejt, Křetínskỳ,
and Kucera, 2008). Interestingly, the two problems are not equivalent in general; i.e.
there are formulae, which are satisfiable but only by infinite models. An example of
this case is given in (Brázdil, Forejt, Křetínskỳ, and Kucera, 2008). In order to solve
the general satisfiability problem, the authors introduced a finite representation of

2 Chapter 1. Introduction

infinite models, together with an algorithm that can create such representations for
satisfiable formulae.

The bounded satisfiability problem is to determine, whether there exists a model
of a certain size for a given formula. This problem has been solved by encoding it
into an SMT problem (Bertrand, Fearnley, and Schewe, 2012). There is an important
implication of this result. Namely, if we are able to determine a maximum required
model size for some formula, then it follows that the satisfiability of that formula
can also be determined. In many of our proofs, this will be exactly our strategy.

Another interesting problem that has been solved is the satisfiability problem
for bounded PCTL formulae (Chakraborty and Katoen, 2016). In bounded PCTL,
some operators are restricted in a certain sense. What makes this problem and the
bounded satisfiability problem simple, compared to general PCTL satisfiability, is
the fact that both avoid the possibility of arbitrarily large (or infinite) models, by
explicitly limiting them in certain ways. We will see that this possibility makes the
general satisfiability problem particularly challenging.

Typically, model checking cannot directly deal with infinite-state systems. In
(Dimitrova, Fioriti, Hermanns, and Majumdar, 2016), the authors introduce an ax-
iomatization for PCTL* and solve the model checking problem for countable-state,
non-deterministic systems.

Apart from solutions for various related problems, one such has also been proven
to be undecidable; namely, the problem, whether for some PCTL formula there exists
a model with a branching degree that is bounded by some integer (Brázdil, Forejt,
Křetínskỳ, and Kucera, 2008). However, the authors have not been able to extend
their proof and show the undecidability for our considered problem.

1.2 Our Contribution

In this thesis, we will explore different fragments of PCTL and solve the satisfiabil-
ity problem for those. In order to do so, we will develop general techniques that can
help to normalize the shape of a model. Those techniques enable us to prove the
small model property for the considered fragments and thereby solve the satisfiabil-
ity problem. In some cases, we will give methods for model construction, as well. In
all other cases, it is easy to derive model construction methods from our proofs. A
particularly interesting result is that all satisfiable formulae in the considered frag-
ments are finitely satisfiable.

Moreover, we will discuss some obstacles that arise in other parts of PCTL, along
with concrete examples of challenging formulae; i.e. formulae which enforce models
of a rather complicated shape. This is important, as it indicates what one would have
to deal with when approaching the general problem.

3

2 Background on Probability
Theory

Before we can define PCTL, we shall recap some notions from probability theory.
PCTL is a logic that speaks about properties of Markov chains. In this section, we
will discuss the definitions of probability spaces and Markov chains. We will also
present some results, which we will frequently refer to throughout the thesis.

2.1 Probability Spaces and Markov Chains

In order to properly define Markov chains, we have to look at probability spaces,
first.

Definition 2.1 (Probability Spaces). A probability space is a triple (Ω,E, Pr), such
that Ω is any non-empty set, E ⊆ 2Ω, and Pr : E→ [0, 1]. Additionally,

• Ω ∈ E.

• For E ∈ E, E ∈ E.

• For E1, E2, · · · ∈ E,
⋃

i Ei ∈ E.

• Pr(Ω) = 1.

• For disjoint E1, E2, · · · ∈ E, Pr(
⋃

i Ei) = ∑i Pr(Ei).

We call Ω the sample space, E the σ-Algebra, E ∈ E an event, and Pr the proba-
bility measure (Rosenthal, 2006).

Markov chains can be described as a set of states together with transition proba-
bilities. They can be used to model uncertainty in systems. Examples can be found
in (Baier and Katoen, 2008). Typically, Markov chains are formally defined as se-
quences of random variables (Rosenthal, 2006). For our purpose, however, we prefer
the definition in (Baier and Katoen, 2008).

Definition 2.2 (Discrete Time Markov Chains). A tuple M := (S, P) is called a
discrete-time Markov chain if S is a countable set, P : S × S → [0, 1], and for all
s ∈ S, ∑t∈S P(s, t) = 1.

For the sake of simplicity, we will write M for a Markov chain, whenever we
mean M := (S, P)—and similarly for M′ := (S′, P′), etc. In order to reason about
Markov chains, we need to associate a probability space with them. For a Markov
chain M, and state s ∈ S, we define the set of finite paths from s

pathsM(s) := {ρ ∈ S+ | ρ[0] = s and for all i, P(ρ[i], ρ[i + 1]) > 0}.

Moreover, for a finite path ρ ∈ pathsM(s), we define the cylinder set spanned by
ρ

4 Chapter 2. Background on Probability Theory

CylM(ρ) := {π ∈ Sω | ρ is a prefix of π}.

We can now define a σ-Algebra EM as the least σ-Algebra that contains all
CylM(ρ), with ρ ∈ pathsM(s). The probability measure is uniquely determined by

PrM(CylM(ρ)) := ∏
0≤i<len(ρ)

P(ρ[i], ρ[i + 1]).

This follows from the well known extension theorem which, for instance, can be
found in (Rosenthal, 2006).

Successors and predecessors Now that we can reason about probabilities in
Markov chains, we can introduce the notions of successors and predecessors of
states. Let T ⊆ S. Then, the immediate successors of T are given by

postM(T) :=
⋃
t∈T

{s ∈ S | P(t, s) > 0}

and the immediate predecessors are

preM(T) :=
⋃
t∈T

{s ∈ S | P(s, t) > 0}.

Moreover, we will use the recursive notation

post1
M(T) := postM(T)

postn
M(T) := postM(postn−1

M (T))

to denote the states reachable from T within n steps. Finally,

post∗M(T) :=
⋃

n∈N

postn
M(T)

denotes the set of all states that are reachable from T with positive probability.
Similarly, we denote pren

M(T), and pre∗M(T). If we are only interested in a single state
s ∈ S, we will omit the braces and simply write postM(s). Moreover, we will write
Pr(·), post(·), and pre(·), if M is clear from the context.

Trees Every Markov chain can be unfolded into a tree. Formally, for a given
Markov chain M, we define the unfolded tree TM := (S+, P′), with

∀ρs ∈ S+ : P′(ρs, ρss′) = P(s, s′).

In a sense, two states of TM are equivalent, if the last state of their paths is the
same. Therefore, we can define an equivalence relation ρs ∼ ηt iff s = t. In trees,
every state has a unique path to each of its predecessors. This property makes them
more convenient to handle than general chains. Therefore in our proofs, we will
frequently assume that the chain is a tree. For this, we first have to prove that the
unfolding behaves the same as the original chain. Proposition 2.3 formalizes this.
First, consider a function f : pathsTM(s) → pathsM(s), ρ 7→ ρ[len(ρ)]. Intuitively,
every state of TM stores the path that led to it. Therefore, if we pick the last state of a
path through TM, we obtain a path through M of the same length. We can extend f
to map events of ETM to events in EM in the following way: for E ∈ ETM , let

2.2. Markov Chains and their underlying Graphs 5

f (E) :=

CylM(f (ρ)) if E = CylTM(ρ)

f (E1) ∪ f (E2) if E = E1 ∪ E2

f (E′) if E = E′.

What we have to show, is that the events in TM occur with the same probability
as the corresponding events in M.

Proposition 2.3. For a Markov chain M, its unfolding TM, and an event E ∈ ETM ,
PrTM(E) = PrM(f (E)).

Proof. It is clear that PrTM(E) is determined by the probabilities of the single cylinder
sets which describe E. Moreover, as we have argued before, the measure is uniquely
determined by the probabilities of the cylinder sets. Therefore, it suffices to show
that PrTM(CylTM(ρ)) = PrM(CylM(f (ρ))) because then the probability measure of
TM is entirely determined by the probability measure of M. From the definitions, we
can easily see that

PrTM(CylTM(ρ)) = ∏
0≤i≤len(ρ)

P′(ρ[i], ρ[i + 1])

= ∏
0≤i≤len(f (ρ))

P(f (ρ)[i], f (ρ)[i + 1])

= PrM(CylM(f (ρ))).

Let M′ be a tree, s ∈ S′, and t ∈ post∗(s). We can determine the probability to
reach t from s as follows: let ρ be the path from s to t. Then,

P∗(s, t) := Pr(Cyl(ρ))

2.2 Markov Chains and their underlying Graphs

Markov chains can be visualized as directed graphs: the states of the chain become
the vertices of the graph, and every state is linked to its successors by arcs. When
reasoning about Markov chains, it is sometimes convenient to refer to the underly-
ing graph. In particular, it is interesting to look at Strongly Connected Components
(SCCs) in the graph. An SCC in the original sense is a set of vertices such that ev-
ery vertex can reach every other vertex therein and no proper superset satisfies this
condition. A Bottom SCC (BSCC) is an SCC that cannot be left. We can easily adapt
these definitions to Markov chains.

Definition 2.4 ((Bottom) Strongly Connected Components). For a Markov chain M,
a set T ⊆ S is called a Strongly Connected Component iff

• For all s, t ∈ T, t ∈ post∗(s).

• No state s ∈ S \ T, can be added without violating the above condition.

If additionally post∗(T) = T, then T is bottom.

There is an important result about BSCCs and finite Markov chains.

6 Chapter 2. Background on Probability Theory

Theorem 2.5. For a finite Markov chain M, some BSCC is reached almost surely, and every
state in a BSCC is reached from every other state within that BSCC almost surely.

This theorem is fundamental for our subsequent proofs. A proof can be found
in (Baier and Katoen, 2008). Note that for an unfolding of a finite chain, proposition
2.3 yields that theorem 2.5 still holds, in the sense that every run ends up in the
unfolding of a BSCC, and every equivalence class within a BSCC is reached almost
surely from every other equivalence class.

7

3 Probabilistic Computational Tree
Logic

There exist various formal logics in mathematics and computer science, such as
propositional logic, predicate logic, or temporal logic, to name a few. Each of those
makes statements about certain structures. Propositional logic is about assignments
of truth values to atomic propositions. Predicate logic speaks about domains and
interpretations of symbols. Temporal logics typically make statements about vari-
ous transition systems. If a statement about a given structure is true, then we call
this structure a model for this statement. Whenever we define a new formal logic,
we need to define two things—the syntax and the semantics. The syntax determines
how to form proper statements which we call formulae. Semantics define how to
evaluate the truth of a formula for a given structure. For this, we first need to prop-
erly define the structures that we consider.

Probabilistic Computational Tree Logic—or PCTL for short—is a temporal logic.
It is, in a certain sense, similar to the Computational Tree Logic (CTL), which justifies
the name. In CTL, we make statements about Kripke structures, which are basically
labeled transition systems. We can express properties of paths in Kripke structures,
using Linear Time Logic (LTL). Formulae of LTL typically read somewhat like, φ and
ψ never hold in the same state, or, Whenever φ holds in a state, eventually we will reach a
state, where ψ holds. CTL can then express things such as, From some state, there is a
path that satisfies LTL-formula φ, or, All paths starting at a state satisfy LTL-formula φ—
with certain restrictions on φ. The statements expressed by CTL are rather rigorous.
Instead of claiming that all paths or no path satisfy some path formula, in PCTL we
can express things such as, The probability to satisfy path formula φ from some state, is
greater than 1/2. Depending on the use case, such expressions might be more ap-
propriate. The interested reader shall refer to (Baier and Katoen, 2008) for examples
on PCTL, or in-depth discussions on LTL and CTL. In this section, we will define
the syntax and semantics of PCTL, and we will prove some basic propositions about
PCTL.

3.1 Syntax

LetA be a set of atomic propositions. Then, we define the syntax of PCTL as follows.

Definition 3.1 (PCTL Syntax). PCTL formulae are composed of state formulae and
path formulae. The syntax for state formulae is

Φ ::= a | ¬Φ | Φ ∧Φ | P./r[Ψ]

where r ∈ [0, 1], ./∈ {<,≤,=,≥,>}, and a ∈ A. Path formulae are of the form

Ψ ::= ¬Ψ | X (Φ) | (Φ) U (Φ) | (Φ) R (Φ)

In fact, the R-operator is just an abbreviation, namely:

8 Chapter 3. Probabilistic Computational Tree Logic

(φ) R (ψ) := ¬((¬φ) U (¬ψ)).

Therefore, it suffices to include either the negation or the R-operator. Later on, we
will prove that we can assume that formulae are in a certain normal form, where we
will not have such overlaps. For this proof, however, we found it more convenient
to consider the above syntax. Other common abbreviations are:

φ ∨ ψ := ¬(¬φ ∧ ¬ψ)

> := φ ∨ ¬φ

F (φ) := (>) U (φ)

G (φ) := ¬F (¬φ).

Remark. Note, that we could have also defined the weak until operator as φ W ψ :=
((φ) U (ψ)) ∨G (φ). However, we could not define a state formula out of this op-
erator using the above syntax because it is not allowed to have a disjunction in a
path formula. Therefore, a probabilistic weak until is rather a new operator than an
abbreviation.

We will refer to the set of state formulae as Fs and to the set of path formulae
as Fp. Moreover, we will denote L := A ∪ {¬a | a ∈ A} for the set of literals.
Sometimes, it will be useful to consider the subformulae of a formula. Intuitively,
this is the set of all formulae in the syntactic tree of a formula. Concretely, we define

Definition 3.2 (Subformulae). The set sub(φ) is recursively defined as follows

• φ ∈ sub(φ)

• if ¬ψ ∈ sub(φ) and ψ 6= a, then ψ ∈ sub(φ)

• if ψ ∧ ξ ∈ sub(φ), then ψ, ξ ∈ sub(φ)

• if ψ ∨ ξ ∈ sub(φ), then ψ, ξ ∈ sub(φ)

• if P./r[X (ψ)] ∈ sub(φ), then ψ ∈ sub(φ)

• if P./r[(ψ) U (ξ)] ∈ sub(φ), then ψ, ξ ∈ sub(φ)

• if P./r[(ψ) R (ξ)] ∈ sub(φ), then ψ, ξ ∈ sub(φ)

where ψ and ξ are PCTL-formulae, a ∈ A, and r ∈ [0, 1].

This definition slightly deviates from the usual definition of subformulae—e.g.
the one in (Brázdil, Forejt, Křetínskỳ, and Kucera, 2008)—as typically ¬a ∈ sub(φ)
implies a ∈ sub(φ). However, for our purpose the above definition is more conve-
nient.

sub(φ) contains the subformulae in exactly the same way, as they occur in φ. In
some cases, this purely syntactical construction is insufficient. Instead, we might
need, what we will call closure-subformulae.

Definition 3.3 (Closure-Subformulae). The set of closure-subformulae satisfies
sub∗(φ) ⊇ sub(φ) and

• if P./r[ϕ] ∈ sub∗(φ), then P./′r′ [ϕ] ∈ sub∗(φ) for all r′, and ./′.

3.2. Semantics 9

• if P./r[(ψ) R (ξ)] ∈ sub∗(φ), then P./1r1 [(ξ) U (ψ ∧ ξ)] ∈ sub∗(φ), and
P./2r2 [G (ξ)] ∈ sub∗(φ), for all r1, r2, and ./1, ./2.

The set sub∗(φ) is in some sense a closure of sub(φ), as it shall not only contain the
subformulae as they occur in φ, but additionally include the probabilistic operators
with all possible probabilities.

3.2 Semantics

PCTL formulae are evaluated over Markov chains. However, all of the mentioned
temporal logics require some sort of labeling of the states. Intuitively, the labels
express, which formulae hold at a state. Hence, we will extend our notion of Markov
chains by labeling the states.

Definition 3.4 (Labelled Markov chain). A labeled Markov chain is a tuple M :=
(S, P, L), where MC := (S, P) is a Markov chain, and L : S → 2Fs is a labeling
function.

In literature, the signature of L is often different from ours. Instead of labeling
the states with state formulae, one could also assign atomic propositions; i.e. L :
S → 2A—see (Brázdil, Forejt, Křetínskỳ, and Kucera, 2008). Due to the definition
of PCTL semantics, which follows next, there is not much difference between those
seemingly different notions of labels. We will assign state formulae because this will
help us to manipulate models more easily, which we will have to do quite frequently.
We can define the semantics of PCTL as follows

Definition 3.5 (PCTL Semantics). Let M be a labeled Markov chain, s ∈ S, a ∈ A,
φ, ψ ∈ Fs, and ϕ ∈ Fp. We define the modeling relation |= as follows

(MS1) M, s |= a iff a ∈ L(s).

(MS2) M, s |= ¬φ iff M, s 6|= φ.

(MS3) M, s |= φ ∧ ψ iff M, s |= φ and M, s |= ψ.

(MS4) M, s |= P./r[ϕ] iff Pr({π ∈ Cyl(s) | π |=p ϕ}) ./ r.

Here, |=p is the satisfaction relation for path formulae, i.e.

(MP1) π |=p ¬ϕ iff π 6|=p ϕ.

(MP2) π |=p X (φ) iff M, π[1] |= φ.

(MP3) π |=p (φ) U (ψ) iff there is an i ∈ N0, such that M, π[i] |= ψ and for all
j < i, M, π[j] |= φ.

(MP4) π |=p (φ) R (ψ) iff π 6|=p (¬φ) U (¬ψ).

M is a model, if for all formulae ξ ∈ Fs, and all states t ∈ S, ξ ∈ L(t) iff M, t |= ξ.

We will call M a model for φ, if M is a model and φ ∈ L(s) for some s. In fact,
the definition for models is slightly less technical if one labels only atomic proposi-
tions instead of state formulae, as described above. In that case, the condition for
proper labeling can be omitted, and a model for φ is any Markov chain M, such that

10 Chapter 3. Probabilistic Computational Tree Logic

M, s |= φ. One might wonder, why we, nevertheless, decided for our notion of la-
beling although it adds unnecessary overhead. This overhead will pay off in later
definitions and proofs. The intuitive reason for this is that the modeling relation can-
not be modified without performing non-trivial manipulations to the whole Markov
chain. The labeling, on the other hand, can be easily adjusted. In subsequent chap-
ters, we will introduce a slightly modified notion of models that will allow us to do
so.

Remark. At this point, we want to make a remark on the sets sub, sub∗, and L. In
some of our proofs, we will use conditions that assume those to be multi-sets. For
the subformulae, this means that if the same subformula occurs several times in a
formula, then it will also occur that many times in the sets sub and sub∗. Unless
explicitly stated differently, we will assume that whenever we remove a formula
from L, we remove only one specific instance of this formula. It will be clear from
the context, which one is to be removed.

Before we can continue reasoning about PCTL formulae, we first have to argue
that the satisfaction relation is measurable. Our proof is just a slight variation of the
proof found in (Baier and Katoen, 2008).

Proposition 3.6 (Measurability of PCTL-events). For Markov chain M, a state s ∈ S,
and a path formula ϕ ∈ Fp, Eϕ := {π ∈ Cyl(s) | π |= ϕ} ∈ E.

Proof. All we have to show here is that Eϕ can be described in terms of countable
unions of events or complements thereof. We will apply structural induction over ϕ.

I ϕ = ¬ϑ. By induction hypothesis, Eϑ ∈ E. Then Eϕ = Eϑ ∈ E.

II ϕ = X (ψ). Let T := {t ∈ post(s) | M, t |= ψ}. If there is no path formula in ψ,
then it is clear that the set T is well defined. If ψ does contain a path formula,
this is due to the induction hypothesis. Now, Eϕ =

⋃
t∈T Cyl(st) ∈ EM.

III ϕ = (ψ) U (ξ). For an integer n ∈N, let pathsn(s) be the set of paths from s of
length n and En

ϕ := {ρ ∈ pathsn(s) | ρ |= ϕ}. Obviously, Eϕ =
⋃

n∈N En
ϕ.

Hence, we only have to argue that all En
ϕ are measurable. Let F := {ρ ∈

pathsn(s) | ∃k ≤ n.M, ρ[k] |= ξ ∧ ∀j < k.M, ρ[j] |= ψ}. We can determine
whether M, t |= ξ or not (and similarly for ψ), due to the induction hypothesis.
Then, En

ϕ =
⋃

ρ∈F Cyl(ρ).

Next, we will introduce the satisfiability problem, which is the main topic of the
thesis.

Definition 3.7 (The Satisfiability Problem for PCTL). A formula φ ∈ Fs is called
(finitely) satisfiable, if there is a (finite) model for φ and (finitely) unsatisfiable other-
wise. The (finite) satisfiability problem is to determine, whether or not a formula is
(finitely) satisfiable.

A solution has already been given for the bounded satisfiability problem
(Bertrand, Fearnley, and Schewe, 2012); i.e. given a formula φ and an integer n,
one can determine, whether or not there is a model for φ that has at most n states.
Due to this, it suffices to determine the maximum required size for a model of some
formula in order to be able to find a finite model. Therefore, our main goal will be to
find bounds for formulae. For this, we will introduce general methods, which can

3.3. Normal Form 11

be applied to rather general formulae, as well as specialized methods that will help
us solve the problem for specific formulae only.

Earlier, we mentioned that we will most of the time consider unfolded Markov
chains. For this, we first need to properly extend the labeling function and show that
the resulting chain is still a model for the same formulae. Luckily, this is straight
forward. For a labeled Markov chain M, we define the unfolded Markov chain
TM := (S+, P′, L′), where P′ is defined as usual and for all ρ ∈ S∗ and s ∈ S,
L′([s]) = L(s). Here, [s] denotes the equivalence class according to the equivalence
relation ∼; i.e. [s] := {ρs ∈ S+}. The following proposition states that TM behaves
as expected.

Proposition 3.8. Let TM, be the unfolding of a model M. Then, TM is a model itself.

Proof. We will show that ψ ∈ L′([s]) iff TM, [s] |= ψ, by induction over the structure
of ψ.

I ψ = a. Then, a ∈ L′([s]) iff TM, [s] |= a is due to the definition of models.

II ψ = ¬ξ. Then, ¬ξ ∈ L(s) iff M, s 6|= ξ iff ξ 6∈ L(s) = L′([s]). Moreover,
from the induction hypothesis follows that ξ ∈ L′([s]) iff TM, [s] |= ξ. Finally,
¬ξ ∈ L′([s]) iff TM, [s] |= ¬ξ.

III ψ = ξ ∧ ζ. Then, ξ ∧ ζ ∈ L(s) iff M, s |= ξ and M, s |= ζ, and therefore,
ξ, ζ ∈ L(s) = L′([s]). From the induction hypothesis follows that ξ, ζ ∈ L′(ρs)
iff TM, [s] |= ξ and TM, [s] |= ζ, and thus, TM, [s] |= ξ ∧ ζ. Finally, it follows that
ξ ∧ ζ ∈ L′([s]) iff TM, [s] |= ξ ∧ ζ.

IV ψ = P./r[ϕ]. Then, P./r[ϕ] ∈ L(s) = L′([s]) iff M, s |= P./r[ϕ]. From proposition
2.3 we know that PrTM(Eϕ) = PrM(f (Eϕ)). Therefore, PrM(f (Eϕ)) ./ r iff
PrTM(Eϕ) ./ r iff TM, [s] |= P./r[ϕ].

3.3 Normal Form

In order to reason about formulae, it is helpful to transform them into some normal
form which is easier to handle, first. For this, we shall define the notion of equiva-
lence of PCTL formulae.

Definition 3.9 ((Finite) Equivalence). Let φ, ψ ∈ Fs. We say that φ is (finitely)
equivalent to ψ and write φ ≡ ψ (or φ ≡ f in ψ, resp.), if for every (finite) model
M := (S, P, L), and every state s ∈ S, φ ∈ L(s) iff ψ ∈ L(s).

We will also use the notation φ ⇒ ψ and φ ⇒ f in ψ to express that every (finite)
model for φ is also a model for ψ.

We will now prove a first proposition about PCTL formulae that will simplify
our proofs later on. It is sometimes inconvenient to consider the syntax, as we intro-
duced it before. In particular, negations and comparison operators other than > or
≥, can be hard to handle. The following proposition allows us to consider formulae
of a certain normal form.

Proposition 3.10 (Normalization). Every PCTL-formula is equivalent to a formula of the
form

12 Chapter 3. Probabilistic Computational Tree Logic

Φ ::= a | ¬a | Φ ∧Φ | Φ ∨Φ | PBr[Ψ]

Ψ ::= X (Φ) | (Φ) U (Φ) | (Φ) R (Φ)

where a ∈ A, r ∈ [0, 1], and B ∈ {>,≥}.

Proof. Let φ ∈ Fs. We apply induction over n := |φ|. For n = 1, φ = a, and therefore
is normalized already. Assume n = n′ + 1. Now we have to distinguish several
cases.

I φ = ¬ψ.
Consider the following subcases.

(a) ψ = a. Since ¬a is in the normal form, there is nothing to show.

(b) ψ = ξ ∧ ζ. From the definition, it immediately follows that ¬(ξ ∧ ζ) ≡
¬ξ ∨ ¬ζ. Since |¬ξ| ≤ n′ and |¬ζ| ≤ n′, it follows from the induction
hypothesis, that there are normalized ξ ′ and ζ ′, with ξ ′ ≡ ¬ξ, and ζ ′ ≡ ¬ζ.
Then, ¬ψ ≡ ξ ′ ∨ ζ ′ is normalized.

(c) ψ = P>r[ϕ]. Let M, s |= ¬ψ. Then, M, s 6|= P>r[ϕ]. Hence, Pr{π ∈
Cyl(s) | π |=p ϕ}) ≤ r. Thus, Pr{π ∈ Cyl(s) | π |=p ¬ϕ}) ≥ 1− r,
and this means that M, s |= P≥1−r[¬ϕ]. If ϕ = X (ξ), then ¬ϕ ≡ X (¬ξ).
If ϕ = (ζ) U (ϑ), then ¬ϕ ≡ (¬ζ) R (¬ϑ). As |ξ| ≤ n′, |ζ| ≤ n′, and
|ϑ| ≤ n′, there exists a normalized ξ ′ ≡ ¬ξ, or normalized ζ ′ ≡ ¬ζ, and
ϑ′ ≡ ¬ϑ, respectively. In any case, there is a normalized ϕ′ ≡ ¬ϕ, so
¬ψ ≡ P≥1−r[ϕ

′] is normalized, too.

(d) ψ = P≥r[ϕ]. Analogous to Ic we obtain a normalized ϕ′, such that ¬ψ ≡
P>1−r[ϕ

′].

(e) ψ = P<r[ϕ]. Let M, s |= ¬ψ. Then, M, s 6|= P<r[ϕ]. Thus, Pr{π ∈ Cyl(s) |
π |=p ϕ}) ≥ r, and M, s |= P≥r[ϕ]. From the induction hypothesis follows
that ¬ψ ≡ P≥r[ϕ′], where ϕ′ is in the normal form.

(f) ψ = P≤r[ϕ]. Similar to Ie, we obtain a normalized ϕ′ ≡ ϕ, such that
¬ψ ≡ P>r[ϕ′].

(g) ψ = P=r[ϕ]. Obviously, ψ ≡ P≥r[ϕ] ∧ P≤r[ϕ]. Thus, ¬ψ ≡ ¬P≥r[ϕ] ∨
¬P≤r[ϕ]. And then, Id and If yield normalized ϕ1 and ϕ2, such that
¬P≥r[ϕ] ≡ P>1−r[ϕ1] and ¬P≤r[ϕ] ≡ P>r[ϕ2]. Finally, this means ¬ψ ≡
P>1−r[ϕ1] ∨ P>r[ϕ2].

II φ = ψ∧ ξ. Since |ψ| ≤ n′, and |ξ| ≤ n′, induction hypothesis yields normalized
ψ′ ≡ ψ, and ξ ′ ≡ ξ. Therefore, φ ≡ ψ′ ∧ ξ ′ is normalized, as well.

III φ = PBr[ϕ]. By induction hypothesis, there is a ϕ′ ≡ ϕ, where ϕ′ is in the
normal form. Then, so is φ ≡ PBr[ϕ′].

IV φ = P<r[ϕ]. Let M, s |= φ. Then, Pr{π ∈ Cyl(s) | π |=p ϕ}) < r. Hence,
Pr{π ∈ Cyl(s) | π |=p ¬ϕ}) > 1 − r, and that means, M, s |= P>1−r[¬ϕ].
Then, similar to Ic, we obtain a normalized ϕ′ ≡ ¬ϕ. Therefore, φ ≡ P>1−r[ϕ

′]
is in the normal form.

V φ = P≤r[ϕ]. In a similar way as in case IV, we get a normalized ϕ′, such that
φ ≡ P≥1−r[ϕ

′].

3.3. Normal Form 13

VI φ = P=r[ϕ]. It is clear that P=r[ϕ] ≡ P≥r[ϕ] ∧ P≤r[ϕ]. Then, from III and V
follows that P≥r[ϕ] ≡ P≥r[ϕ1], and P≤r[ϕ] ≡ P≥1−r[ϕ2], where ϕ1 and ϕ2 are
normalized. Hence, φ ≡ P≥r[ϕ1] ∧ P≥1−r[ϕ2] is also normalized.

From now on, we will always assume that formulae are normalized.

15

4 General Model Properties

In the previous section, we introduced the syntax and semantics of PCTL, as well
as the satisfiability problem. The aim of this section is to explore techniques that
work for general PCTL formulae and will help us to solve the satisfiability problem
for specific fragments of PCTL later on. Although not all results of this section will
be important for subsequent proofs, they might still be of use for future work. The
section is divided into two parts. In section 4.1, we introduce an alternative concept
of models, and in section 4.2 we describe methods that can be used to normalize the
shape of models for general formulae.

4.1 Hintikka Chains

In chapter 3, we introduced the notion of models with the remark that our particular
way of defining it will allow us to easily manipulate the models by simply changing
the labels. It is not quite that simple, though. Assume that for some model M,
and formula φ, φ ∈ L(s). We define another Markov chain M′ := (S, P, L′), with
L′(s) := L(s) \ {φ}, and for all other states s ∈ S \ {s}, L′(s) = L(s). If φ 6∈ A, then
M′ violates the conditions for models, since M′, s |= φ, but φ 6∈ L′(s). This means
that models are too restrictive for this kind of modification. In our proofs, however,
we will frequently have to do such operations in order to get rid of unnecessary
formulae. In this section, we will introduce a slightly weaker notion of models that
will allow us to do so in a certain way. We will refer to them as Hintikka chains, since
they are inspired by the Hintikka structures in (Emerson and Halpern, 1982).

Definition 4.1 (Hintikka Chain). Let M be a labeled Markov chain, s ∈ S, a ∈ A,
and φ, ψ ∈ Fs. M is a Hintikka chain if it satisfies the following conditions.

(H1) If a ∈ L(s), then ¬a 6∈ L(s)

(H2) If ¬a ∈ L(s), then a 6∈ L(s)

(H3) If φ ∧ ψ ∈ L(s), then φ ∈ L(s) and ψ ∈ L(s)

(H4) If φ ∨ ψ ∈ L(s), then φ ∈ L(s) or ψ ∈ L(s)

(H5) If PBr[X (ψ)] ∈ L(s), then ∑t∈post(s),ψ∈L(t) P(s, t)B r

(H6) (a) If P>r[(φ) U (ψ)] ∈ L(s), then ψ ∈ L(s) or φ ∈ L(s) and there is a
set T ⊆ post(s), such that for every t ∈ T, there is a rt, and Bt such that
PBtrt [(φ) U (ψ)] ∈ L(t) and p := ∑t∈T P(s, t) · rt > r or p = r and for
some t ∈ T,Bt =>.

(b) If P≥r[(φ) U (ψ)] ∈ L(s), then ψ ∈ L(s) or φ ∈ L(s) and there is a set
T ⊆ post(s), such that for every t ∈ T, there is a rt, and Bt, such that
PBtrt [(φ) U (ψ)] ∈ L(t) and ∑t∈T P(s, t) · rt ≥ r.

16 Chapter 4. General Model Properties

(H7) (a) If P>r[(φ) R (ψ)] ∈ L(s), then φ ∧ ψ ∈ L(s) or ψ ∈ L(s) and there
is a set T ⊆ post(s), such that for every t ∈ T, there is a rt, and Bt, such
that PBtrt [(φ) R (ψ)] ∈ L(t) and p := ∑t∈T P(s, t) · rt > r or p = r and for
some t ∈ T,Bt =>.

(b) If P≥r[(φ) R (ψ)] ∈ L(s), then φ ∧ ψ ∈ L(s) or ψ ∈ L(s) and there is a
set T ⊆ post(s), such that for every t ∈ T, there is a rt, and Bt, such that
PBtrt [(φ) R (ψ)] ∈ L(t) and ∑t∈T P(s, t) · rt ≥ r.

(H8) If PBr[(φ) U (ψ)] ∈ L(s), then Pr{π ∈ Cyl(s) | ∃i.ψ ∈ L(π[i]) ∧ ∀j < i.φ ∈
L(π[j])})B r.

This definition is quite similar to that of models. However, unlike models, Hin-
tikka chains do not necessarily have to contain all formulae in their labels which
they actually satisfy. On the other hand, if a formula is in a label, Hintikka chains
must satisfy it. So, in a sense, Hintikka chains transform a bidirectional condition
into an implication. For our next definition, we shall first introduce some notation.
For two formulae φ, ψ ∈ Fs, let ψ ≺ φ iff ψ ∈ sub∗(φ) and ψ 6= φ. Moreover, for a
set Φ ⊆ Fs, we denote

top(Φ) := {φ ∈ Φ | for all ψ ∈ Φ.(φ 6≺ ψ or
ψ = φ ∧ ξ or
ψ = φ ∨ ξ)}

Intuitively, the set top denotes the set of temporal top formulae. We will use
this set to determine which formulae can be safely omitted from the labels without
violating the Hintikka conditions.

Definition 4.2 (Minimal Hintikka Chain). Let M be a tree Hintikka chain, and φ ∈
Fs, such that φ ∈ L(s0) for s0 ∈ S. M is minimal with respect to φ if for all s ∈ S it
satisfies

(MH1) L(s) ⊆ sub∗(φ).

(MH2)
⋃

ψ∈L(s) sub∗(ψ) ⊆ ⋃
ψ∈L(pre(s)) sub∗(ψ)

(MH3) For all PBr[(φ) U (ψ)] ∈ top(L(s)): if ψ ∈ L(s), then PB′r′ [(φ) U (ψ)] 6∈
L(t), for all r′, B′, and t ∈ post(s).

(MH4) For all PBr[(φ) R (ψ)] ∈ top(L(s)): if φ∧ψ ∈ L(s), then PB′r′ [(φ) R (ψ)] 6∈
L(t), for r′, B′, and t ∈ post(s).

(MH5) For all PBr[(φ) U (ψ)] ∈ L(s): If sub(ψ) ∩ L(s) 6= ∅, then ψ ∈ L(s).

The definition of minimal Hintikka chains is essentially the reason why we intro-
duced Hintikka chains at all. They utilize the freedom that Hintikka chains provide
in order to get rid of unnecessary formulae. For this, we first need to specify what
unnecessary actually means. Therefor, we need to specify some φ ∈ L(s0) which we
are interested in. This φ is to be satisfied—all the other formulae are only interesting
if they are required to satisfy φ. Otherwise, they can be omitted from the labels.

(MH1) states that we do not need any formulae in the labels that do not occur
as subformulae of φ. (MH2) states that successors only need to satisfy formulae that
might have been propagated by their (unique) predecessor. Due to (MH3), we can

4.1. Hintikka Chains 17

omit U-formulae after having satisfied their second parameter. Similarly, (MH4) al-
lows us to omit already satisfied R-formulae from the successors. We will refer to for-
mulae that do not need to be propagated to their successors as terminating formulae.
Accordingly, non-terminating formulae will be referred to as propagating. Finally,
(MH5) allows us to remove subformulae of U-formulae, if they do not contribute to
the satisfaction of the respective U-formula. Recall that we consider sub, sub∗, and L
to be multi-sets. Therefore, if a formula occurs multiple times and one of the condi-
tions forces it to be removed, not all instances might be affected. This is particularly
important for (MH5). For instance, if a formula is a subformula of the second argu-
ment of a U-formula and at the same time a top formula of its own, then removing
it might violate the formula of interest—namely, φ. Hence, it is important to keep it
in the labels. We handle this case by considering multi-sets. In fact, we could have
instead made a case distinction in the definition. On the other hand, multi-sets are
no real overhead, so we preferred to keep the definition simple.

The following theorem makes the ideas of (minimal) Hintikka chains more ex-
plicit and proves the vague claims that were made to justify the definitions.

Theorem 4.3. Let φ ∈ Fs. The following statements are equivalent

1. There is a model for φ.

2. There is a Hintikka chain for φ.

3. There is a minimal Hintikka chain for φ.

Proof. We will show two equivalences: Firstly, we will show that models and Hin-
tikka chains are equivalent. Secondly, we will show that Hintikka chains and mini-
mal Hintikka chains are equivalent. For the latter, we basically have to show that we
can minimize every Hintikka chain without affecting the Hintikka properties.

1 implies 2 Here, we will show that every model is a Hintikka chain. For this, we
have to show that every condition for Hintikka chains is met by models. Let M be a
model, s ∈ S, and ψ ∈ L(s). We will show that the Hintikka conditions hold for ψ.

I ψ = a or ψ = ¬a. In that case, only conditions (H1) and (H2) might be violated.
Assume that both a ∈ L(s) and ¬a ∈ L(s). Then, from (MS1) and (MS2) it
follows that M, s |= a and M, s 6|= a, which is a contradiction. Hence, both
conditions are met.

II ψ = ξ ∧ ζ. From (MS3) it follows that M, s |= ξ and M, s |= ζ. From the
definition of models we know that ξ ∈ L(s) and ζ ∈ L(s). Hence, (H3) is met.

III ψ = ξ ∨ ζ. ξ ∨ ζ ≡ ¬(¬ξ ∧ ¬ζ). Thus, ¬ξ ∧ ¬ζ 6∈ L(s). That means that
ξ ∈ L(s) or ζ ∈ L(s). So, condition (H4) is met.

IV ψ = PBr[X (ξ)]. Then, Pr{π ∈ Cyl(s) | π |=p X (ξ)})B r. Hence, there must
be successors T ⊆ post(s), such that ξ ∈ L(t) for all t ∈ T, and ∑t∈T P(s, t)B r.
This is exactly condition (H5).

V ψ = PBr[(ξ) U (ζ)]. From (MS4) it immediately follows that (H8) is met. More-
over, it must either be the case that ζ ∈ L(s) already, or some of the successors
must also satisfy PB′r′ [(ξ) U (ζ)] for some B′, and r′. In fact, one can easily see
that it is exactly condition (H6) that has to be satisfied.

18 Chapter 4. General Model Properties

VI ψ = PBr[(ξ) R (ζ)]. Since (ξ) R (ζ) ≡ ¬((¬ξ) U (¬ζ)), in order to satisfy
(ξ) R (ζ), a path must not satisfy (¬ξ) U (¬ζ). For this, it must either be
the case that ζ is always satisfied, or else ¬ξ must be violated before ¬ζ has
been satisfied. This means that ξ ∧ ζ must hold at some point and ζ must hold
before. From this, it follows that (ξ) R (ζ) ≡ (ζ) U (ξ ∧ ζ) ∨G (ζ). From a
similar discussion as in the above case follows that (H7) must hold.

2 implies 1 Let M be a Hintikka chain. We will show that we can extend the label-
ing to obtain a model for φ. Let s ∈ S, and ψ ∈ L(s). We apply induction over ψ, in
order to show that M, s |= ψ.

I ψ = a.
Then, due to (MS1), M, s |= a.

II ψ = ¬a.
Then, due to (H2), a 6∈ L(s). Hence, because of (MS1) M, s 6|= a, and due to
(MS2) M, s |= ¬a.

III ψ = ξ ∧ ζ.
Then, (H3) implies ξ ∈ L(s) and ζ ∈ L(s). From the induction hypothesis
follows that M, s |= ξ and M, s |= ζ, thus M, s |= ξ ∧ ζ.

IV ψ = ξ ∨ ζ.
Due to (H4), ξ ∈ L(s) or ζ ∈ L(s). Induction hypothesis yields M, s |= ξ or
M, s |= ζ. Thus M, s 6|= ¬ξ ∧ ¬ζ, and that means M, s |= ¬(¬ξ ∧ ¬ζ) = ξ ∨ ζ.

V ψ = PBr[X (ξ)].
Let T := {t ∈ post(s) | ξ ∈ L(t)}. From (H5) follows that ∑t∈T P(s, t)B r. From
the induction hypothesis follows that for all t ∈ T, M, t |= ξ, and therefore
M, s |= PBr[X (ξ)].

VI ψ = PBr[(ξ) U (ζ)].
Let B := {π ∈ Cyl(s) | ∃i.(ζ ∈ L(π[i]) ∧ ∀j < i.ξ ∈ L(π[j]))}. From (H8)
follows that Pr(B)B r. Induction hypothesis yields that for all states t ∈ S,
ζ ∈ L(t) implies M, t |= ζ, and similarly ξ ∈ L(t) implies M, t |= ξ. Finally,
that means M, s |= PBr[(ξ) U (ζ)].

VII ψ = PBr[(ξ) R (ζ)].
Recall that (ξ) R (ζ) ≡ (ζ) U (ξ ∧ ζ) ∨ G (ζ). (H7) guarantees that either
ξ ∧ ζ ∈ L(s), and thus every path π ∈ Cyl(s) models (ζ) U (ξ ∧ ζ). Otherwise,
the condition ensures that (ξ) R (ζ) is propagated properly to its successors.

Now, in order to obtain a model, we simply have to add all formulae that are
satisfied to the labels.

2 iff 3 Since a minimal Hintikka chain is a Hintikka chain by definition, it only re-
mains to show that we can always minimize a Hintikka chain for φ while preserving
the Hintikka conditions. The minimization procedure is pretty much straight for-
ward and thus omitted here, for the sake of brevity. However, it can be found in the
appendix—algorithm 1.

What we will show here is that none of the minimal Hintikka conditions contra-
dicts the Hintikka conditions. For a Hintikka chain M, we consider the unfolding
TM := (S′, P′, L′). Recall that the definition of minimal Hintikka chains requires
trees. It is clear that TM is also a Hintikka chain.

4.1. Hintikka Chains 19

(MH1) First, note that for some formula ψ, all Hintikka conditions require only
subformulae of ψ to be satisfied at certain states. Therefore, if we remove all
formulae from the labels that are not subformulae of φ, then we can certainly
not violate any of the Hintikka conditions for any of the subformulae of φ.

(MH2) Also note that for a state t, no Hintikka condition requires a successor
of t to satisfy some ψ, which is not a subformula of any ξ ∈ L′(t). Therefore,
it is clear that removing all formulae from labels that are not propagated by
the predecessor, cannot violate the Hintikka conditions. Since TM is a tree, we
know that there is always a unique predecessor, except for the root—say s0—
which has no predecessor. The latter is important in order to preserve that
φ ∈ L′(s0).

(MH3) Condition (H6) requires that for some PBr[(ψ) U (ξ)] ∈ L(s), either
ξ ∈ L′(s), or (ψ) U (ξ) is propagated to the successors. Hence, if ξ ∈ L′(s),
we can safely remove PB′r′ [(ψ) U (ξ)] from the successors without violating
(H6) for this particular formula. However, if the formula is a subformula of
another propagating formula, then we might violate Hintikka conditions. The
requirement that PBr[(ψ) U (ξ)] ∈ top(L′(s)) handles this case. Note that we
need the fact that every successor has a unique predecessor, again. Otherwise,
this condition might remove formulae from a state which are required in order
to satisfy the propagating formulae of another predecessor. As there is only
one, this cannot happen.

Since we do not remove a U-formula unless it has been terminated already,
(H8) also holds. Finally, we have to argue that the other conditions can also be
met. For instance, by removing a U-formula—even if it is in top(L′(s))—we
might violate the conditions (H3) and (H4). Note that those cannot be subfor-
mulae of propagating ones because of the definition of top(L′(s)). Therefore,
they cannot be required to be propagated to the successors and can safely be
removed. For the other conditions, we can apply similar arguments.

(MH4) The exact same arguments as in the above case can be applied here, as
well.

(MH5) Assume that some ψ ∈ L′(s) has to be removed due to this condition.
Then, there is a PBr[(ξ) U (ζ)] ∈ L′(s), with ψ ∈ sub∗(ζ) and ζ 6∈ L′(s). Then,
PBr[(ξ) U (ζ)] has to be propagated anyways. Therefore, even if ψ is omitted,
PBr[(ξ) U (ζ)] can still be satisfied.

We also have to take care of the other Hintikka conditions. If omitting ψ vio-
lates any Hintikka condition for some other formula, then this formula must
also be a subformula of ζ and can, thus, as well be omitted. The reason for this
is that L′(s) is a multi-set. Therefore, if ψ occurs as a subformula of some for-
mula which is not itself a subformula of ζ, then ψ is considered to be a different
element of the multi-set L′(s) and therefore not necessarily omitted.

As already mentioned, Hintikka chains are sometimes easier to handle. On the
other hand, we will also see proofs, where we will prefer to deal with regular models.
The above result, will allow us to use the notions almost interchangeably.

20 Chapter 4. General Model Properties

4.2 General Collapsing Methods

The aim of the previous section was to improve our tools for proofs. In this part, we
are going to explore methods to simplify the shapes of models for almost general
formulae. By almost general formulae, we mean formulae of the following kind

Φ ::= a | ¬a | Φ ∧Φ | Φ ∨Φ | PBr[(Φ) U (Φ)] | PBr[(Φ) R (Φ)].

That is, we do not allow X-formulae anymore. The reason is that they might
enforce rather complicated shaped models. Abstractly, the proofs in this section will
read somewhat like: Assume that we have a model or Hintikka chain. We can transform it
into a simpler model or Hintikka chain that does essentially the same. First, we will show
how we can get rid of certain successors of a state. We might refer to such techniques
as horizontal collapse methods, for they reduce the branching degree. In the second
part, we will introduce the notions of selections and reductions which will enable us
to reduce the height of the unfolded tree. We can, therefore, refer to this as vertically
collapsing the model. In order to prove that a PCTL-fragment has the small model
property, we will have to apply both, horizontal and vertical collapse.

4.2.1 Horizontal Collapse

Horizontal collapse is a family of methods that can be applied in order to cut off
complete branches. One such method can be found in (Brázdil, Forejt, Křetínskỳ,
and Kucera, 2008) in the form of the following theorem:

Theorem 4.4. Let φ ∈ Fs be a satisfiable formula. Then, there is a model for φ, such that
every state has at most |φ|+ 2 successors.

A proof for this theorem is given in (Brázdil, Forejt, Křetínskỳ, and Kucera, 2008).
We will use this fact in order to show the small model property of certain fragments.
Another horizontal collapse method is provided by theorem 4.5. Intuitively, it states
that we do not need successors, which satisfy exactly the same formulae with the
same probabilities. An obvious implication is that we do not need self loops—except
if there are no other successors.

Theorem 4.5 (Collapsing by L). Let M be a model, s ∈ S and φ ∈ L(s). Moreover, let

post′(s) := {t ∈ post(s) | L(t) 6= L(s)}

1. We can construct a model M′, such that for all s′ ∈ S′, either |post′M′(s
′)| = 0 or

|postM′(s′) \ post′M′(s
′)| = 0, and φ ∈ L′(s′).

2. We can construct a model M′, such that for all s′ ∈ S′, and for all t, t′ ∈ postM′(s′),
L′(t) 6= L′(t′), and φ ∈ L′(s′).

Proof. First, we assume that there are no propagating formulae in L(s)—i.e. there
are no U-formulae whose second argument is not in L(s). If this is the case, then we
can self loop on s with probability 1 and still satisfy L(s). Obviously, both claims
hold for s, then. Hence, we can assume that there is a propagating PBr[ϕ] ∈ L(s).
We will use the following conventions throughout the proof. For a state t ∈ S, we
will abbreviate pt := P(s, t) and rϕ

t := Pr{π ∈ Cyl(t) | π |= ϕ}).

4.2. General Collapsing Methods 21

Part one Let s ∈ S be a state, where |post′M(s)| > 0 and |postM(s) \ post′M(s)| > 0.
We can assume that such a state exists. Otherwise, there is nothing to show. Let
q := ∑t∈postM(s)\post′M(s) pt. Note that for all t ∈ postM(s) \ post′M(s), by definition
L(t) = L(s), hence rϕ

t = rϕ
s . Since P≥rϕ

s
[ϕ] ∈ L(s) is a propagating formula, rϕ

s =

∑t∈postM(s) ptr
ϕ
t . Therefore, we can compute and simplify rϕ

s as follows

∑
t∈post′M(s)

ptr
ϕ
t + ∑

t∈postM(s)\post′M(s)
ptr

ϕ
s = rϕ

s

∑
t∈post′M(s)

ptr
ϕ
t + rϕ

s ∑
t∈postM(s)\post′M(s)

pt = rϕ
s

∑
t∈post′M(s)

ptr
ϕ
t + rϕ

s q = rϕ
s

∑
t∈post′M(s)

ptr
ϕ
t = (1− q)rϕ

s .

Besides, from the definition of Markov chains, we know that

∑
t∈post′M(s)

pt = 1− q.

Now, our aim is to construct a model M′ := (S, P′, L′) such that |postM′(s) \
post′M′(s)| = 0 while L′(s) ⊇ L(s). For this, we will redistribute the probabilities pt
by finding p′t that solve the equations

∑
t∈post′M(s)

p′tr
ϕ
t = rϕ

s

∑
t∈post′M(s)

p′t = 1.

We can set p′t := pt/(1− q), and then simplify

∑
t∈post′M(s)

pt
1

1− q
rϕ

t =
1

1− q ∑
t∈post′M(s)

ptr
ϕ
t

=
1

1− q
(1− q)rϕ

s

= rϕ
s .

And similarly

∑
t∈post′M(s)

pt
1

1− q
=

1
1− q ∑

t∈post′M(s)
pt

=
1

1− q
(1− q)

= 1.

From this, we can immediately construct P′:

22 Chapter 4. General Model Properties

∅

s0

∅

s1

∅

s2

∅

s3

{a} {a} {a} {a}

1/2 1/2 1/2

1/2 1/2 1/2 1/2

1 1 1 1

FIGURE 4.1: Example of a simple infinite model

∅

s0

{a}

1/2
1/2 = 1

1

FIGURE 4.2: Reduced version of the model in figure 4.1

P′(s′, s′′) :=

P(s′, s′′) if s′ 6= s
0 if s′ = s and s′′ ∈ postM(s) \ post′M(s)
pt/(1− q) if s′ = s and s′′ ∈ post′M(s).

This construction guarantees that PBr[ϕ] ∈ L(s) implies PBr[ϕ] ∈ L′(s); thus
L′(s) ⊇ L(s). We can repeat this procedure until the desired property is satisfied.

Part two Let s ∈ S, and t′, t′′ ∈ postM(s), such that L(t′) = L(t′′). Then, rϕ
t′ = rϕ

t′′ ,
and thus

∑
t∈postM(s)\{t′,t′′}

ptr
ϕ
t + pt′r

ϕ
t′ + pt′′r

ϕ
t′ = ∑

t∈postM(s)\{t′,t′′}
ptr

ϕ
t + rϕ

t′ (pt′ + pt′′).

P′ can therefore be constructed as follows

P′(s′, s′′) :=

P(s′, s′′) if s′ 6= s or s′′ 6∈ {t′, t′′}
0 if s′ = s and s′′ = t′′

pt′ + pt′′ if s′ = s and s′′ = t′.

Again, this procedure can be repeated to obtain a model with the desired prop-
erties while preserving satisfaction of φ.

Unlike theorem 4.4, this result does not yield that the branching degree is limited
in any way—not even that it is finite. Therefore, we will not use it in our proofs for
small model properties. However, it might still be interesting if it comes to concrete
algorithms and practical applications. In certain cases, one could even obtain a finite
model from an infinite one by applying only this theorem.

Example 4.6. Consider the model in figure 4.1. It is clear that all si satisfy exactly the
same formulae. Therefore, we can apply theorem 4.5, in order to obtain the model
in figure 4.2.

4.2. General Collapsing Methods 23

postM(s)

s

sel(s)

M

postM′(s) = sel(s)

s

M′ := red(sel; M)

FIGURE 4.3: Illustration of reductions

4.2.2 Vertical Collapse

In this section, we are going to explore one method to reduce the height of a model.
The intuitive idea behind this method is that there is no use in successors that do not
terminate at least one propagating formula. Actually, the statement might sound
similar to the one of theorem 4.5, though it is not quite the same. A successor might
have the same propagating formulae but with different probabilities. Thus, theorem
4.5 could not be applied. Theorem 4.10 can handle this case. Instead of simply prun-
ing the respective branch, we will rather squeeze the model vertically, in a sense.
Definition 4.7 formalizes this idea of squeezing. In this entire section, we will always
consider trees. On the other hand, some theorems need properties of finite chains,
which trees are not. In such cases, we will assume that the tree is the unfolding of a
finite chain.

Definition 4.7 (Selections and Reductions). Let M be a tree, and sel : S → 2S. We
call sel a selection, if for all s ∈ S, sel(s) ⊆ post∗(s), and there are no t, t′ ∈ sel(s),
such that t ∈ pre∗(t′) or t′ ∈ pre∗(t). If in addition ps := ∑t∈sel(s) P∗(s, t) = 1, then
we call sel a complete selection. Given a selection sel, and a Markov chain M, we
define a reduction function red(sel; M) := M′, where

P′(s, t) :=

{
P∗(s, t)/ps if t ∈ sel(s)
0 otherwise

S′ := S ∩ post∗M′(s0), and L′ := L|S′ .

Intuitively, a selection can be thought of as drawing borders around fragments of
a Markov chain. Then, the according reduction connects such borders directly while
omitting everything in between. Figure 4.3 illustrates the procedure.

It is easy to verify that red(sel; M) is a Markov chain. For a Markov chain,
∑t∈post(s) P(s, t) = 1 must hold for all s ∈ S. This is true for red(sel; M):

∑
t∈post(s)

P′(s, t) = ∑
t∈sel(s)

P∗(s, t)/ps = 1/ps · ps = 1

Obviously, this construction does not necessarily preserve model or Hintikka
properties. What it does preserve in a certain sense, are reachability probabilities.

Lemma 4.8 (Conservation of Probabilities). Let M be a Markov chain, sel a selection
over M, M′ := red(sel; M), s ∈ S′, and t ∈ post∗M′(s). Then, P′∗(s, t) ≥ P∗(s, t). If the
selection is complete, then P′∗(s, t) = P∗(s, t).

24 Chapter 4. General Model Properties

Proof. Let ρ ∈ pathsM′(s) ⊆ pathsM(s) be the path leading from s to t. Note that we
can assume that ρ is unique, since M is a tree and selections preserve this property.
We will show the claim by induction over ρ.

I ρ = st. Then, P′∗(s, t) = P′(s, t)
de f .
= P∗(s, t)/ps ≥ P∗(s, t). The last inequality

follows from the fact that ps ∈ [0, 1].

II ρ = sρ′t, where len(ρ′) > 0. Let s′ := ρ′[0].

P′∗(s, t) = P′∗(s, s′) · P′∗(s′, t)
= P′(s, s′) · P′∗(s′, t)
de f .
= P∗(s, s′)/ps · P′∗(s′, t)
≥ P∗(s, s′) · P′∗(s′, t)
I.H.
≥ P∗(s, s′) · P∗(s′, t)
= P∗(s, t)

If sel is a complete selection, then ps = 1 for all s. Then, it is easy to see that all
inequalities in the above calculations can be replaced by equalities.

As mentioned before, reductions do not necessarily create models from models.
Since this is our aim, we will now define a canonical selection, such that the reduc-
tion does preserve model properties. Let M be a model. Then, the canonical selection
can be defined as follows:

selM(s) := {t ∈ post∗(s) |
There is a PBr[(ψ) U (ξ)] ∈ L(s), such that ξ ∈ L(t)
or PB′r′ [(ψ) U (ξ)] 6∈ L(t), for any B′ and r′,
and for all t ∈ pre∗(t) ∩ post∗(s), the above condition is violated}

selM(s) :=

{
selM(s) if there is a propagating PBr[(ψ) U (ξ)] ∈ L(s)
post(s) otherwise

Once again, recall the notion of propagating formulae: a U-formula in a state is
propagating if its second argument is not satisfied by that state. First, we will prove
that for unfoldings of finite models, selM is a complete selection.

Lemma 4.9. For the unfolding M of a finite model, selM is a complete selection.

Proof. It follows immediately from the definition that selM(s) ⊆ post∗(s), and that
there are no t, t′ ∈ S′, where one is the predecessor of the other. Hence, we only need
to show that ps = 1. If there is no propagating formula PBr[(ψ) U (ξ)] ∈ L(s) then
there is again nothing to show, since then selM(s) = postM(s). Therefore, we can
assume that there is a PBr[(ψ) U (ξ)] ∈ L(s), and ξ 6∈ L(s). We will show the claim
in two steps. First, we show that ps ≤ 1, and then that ps ≥ 1.

4.2. General Collapsing Methods 25

ps ≤ 1 Let ρst ∈ pathsM(s) be the unique path leading from s to t. ps > 1 is
only possible, if there are two states t, t′ ∈ selM(s), where Cyl(ρst) ∩ Cyl(ρst′) 6=
∅. This is only possible, if t ∈ pre∗(t′) or t′ ∈ pre∗(t). However, this violates the
conditions for selections, and we have already argued that this condition follows
from the definition. Hence, ps ≤ 1.

ps ≥ 1 Since we are talking about the unfolding of a finite model, every path ends
up in the unfolding of a BSCC. In a BSCC—and so in its unfolding—every state is
reached almost surely. Therefore, in order for ps < 1 to hold, there must be a BSCC T
that is reachable with positive probability without passing through selM(s), such that
T ∩ selM(s) = ∅. But then, by definition of selM(s), for all t ∈ T, PB′r′ [(ψ) U (ξ)] ∈
L(t), for appropriate r′ and B′. On the other hand, there is no state t′ ∈ T with
ξ ∈ L(t′) for otherwise t′ ∈ selM(s). But then, PB′r′ [(ψ) U (ξ)] cannot be satisfied and
thus M cannot be a model, which contradicts our assumption. Therefore ps ≥ 1.

Note that we had to assume that the unfolding was derived from a finite models.
For infinite models, not all runs must end up in BSCCs, and therefore our argument
for ps ≥ 1 cannot be applied to those. It is easy to find an example, which shows that
the lemma is indeed not true for arbitrary models; e.g. consider the model given in
figure 4.6. Now, we can proceed to the important result about canonical reductions
which will allow us to limit the size of certain fragments.

Theorem 4.10 (Collapsing by selM). For the unfolding M of a finite model, M′ :=
red(selM; M) is also a model, and for all s ∈ S′, L′(s) = L(s).

Proof. Let s ∈ S′, and ψ ∈ L(s). We have to prove that either M′, s |= ψ or that the
Hintikka conditions hold for ψ. Depending on the case, we will prefer one or the
other. As we already know, this is equivalent. We apply induction over ψ.

I ψ = a, ψ = ¬a, ψ = ξ ∧ ζ, or ψ = ξ ∨ ζ. In all of those cases, the Hintikka
conditions can only be violated if L′(s) 6= L(s). From definition 4.7 follows
that the labels in M′ are the same as in M. The rest follows from the induction
hypothesis.

II ψ = PBr[(ξ) U (ζ)]. Here, it is easier to prove that M′, s |= ψ. If ζ ∈ L(s),
then ζ ∈ L′(s) and we are done. Assume that ζ 6∈ L(s). Let T ⊆ post∗M(s) be
the set of states that satisfy ζ and are reached from s through states that satisfy
ξ. Since every state in S′ is reached with the same probability as it was in M
(by lemma 4.8), all we have to show is that T ⊆ S′. However, this follows
immediately from the definition of selM: Since ζ 6∈ L(s), and for all t ∈ T,
ζ ∈ L(t), T ⊆ selM(s). Since no labels are changed and due to the induction
hypothesis, all states in pre∗M(T), must still satisfy ξ, and all states in T must
satisfy ζ.

III ψ = PBr[(ξ) R (ζ)]. Again, we will prove that M′, s |= ψ. Keep in mind that
both, M and M′ are trees, and that M was derived from a finite model. Thus,
whenever we mention BSCCs, we actually mean the unfoldings of BSCCs. We
can make some observations about BSCCs in M′. Firstly, if a state was in a
BSCC in M, it can only reach other states from the same BSCC in M′. This
follows immediately from the definition of selections. From lemma 4.8, we can
see that the states from a BSCC in M that are included in S′ are reached with
the probability that this BSCC was reached with in M. Finally, we can see that
for each BSCC in M, there is at least one state in S′. Otherwise, one of the other

26 Chapter 4. General Model Properties

{φ1/2, ψ1/2}
s0

{φ3/4, ψ1/4}{φ1/4, ψ3/4}

{φ1}s1 {ψ1} s2 {φ1}s3 {ψ1} s4

{φ1} {ψ1} {φ1} {ψ1}

{a} ∅ {a} ∅

selM(s0)
selM(s1)
selM(s2)
selM(s3)
selM(s4)

1/2 1/2

3/4
1/4 1/4

3/4

1 1 1 1

1 1 1 1

1 1 1 1

FIGURE 4.4: Example of a finite model

{φ1/2, ψ1/2}
s0

{φ1} {ψ1} {φ1} {ψ1}

{a} ∅ {a} ∅

3/
8

1/
8 1/8

3/8

1 1 1 1

1 1 1 1

FIGURE 4.5: Collapsed version of the model in figure 4.4

BSCCs would be reached with greater probability than it was reached with in
M, which contradicts our above observation.

Now, recall that (ξ) R (ζ) ≡ (ζ) U (ξ ∧ ζ)∨G (ζ). Therefore, we have to show
that if M, s |= PB1r1 [(ζ) U (ξ ∧ ζ)], the same holds for M′ and similarly for
PB2r2 [G (ζ)]. The former is covered by the above cases. The latter follows from
our observations on BSCCs. Finally, we conclude M′, s |= ψ.

Example 4.11. Let φp := P≥p[F (P=1[G (a)])], and ψp := P≥p[F (P=1[G (¬a)])]. The
Markov chain in figure 4.4 is a model for φ1/2 ∧ ψ1/2. The colored boxes visualize
the respective selections. Figure 4.5 shows the reduced model according those selec-
tions.

This theorem alone is insufficient to limit the size of models in any way. The
reason is that U-formulae might repeat indefinitely and thus the height of the tree
can be arbitrary. If such U-formulae are not nested, we can easily get around that
problem by minimizing the Hintikka chain according to theorem 4.3. If, however,

4.2. General Collapsing Methods 27

∅

s0

∅ ∅ ∅

{a} {a} {a} {a}

1/2 3/4 7/8

1/2 1/4 1/8 1/16

1 1 1 1

selM(s0)

FIGURE 4.6: Example of a selection for an infinite model

such formulae are nested in R-formulae or U-formulae, this minimization will not
help. One example for a model, which cannot be properly minimized that way, is
given in figure 5.8. In the sections to come, we will deal with various fragments. In
order to show the small model properties, we will tackle this problem of repeated
U-formulae in different ways. Basically, we will embed the above theorem in more
complex procedures in order to limit the size while preserving model properties.

Note that the only case where we had to use BSCCs was the last one. Therefore,
we can extend this theorem to arbitrary models—not only finite ones—if we restrict
R-formulae. Consider the following fragment

Φ ::= a | ¬a | Φ ∧Φ | Φ ∨Φ | PBr[(Φ) U (Φ)] | P=1[G (Φ)].

In this fragment we can state:

Theorem 4.12. For the unfolding M of a model, M′ := red(selM; M) is also a model, and
L′(s) = L(s) for all s ∈ S.

Proof. Again, we apply induction over the structure of ψ ∈ L′(s), to show that
M′, s |= ψ. All of the cases are mostly identical to those in the proof for theorem 4.10,
except for the case where ψ = P=1[G (ξ)]. Therefore, we will only cover this case,
here. Since for all s ∈ S, selM(s) ⊆ post∗M(s), it is clear that post∗M′(s) ⊆ post∗M(s).
Because M is a model, for all t ∈ post∗M(s), P=1[G (ξ)] ∈ L(t). Therefore, for all
t ∈ post∗M′(s), the same is true. Moreover, since L′(s) = L(s), for all s ∈ S′, and
since M is a model, ξ ∈ L′(s). Then, it follows from the induction hypothesis that
M′, s |= ξ. Finally, it follows that M′, s |= P=1[G (ξ)].

Example 4.13. Figures 4.6 and 4.7 show an example of a selection in an infinite model
and the respective reduction. In the reduction, the probabilities pi sum up to 1. Those
figures also demonstrate why we had to exclude general R-formulae—and thereby
general G-formulae. As was pointed out in (Brázdil, Forejt, Křetínskỳ, and Kucera,
2008), the chain in figure 4.6 is a model for φ := P>0[G (P>0[F (a)] ∧ ¬a)]. However,
the chain in 4.7 does not satisfy φ.

28 Chapter 4. General Model Properties

∅

s0

{a} {a} {a} {a}

p1 p2

p3 p4

1 1 1 1

FIGURE 4.7: Reduction of the model in figure 4.7

29

5 PCTL Fragments

In this section, we will approach the satisfiability problem for PCTL. Our strategy
will typically read as follows: Assume that for some formula, we have an arbitrary model.
Then, we can use this model to construct a model of certain shape and size. Thus, when
searching for a model of a formula, it suffices to consider only such simple models. If
the size is bounded by some computable number, the satisfiability problem is solved,
due to (Bertrand, Fearnley, and Schewe, 2012).

However, what if it is not possible to obtain simple models for certain formulae?
What if the satisfiability problem is not even decidable for general PCTL? Even if it is,
it might be a rather challenging task to find a construction that simplifies the model
while preserving the model properties. In this thesis, we will focus only on few
specific fragments of PCTL and solve the satisfiability problem for those. We will
also present some obstacles for other fragments which one should consider when
searching for solutions.

5.1 Conjunctive FqG1-fragment

This fragment limits PCTL in various ways. Firstly, we only allow G- and F-
formulae. Secondly, only F-formulae are allowed to have arbitrary bounds, while
G-formulae can only appear with probability 1. Finally, we forbid disjunctions.

Definition 5.1 (Conjunctive FqG1-fragment). The conjunctive FqG1-fragment con-
forms to the following grammar

Φ ::= a | ¬a | Φ ∧Φ | PBr[F (Φ)] | P=1[G (Φ)]

In the previous section, we mentioned that it might be difficult to deal with re-
peated U-formulae. In this fragment, although F-formulae are allowed inside of
G-formulae, we will see that this is not a problem. Intuitively, the reason is that F-
formulae within Gs can be replaced by qualitative ones. This simplifies the problem
considerably, as we shall see soon.

5.1.1 Solution for G-formulae

In this section, we will formalize the vague idea that was mentioned above. We will
show that G-formulae can be transformed into a flat normal form. Concretely, we
will prove the following theorem.

Theorem 5.2. Let φ be a conjunctive FqG1-formula. Then, the following equality holds

30 Chapter 5. PCTL Fragments

G

∧

F≥1/2 G a

∧ b

c G

∧

F≥1/π d F≥1/
√

2

¬e ∧

e f

A
B
C1

C2

C3

FIGURE 5.1: Example of a nested G-formula

G

∧

∧ F=1 ∧

a b G F=1 F=1 F=1

d c ¬e ∧

e f

FIGURE 5.2: Normalized version of the formula in figure 5.1

P=1[G (φ)] ≡ f in P=1[G (
∧
l∈A

l ∧ P=1[F (P=1[G (
∧
l∈B

l)])] ∧
∧
i∈I

P=1[F (
∧

l∈Ci

l)])]

for appropriate I ⊂N, and A, B, Ci ⊂ L.

Along the way, we will prove some other interesting results about G-formulae.
The most interesting one is the fact that the finite satisfiability problem is the same
as the general satisfiability problem, for those.

Example 5.3. Before we prove the theorem, we will first have a look at an example,
which shall demonstrate our construction. Consider the syntactic tree in figure 5.1.
The colored boxes illustrate the sets A, B, and Ci, respectively. In figure 5.2 you can
see the normalized syntactic tree. Later on, we will show how to construct those sets
in general.

5.1. Conjunctive FqG1-fragment 31

In order to obtain a normal form, we will flatten the formulae. For this, we will
consider paths in the syntactic tree. Recall that ψ ≺ ξ, if ψ ∈ sub(ξ) and ψ 6= ξ. For
n ∈N, let

Pn :={ψ1 . . . ψn | for all i ∈ {1, . . . , n− 1}.
(ψi+1 ≺ ψi and there is no ξ.(ψi+1 ≺ ξ ≺ ψi))}

P :=
⋃

n∈N

Pn.

Intuitively, P denotes the set of all possible paths in all possible syntactic trees. In
the subsequent proofs, we will apply induction over elements of this set—i.e. over
the depth of a given formula. The following theorem shows a fundamental property
of this fragment and is important for the solution thereof.

Theorem 5.4. Let M be a model, φ a conjunctive FqG1-formula, and P=1[G (φ)] ∈ L(s0),
for some s0 ∈ S. Then, for every ψ ∈ sub(φ), and s ∈ S, there is a state t ∈ post∗(s), such
that ψ ∈ L(t).

Proof. Let ψ1 . . . ψn ∈ P, such that ψ1 = φ and ψn = ψ. We apply induction over n.

I n = 1. Then, φ = ψ and thus for all t ∈ post∗(s0), P=1[G (ψ)] ∈ L(t). Therefore
ψ ∈ L(t).

II n = n′ + 1. By the induction hypothesis, there is a state t ∈ post∗(s), such
that ψn′ ∈ L(t). We have to show that there is a state t′ ∈ post∗(s), with
ψ = ψn ∈ L(t′). Consider the following cases:

(a) ψn′ = ψn ∧ ξ. Then, ψn ∈ L(t).

(b) ψn′ = P=1[G (ψn)]. Then, ψn ∈ L(t).

(c) ψn′ = PBr[F (ψn)]. Then, there must be a state t′ ∈ post∗(t), such that
ψn ∈ L(t′).

From this theorem, we can immediately derive two interesting corollaries.

Corollary 5.5. Let φ be a FqG1-formula, and M a model with P=1[G (φ)] ∈ L(s0), for
some s0 ∈ S. Moreover, let G := {ψ ∈ sub(φ) | ψ = P=1[G (ξ)] for some ξ}. Then, there
is a state, s ∈ S, such that G ⊆ L(s).

Proof. Let s ∈ S. A straight forward induction over n := |G \ L(s)| yields the claim.

I n = 0. Then, we are done.

II n = n′ + 1. Let ψ ∈ G \ L(s). Due to theorem 5.4, there is a state t ∈ post∗(s),
with ψ ∈ L(t). Since all formulae in G are G-formulae, G \ L(t) ⊂ G \ L(s),
hence |G \ L(t)| < |G \ L(s)|. Now, the claim follows from the induction hy-
pothesis.

That means there is a state which satisfies all G-formulae. This fact will enable us
to prove that all satisfiable G-formulae in this fragment are finitely satisfiable. The
next corollary is important for the proof of theorem 5.2.

32 Chapter 5. PCTL Fragments

Corollary 5.6. Let M be finite a model, φ a conjunctive FqG1-formula, and P=1[G (φ)] ∈
L(s0) for some s0 ∈ S. Then, for every BSCC T ⊆ S, the following holds

1. For all ψ ∈ sub(φ), there is a state t ∈ T, such that ψ ∈ L(t).

2. For all P=1[G (ψ)] ∈ sub(φ), and for all states t ∈ T, P=1[G (ψ)] ∈ L(t).

Proof. Let ψ ∈ sub(φ), T ⊆ S be a BSCC, and t ∈ T. Theorem 5.4 states that there is
a t′ ∈ post∗(t) = T, such that ψ ∈ L(t′). If ψ = P=1[G (ξ)], then it is clear that for all
t′ ∈ T, ψ ∈ L(t′).

This result can be reformulated as follows: Whenever we have a formula nested
within a G, it will appear in every BSCC. The obvious implication for G-formulae
nested within Gs is that they will hold in every state of every BSCC. Earlier, we
mentioned that F-formulae nested within Gs can be replaced by qualitative ones.
Corollary 5.6 justifies this claim. However, theorem 5.2 states that we can simplify
G-formulae even more. For this, we need some more lemmas. A rather basic one is
the distributivity of G-formulae over conjunctions, i.e.

Lemma 5.7. For arbitrary formulae φ, ψ ∈ Fs, P=1[G (φ ∧ ψ)] ≡ P=1[G (φ)] ∧
P=1[G (ψ)].

A proof for this is provided in the appendix—see lemma A.2, equality (A.7).
Now, we will show how one can construct the G-normal form. For this, we first
define maps A, B, C : Fs → 2L.

A(ψ) := {l |∃ψ1 . . . ψn ∈ P.(ψ1 = ψ and ψn = l and
@i ∈ {1, . . . , n− 1}.(ψi = PBr[F (ψi+1)]))}

B(ψ) := {l |∃ψ1 . . . ψn ∈ P.(ψ1 = ψ and ψn = l and
∃i ∈ {1, . . . , n− 1}.(ψi = PBr[F (ψi+1)]) and
∃i ∈ {1, . . . , n− 1}.(ψi = P=1[G (ψi+1)] and
@j > i.(ψj = PBr[F (ψj+1)])))}

C(ψ) := {l |∃ψ1 . . . ψn ∈ P.(ψ1 = ψ and ψn = l and
@i ∈ {1, . . . , n− 1}.(ψi = P=1[G (ψi+1)]) and
@i ∈ {1, . . . , n− 1}.(ψi = PBr[F (ψi+1)]))}.

Moreover, let F(ψ) := {ξ ∈ sub(ψ) | ξ = PBr[F (ζ)]}. Finally, we can define a
normalization map G as follows:

G(ψ) := P=1[G (
∧

l∈A(ψ)

l ∧ P=1[F (P=1[G (
∧

l∈B(ψ)

l)])] ∧
∧

ξ∈F(ψ)

P=1[F (
∧

l∈C(ξ)

l)])].

We will prove theorem 5.2 by showing the equality P=1[G (φ)] ≡ f in G(φ). Before
we can proceed, we have to look at some properties of G and models thereof. First,
we will show that models for G(φ) have a rather regular structure.

Lemma 5.8. A finite Markov chain M is a model for

ψ := P=1[G (
∧
l∈A

l ∧ P=1[F (P=1[G (
∧
l∈B

l)])] ∧
∧
i∈I

P=1[F (
∧

l∈Ci

l)])]

iff for some state s0 ∈ S, the following conditions hold

5.1. Conjunctive FqG1-fragment 33

{a, b}

{a, b, d} {a, b, c, d}

{a, b, d, e, f }

1

1

11

FIGURE 5.3: Model for the formula in figure 5.2

1. For all l ∈ A, l ∈ L(s0) and for all t ∈ post∗(s0), l ∈ L(t).

2. For all l ∈ B, all BSCCs T, and all t ∈ T, l ∈ L(t).

3. For all i ∈ I and all BSCCs T, there is a state t ∈ T, such that for all l ∈ Ci, l ∈ L(t).

Proof. We have to show two things. If all the conditions hold for some Markov chain,
then the chain is a model. Otherwise, it is not.

The three conditions hold The first condition guarantees that P=1[G (
∧

l∈A l)] ∈
L(s0). Since the second condition assures that every BSCC T satisfies l ∈ B in every
state t ∈ T it follows that P=1[G (

∧
l∈B l)] ∈ L(t). Since some BSCC is eventu-

ally reached almost surely, this implies that P=1[F (P=1[G (
∧

l∈B l)])] ∈ L(s0).
The last condition assures that in every state t ∈ T for every BSCC T it
holds that P=1[G (

∧
i∈I P=1[F (

∧
l∈Ci

l)])] ∈ L(t). Again, this implies that
P=1[G (

∧
i∈I P=1[F (

∧
l∈Ci

l)])] ∈ L(t). From lemma 5.7 it follows that ψ ∈ L(s0).

One of the conditions does not hold We will show that each of the conditions is
required for models. For this, we will assume that one is violated and deduce that
the Markov chain cannot be a model then.

Condition 1 is violated That means there is a state s ∈ post∗(s0), such that for
some l ∈ A, l 6∈ L(s). But then P=1[G (

∧
l∈A l)] 6∈ L(s0), and therefore ψ 6∈ L(s0)

(which again follows from lemma 5.7).

Condition 2 is violated In that case there must exist a BSCC T reachable from
s0, such that there is a state t ∈ T, with l 6∈ L(t) for some l ∈ B. Since every state in a
BSCC is reached infinitely often once the BSCC is reached, P=1[G (

∧
l∈B l)] 6∈ L(t′),

for any state t′ ∈ T, and therefore P=1[F (P=1[G (
∧

l∈B l)])] 6∈ L(s0). Hence, due to
lemma 5.7, ψ 6∈ L(s0).

Condition 3 is violated If for some BSCC T, there is a Ci, such that for all t ∈ T,
there is a l ∈ Ci, such that l 6∈ L(t), then once this BSCC is reached

∧
l∈Ci

l will never
hold. Therefore, P=1[G (

∧
i∈I P=1[F (

∧
l∈Ci

l)])] 6∈ L(s0) and then, due to lemma 5.7,
ψ 6∈ L(s0).

Example 5.9. Consider our previous example in figure 5.2. Figure 5.3 shows a model
for this formula. One can see how the states reflect the sets A, B, and Ci.

34 Chapter 5. PCTL Fragments

This lemma and corollary 5.6 enable us to easily prove P=1[G (φ)] ⇒ f in G(φ).
Moreover, it is useful for the proof of the following lemma, which will be required
for the opposite implication.

Lemma 5.10. For conjunctive FqG1-formulae ψ and ξ, G(ψ) ∧ G(ξ) ≡ f in G(ψ ∧ ξ).

Proof. It is easy to see that A(ψ ∧ ξ) = A(ψ) ∪ A(ξ), B(ψ ∧ ξ) = B(ψ) ∪ B(ξ), and
F(ψ∧ ξ) = F(ψ)∪ F(ξ). Therefore and due to lemma 5.8, a model for G(ψ∧ ξ) must
satisfy A(ψ) and A(ξ) everywhere, satisfy B(ψ) and B(ξ) in every BSCC, and for
every ζ ∈ F(ψ)∪ F(ξ), satisfy C(ζ) in at least one state in every BSCC. It immediately
follows that G(ψ ∧ ξ)⇒ G(ψ) ∧ G(ξ).

Similarly, from G(ψ) and G(ξ) follows that A(ψ) and A(ξ), respectively, must
be satisfied everywhere. Therefore, A(ψ) ∪ A(ξ) holds everywhere. The same argu-
ment can be applied to B and F, and from lemma 5.8 follows that G(ψ) ∧ G(ξ) ⇒
G(ψ ∧ ξ).

Finally, we can prove theorem 5.2.

Proof. We will show that for a conjunctive FqG1-formula φ, P=1[G (φ)] ≡ f in G(φ).

P=1[G (φ)] ⇒ f in G(φ) Let M be a model and P=1[G (φ)] ∈ L(s0) for some s0 ∈ S.
We will show that the conditions of lemma 5.8 hold.

Condition 1 Let l ∈ A(φ). Then, there must be ψ1 . . . ψn ∈ P, such that ψ1 = φ
and ψn = l. We apply induction over n to show that for all ψi, ψi ∈ L(s0) and for all
t ∈ post∗(s0), ψi ∈ L(t). First, note that φ ∈ L(s0), and φ ∈ L(t), for all t ∈ post∗(s0),
since P=1[G (φ)] ∈ L(s0).

Now, we show that if the claim holds for ψi, then it does so for ψi+1. Consider
the following possibilities for ψi.

1. ψi = l. Then, there is nothing to show since there is no ψi+1.

2. ψi = ψi+1 ∧ ξ. Then, ψi+1, ξ ∈ L(s0). Moreover, since ψi ∈ L(t), for all t ∈
post∗(s0), the same holds for ψi+1.

3. ψi = P=1[G (ψi+1)]. Then, ψi+1 ∈ L(s0), and ψi+1 ∈ L(t), for all t ∈ post∗(s0).

Condition 2 We have to show that l ∈ B(φ) is satisfied in every state of every
BSCC. Let ψ1 . . . ψn ∈ P, with ψ1 = φ, and ψn = l. Moreover, let ψk = P=1[G (ψk+1)],
such that no k′ > k exists of that form —i.e. ψk is the deepest G-formula with l ≺ ψk.
Then, from the definition of B, we know that all subformulae of ψk are conjunctions
or literals. From corollary 5.6, we know that for every BSCC T, there is a state t ∈ T,
such that ψk ∈ L(t). But because of the shape of ψk, every subformula of ψk must be
satisfied wherever ψk is satisfied. Thus, l ∈ L(t).

Condition 3 We have to show that for every ξ ∈ F(φ) and every BSCC T, there
is a state t ∈ T, such that for all l ∈ C(ξ), l ∈ L(t). According to the definition
of C, the literals within C(ξ) are connected with conjunctions. Let ζ :=

∧
l∈C(ξ) l.

Corollary 5.6 implies that there is a state t ∈ T, such that ζ ∈ L(t). Therefore, for
every l ∈ C(ξ), l ∈ L(t).

5.1. Conjunctive FqG1-fragment 35

G(φ) ⇒ f in P=1[G (φ)] Let M be a model, and G(φ) ∈ L(s0), for some s0 ∈ S. We
apply induction over φ.

I φ = a. Then, G(φ) = P=1[G (φ)].

II φ = ψ ∧ ξ. From lemma 5.10, we know that G(ψ ∧ ξ) ≡ f in G(ψ) ∧ G(ξ). By the
induction hypothesis follows that G(ψ) ∧ G(ξ) ⇒ f in P=1[G (ψ)] ∧ P=1[G (ξ)],
and finally, lemma 5.7 yields P=1[G (ψ)] ∧ P=1[G (ξ)] ≡ P=1[G (ψ ∧ ξ)].

III φ = P=1[G (ψ)]. It is clear from the definitions that G(P=1[G (ψ)]) = G(ψ).
By the induction hypothesis it follows that G(ψ) ⇒ f in P=1[G (ψ)] ≡
P=1[G (P=1[G (ψ)])]. The last equality follows from lemma A.1, which can be
found in the appendix.

IV φ = PBr[F (ψ)]. It suffices to show that for every BSCC T, there is a state t ∈ T,
such that ψ ∈ L(t). We will apply induction over ψ. However, the current
claim is too weak in order to cover the case ψ = P=1[G (ξ)]. For this, we have
to make the claim stronger in the following way: 1) For every PB′r′ [F (ξ)] ∈
sub(ψ), and for every BSCC T, there is a state t ∈ T, such that ξ ∈ L(t). 2) For
every P=1[G (ξ)] ∈ sub(ψ), BSCC T, and state t ∈ T, ξ ∈ L(t). Now we can
apply the induction.

(a) ψ = l. Then, by construction l ∈ C(φ), and therefore the claim holds.

(b) ψ = ξ ∧ ζ. There are different subcases to consider.

i. ξ = l1, and ζ = l2. In that case, both l1, l2 ∈ C(φ), by construction.
Hence, there is a state that satisfies both.

ii. ξ = P=1[G (ϑ)]. Then, by the induction hypothesis follows that every
state of every BSCC satisfies ξ. Moreover, from the induction hypoth-
esis follows that in every BSCC, there is a state that satisfies ζ. Then,
this state satisfies ψ.

iii. ξ = PB′r′ [F (ϑ)]. By the induction hypothesis, there is a state in ev-
ery BSCC that satisfies ξ. But this means that there is a state in ev-
ery BSCC that satisfies ϑ. Due to the BSCC properties, this state is
reached almost surely from every other state within the same BSCC,
and therefore every state in a BSCC satisfies ξ. Again, from the in-
duction hypothesis it follows that there is a state that satisfies ζ. This
state satisfies ψ.

(c) ψ = PB′r′ [F (ξ)]. Then, by the induction hypothesis, there is a state for
each BSCC that satisfies ξ, and thereby ψ.

(d) ψ = P=1[G (ξ)]. Here, we need to distinguish several subcases again.

i. ξ = l. Then, by construction l ∈ B(φ), and thus the claim holds.
ii. ξ = ζ ∧ ϑ. By lemma 5.7 P=1[G (ζ ∧ ϑ)] ≡ P=1[G (ζ)] ∧ P=1[G (ϑ)].

Then, by the induction hypothesis, the claim holds for both conjuncts,
and hence for the conjunction.

iii. ξ = P=1[G (ζ)]. Then, the claim immediately follows from the induc-
tion hypothesis.

iv. ξ = PBr′′ [F (ζ)]. By the induction hypothesis, for every BSCC, there
is a state that satisfies ζ. The properties of BSCCs provide that ξ holds
in every state of such a BSCC.

36 Chapter 5. PCTL Fragments

∅ ∅ ∅ ∅

{a} {a} {a} {a}

1/2 3/4 7/8

1/2 1/4 1/8 1/16

1 1 1 1

FIGURE 5.4: Counterexample for equality (5.1)

From theorem 5.2 we can derive a method for the construction of models for G-
formulae. Let φ be a G-formula and M, with S := {sψ | ψ ∈ F(φ)}, and L(sψ) :=
A(φ) ∪ B(φ) ∪ C(ψ). Moreover, let P be an arbitrary transition function that gener-
ates a BSCC from S; e.g. P might create a circle out of all states.

Corollary 5.11. If L is a valid labeling, then M can be extended to a model for φ. Otherwise
φ is unsatisfiable.

Proof. From theorem 5.2 follows that φ ≡ G(φ). Lemma 5.8 yields that all BSCCs
in models for φ must be of the form of M. Therefore, if L is not a valid labeling,
there cannot be a model for φ. If it is a valid labeling, then M satisfies the conditions
in lemma 5.8 and therefore can be transformed into a model for φ by adding the
missing labels.

There are some interesting facts about the normal form. We have proven that a
G-formula is finitely equivalent to its normal form. We heavily relied on the proper-
ties of finite models—namely, that they always end up in BSCCs. Now, one might
wonder, if it was really necessary to do this. Would it not have been possible to
prove general equality with a more sophisticated technique? From the above proof,
it is not obvious whether or not we could do this. In the appendix, we provide an al-
ternative proof for the normal form which shows the equivalence in a more straight
forward—yet also more technical—way. Along with various general equalities, we
also provide a proof for the following finite equality

P=1[G (PBr[F (ψ)])] ≡ f in P=1[G (P=1[F (ψ)])]

For the proof, we again use BSCCs. In this case, we can give a concrete coun-
terexample for the general equality

P=1[G (PBr[F (ψ)])] ≡ P=1[G (P=1[F (ψ)])] (5.1)

The infinite Markov chain given in figure 5.4 is a model for P=1[G (P>0[F (a)])],
yet it does not model P=1[G (P=1[F (a)])]. Therefore, this model is also a coun-
terexample for the general equality for the normal form. This chain is also a possible
model for a satisfiable PCTL formula, which is not finitely satisfiable (Brázdil, Forejt,
Křetínskỳ, and Kucera, 2008). However, it is obvious that the above formulae are
both finitely satisfiable. In fact, we will show that all satisfiable G-formulae in this
fragment are finitely satisfiable.

Theorem 5.12. Let φ be a FqG1-formulae, and M a model with P=1[G (φ)] ∈ L(s0) for
some s0 ∈ S. Then, there is a finite model for P=1[G (φ)].

Proof. Corollary 5.5 yields a state s ∈ S which satisfies all G-subformulae of φ. Let
S′ := {sψ ∈ post∗M(s) | PBr[F (ψ)] ∈ sub(φ) and ψ ∈ L(sψ)}. Then, we construct a
new Markov chain M′ where L′ := L|S′ and P′ generates a BSCC from S′. Obviously,

5.1. Conjunctive FqG1-fragment 37

M′ is finite. So, all we have to show is that M′, t0 |= P=1[G (φ)] for some t0 ∈ S′. Let
ψ ∈ sub(φ), and t ∈ S′, with ψ ∈ L(t). We apply induction over the structure of ψ
and show that M′, t |= ψ.

I ψ = a or ψ = ¬a. Nothing to show.

II ψ = ξ ∧ ζ. Then, ξ, ζ ∈ L(t) = L′(t). Therefore, by the induction hypothesis,
M′, t |= ξ and M′, t |= ζ, thus M′, t |= ξ ∧ ζ.

III ψ = PBr[F (ξ)]. Then, by the definition of S′, there is a sξ ∈ S′, such that ξ ∈
L(sξ). By the induction hypothesis, M′, sξ |= ξ. Moreover, since S′ is a BSCC, sξ

is reached almost surely from t, and therefore M′, t |= P=1[F (ξ)]⇒ PBr[F (ξ)].

IV ψ = P=1[G (ξ)]. Since t ∈ post∗M(s) by definition, and s satisfies all G-
subformulae, the same is true for all of its successors, and thus for all t′ ∈
post∗M′(t) = S′, P=1[G (ξ)] ∈ L′(t′), and therefore ξ ∈ L′(t′). Then, by induc-
tion hypothesis, M′, t′ |= ξ. Finally, M′, t |= P=1[G (ξ)].

There is an interesting reason why this proof works. Normally, when we have an
infinite model, we cannot reason about BSCCs for they might not even exist. There
exist formulae which require paths that do not end up in BSCCs. In this fragment,
however, corollary 5.5 enables us to determine a state which behaves quite similar
to a BSCC in that it satisfies all G-subformulae. By filtering out only the interesting
states, we have indeed been able to obtain a BSCC from this state’s subtree.

5.1.2 General Solution

Theorem 5.2 enables us to create simple models for finitely satisfiable G-formulae in
the conjunctive FqG1-fragment, as we have shown in corollary 5.11. With theorem
5.12 we can, therefore, construct models for general, satisfiable G-formulae. In this
section, we will see how those two theorems can help us to solve the satisfiability
problem for general formulae of the considered fragment.

Theorem 5.13. A satisfiable, conjunctive FqG1-formula φ has a model of size f (|φ|), for
some computable function f .

Proof. Let φ be a satisfiable, conjunctive FqG1-formula. For a formula ψ, let

ψ̂ :=

a if ψ = a
ξ̂ ∧ ζ̂ if ψ = ξ ∧ ζ

PBr[F (ξ̂)] if ψ = PBr[F (ξ)]

P=1[G (ξ)] if ψ = P=1[G (ξ)]

ψ :=

a if ψ = a
ξ ∧ ζ if ψ = ξ ∧ ζ

aψ if ψ = PBr[F (ξ)]

P=1[G (ξ)] if ψ = P=1[G (ξ)]

where aψ ∈ A; that is, we replace all F-formulae within G-formulae by atomic
propositions. Let M be a minimal Hintikka chain, and φ ∈ L(s0), for some s0 ∈ S.
We construct M̂ := (S, P, L̂) where L̂(s) := {ψ̂ | ψ ∈ L(s)} for all s ∈ S. Therefore,

38 Chapter 5. PCTL Fragments

φ̂ ∈ L̂(s0). It is easy to see that M̂ is a Hintikka chain. Now, let M′ := red(selM̂; M̂).
From theorem 4.10, we know that M′ is a Hintikka chain for φ̂. We can assume that
it is minimal. We will now show how we can construct a model of limited size for φ
out of M′.

Limited size From theorem 4.4, we know that we can always bound the branch-
ing degree to |φ| + 2. We can consider states without F-formulae in their labels as
leaves of the tree. They only have to satisfy G-formulae, which do not contain any
F-formulae, by the definition of φ̂. Therefore, a single state suffices to satisfy those.
We will now show that the height of the tree M′ is bounded. For this, we will apply
induction over n := |{ψ ∈ L(s) | ψ = PBr[F (ξ)]}|, where s ∈ S′.

I n = 0. In that case, s is a leaf.

II n = n′ + 1. By the construction of red, for every t ∈ postM′(s), there is a
PBr[F (ψ)] ∈ L(s), such that ψ ∈ L(t). Since M′ is a minimal Hintikka chain,
PB′r′ [F (ψ)] 6∈ L(t′), for any B′, r′, and t′ ∈ post∗M̂(t). Hence, every immedi-
ate successor of t has less F-formulae to satisfy —i.e. at most n′. By the in-
duction hypothesis, the height from the immediate successors of t is therefore
bounded, and so it is from t, and thus from s.

Construct a Hintikka chain for φ We can construct a Hintikka chain for φ by con-
structing models for the leaves of M′, i.e. all states that do not contain F-formulae.
We will refer to the resulting model as M̃. We construct it by first expanding every
formula to its original form. Now, we construct models for every leaf by applying
corollary 5.11. This is possible because M′ has been constructed from a model for φ.
Thus, every G-formula in the leaves is satisfiable. Theorem 5.12 yields that they are
finitely satisfiable, and then due to theorem 5.2 we can normalize them.

Now, we still have to prove that the expanded F-formulae hold. Let s ∈ S̃,
P=1[G (ψ)] ∈ L(s), and P=1[F (ξ)] ∈ sub(ψ). We can safely limit our attention to
such formulae due to theorem 5.2. P=1[G (ψ)] is satisfied in every BSCC reachable
from s. Thus, so is P=1[F (ξ)]. Because some BSCC is reached from s almost surely,
P=1[F (ξ)] is satisfied at s.

Note that we started from a minimal Hintikka chain, which is by definition a tree,
and thus infinite. What we called leaves, where in fact still infinite chains. However,
corollary 5.11 enabled us to replace those by BSCCs, and thus obtain a finite model,
in the end.

The reduction procedure described in the proof is illustrated in figure 5.5. For a
concrete example refer to example 4.11

5.2 Finite satisfiability for G-formulae within the FqGq-
Fragment

In section 5.1.1, we have seen how one can create finite models for G-formulae
within the conjunctive FqG1-Fragment. In this section, we will extend this idea to
the general FqGq-Fragment which is defined as follows

Definition 5.14. Formulae conforming to the grammar

Φ ::= a | ¬a | Φ ∧Φ | Φ ∨Φ | PBr[F (Φ)] | PBr[G (Φ)]

5.2. Finite satisfiability for G-formulae within the FqGq-Fragment 39

sel1

sel2

M

sel1
sel2

seln

M′

sel1
sel2

seln

BSCCs

M̃

FIGURE 5.5: Reduction of models for conjunctive FqG1-formulae

are called FqGq-formulae.

Basically, we will see that the properties of BSCCs can help us to obtain a simple
normal form and then simple models for G-formulae within this fragment. How-
ever, our results will only yield equisatisfiability, not equivalence. There is a funda-
mental difference between those notions: If two formulae are equivalent, then we
can indeed replace one by the other within more complex formulae. For equisatis-
fiable formulae this is not the case. Therefore, we were not able to solve the com-
plete FqGq-Fragment in the same way, as we did for the conjunctive FqG1-Fragment.
However, in section 5.3, we will see, how this result can still help to solve formulae
other than pure G-formulae. The following lemma formalizes the normal form.

Theorem 5.15. Let ψ be a FqGq-formula. Then, φ := PBr[G (ψ)] is finitely equisatisfiable
to a F1G1-formula φ′, such that φ′ ⇒ φ.

Proof. Let M be a finite model, and φ ∈ L(s0), for some s0 ∈ S. Then, there must be
at least one BSCC T, and a state t ∈ T, such that PB′r′ [G (ψ)] ∈ L(t). For a formula
ξ, we define ξ̂ recursively as follows

ξ̂ :=

a if ξ = a
ζ̂ ∧ ϑ̂ if ξ = ζ ∧ ϑ

ζ̂ ∨ ϑ̂ if ξ = ζ ∨ ϑ

P=1[F (ζ̂)] if ξ = PBr[F (ζ)]

P=1[G (ζ̂)] if ξ = PBr[G (ζ)].

Let t ∈ T, and ξ ∈ L(t). We will show that ξ̂ ∈ L(t).

I ξ = a. Then, ξ̂ = a = ξ, and thus there is nothing to show.

II ξ = ζ ∧ ϑ. Then, ζ, ϑ ∈ L(t). By the induction hypothesis it follows that
ζ̂, ϑ̂ ∈ L(t), and hence ζ̂ ∧ ϑ̂ = ξ̂ ∈ L(t).

III ξ = ζ ∨ ϑ. Then, ζ ∈ L(t), or ϑ ∈ L(t). By the induction hypothesis it follows
that ζ̂ ∈ L(t), or ϑ̂ ∈ L(t), and hence ζ̂ ∨ ϑ̂ = ξ̂ ∈ L(t).

40 Chapter 5. PCTL Fragments

IV ξ = PBr[F (ζ)]. Then, there is a state t′ ∈ T, such that ζ ∈ L(t′). By the
induction hypothesis, ζ̂ ∈ L(t′). Since T is a BSCC, t′ is reached almost surely.
Therefore, P=1[F (ζ̂)] = ξ̂ ∈ L(t).

V ξ = PBr[G (ζ)]. Assume there was a state t′ ∈ T, such that ζ 6∈ L(t′). Since T
is a BSCC, t′ is reached almost surely, and therefore PBr[G (ζ)] 6∈ L(t), which
is a contradiction. Hence, ζ ∈ L(t′), for all t′ ∈ T. By the induction hypothesis,
ζ̂ ∈ L(t′), for all t′ ∈ T. Finally, this implies that P=1[G (ζ̂)] = ξ̂ ∈ L(t).

We have now shown that if φ is satisfiable, then so is φ̂. Moreover, it is obvious
that φ̂ ⇒ φ. The other direction follows immediately from this fact. Hence, φ is
equisatisfiable to φ̂.

In section 5.3 we will give a formula which makes the finite satisfiability prob-
lem particularly challenging for a certain fragment. This formula also shows that
we cannot extend the above theorem to be a statement about equality rather than
equisatisfiability. However, if we consider only G-formulae, theorem 5.15 motivates
a simple construction for models of those.

Corollary 5.16. Let φ := PBr[G (ψ)] be a finitely satisfiable FqGq-formula. Then, there is
a model of size linear in |φ|.

Proof. By theorem 5.15 we can consider φ̂ instead of φ. Let M be a model, and φ̂ ∈
L(s0), for some s0 ∈ S. We define a new Markov chain M′, such that S′ := {sψ ∈ S |
P=1[F (ψ)] ∈ sub(φ̂) and ψ ∈ L(sψ)}, L′ := L|S′ , and P′ generating a BSCC from S′.
Now, we will prove that for s ∈ S′, and ξ ∈ L′(s), M′, s |= ξ.

I ξ = a. There is nothing to show.

II ξ = ζ ∧ ϑ. Since M is a model, ζ, ϑ ∈ L(s), and therefore ζ, ϑ ∈ L′(s). By the
induction hypothesis, M′, s |= ζ, and M′, s |= ϑ. Thus, M′, s |= ζ ∧ ϑ.

III ξ = ζ ∨ ϑ. Since M is a model, ζ ∈ L(s) = L′(s), or ϑ ∈ L(s) = L′(s). By the
induction hypothesis, M′, s |= ζ, or M′, s |= ϑ. Thus, M′, s |= ζ ∨ ϑ.

IV ξ = P=1[F (ζ)]. By construction, S′ is a BSCC. Thus, sζ is reached almost surely.
By the induction hypothesis, M′, sζ |= ζ. Therefore, M′, s |= P=1[F (ζ)].

V ξ = P=1[G (ζ)]. Since M is a model, for all s′ ∈ S, ζ ∈ L(s′), and thus for
all s′ ∈ S′, ζ ∈ L′(s′). By the induction hypothesis, for all s′ ∈ S′, M′, s′ |= ζ.
Hence, M′, s |= P=1[G (ζ)].

Example 5.17. Consider φ := P≥1/2[G (P≥1/3[F (a)] ∧ P≥1/3[F (¬a)])]. The chain in
figure 5.6 models φ. Unlabeled arcs indicate a uniform distribution over all succes-
sors. It is clear that the model is unnecessarily complicated. The chain in figure 5.7
is a simplified version thereof.

Note that we made frequent use of the BSCC properties for the proofs of this sec-
tion. This normal form that we created was also based on the fact that some BSCC is
reached almost surely. Since this is only the case for finite Markov chains, we had to
assume that the formula is finitely satisfiable. If we considered the general satisfia-
bility problem, then both of the claims here would not be true. E.g. the formula

5.3. General FqG1-Fragment 41

∅

{a} ∅

∅ ∅

{a} {a}

∅

FIGURE 5.6: Large finite model for a FqGq-formula

∅

{a}

FIGURE 5.7: Simplified version of the model in figure 5.6

φ := P>0[G (P>0[F (a)] ∧ ¬a)]

is satisfiable, but requires infinite models, as was pointed out in (Brázdil, Forejt,
Křetínskỳ, and Kucera, 2008). One such model is given in figure 5.4. Now consider

φ̂ := P=1[G (P=1[F (a)] ∧ ¬a)]

Obviously, this is unsatisfiable. Hence, in this case φ is not equisatisfiable to φ̂.

5.3 General FqG1-Fragment

The general FqG1-Fragment extends the conjunctive FqG1-Fragment by disjunctions.
That is

Φ ::= a | ¬a | Φ ∧Φ | Φ ∨Φ | PBr[F (Φ)] | P=1[G (Φ)]

It might seem that this extension does not make the problem much more com-
plicated than it was for the conjunctive fragment. However, we will see that there
are some complications with this fragment, which make the satisfiability problem
much harder to solve. First, we shall recap what the essence of our solution for the
conjunctive fragment was. We were able to deal with the problem of repeated F-
formulae by simply postponing them until the BSCCs. This strategy was perfectly
legitimate because the G-formulae could be transformed into a normal form, where
every F-formula appeared only qualitatively. Moreover, the conjunctions enforced
such formulae to hold in every BSCC.

If we allow disjunctions, the situation is rather different. If a F-formula appears
as part of a disjunction within a G, we cannot guarantee that it will hold in every
BSCC. It might as well happen that one of the other disjuncts is satisfied in some
of the BSCCs. This discussion should have given the reader some intuition on the
nature of the general FqG1-Fragment. Since our arguments were rather abstract,
one might wonder, whether there are formulae, which really require such complex
models. It might also be possible that we could somehow still obtain simple models

42 Chapter 5. PCTL Fragments

{a}
s1

{b}
s2

{a}
s3

{b}
sn

{a}

∅ ∅ ∅

1/2 1/2
1

1
1/2 1/2 1/2

1 1 1

FIGURE 5.8: Large model for (5.2)

{a} {b}

∅

{b}

{a}

1/2

1/2

2− 1/p

1/p− 1

11

1

FIGURE 5.9: Small model for (5.2)

similar to those of the conjunctive version. The following formula demonstrates that
this is not the case:

P=1[G ((P≥1/2[F (a)] ∧ ¬a) ∨ (P≥1/2[F (b)] ∧ ¬b) ∨ P=1[G (¬a ∧ ¬b)])]
∧ P≥p[F (P=1[G (¬a ∧ ¬b)])]
∧ P≥1−p[F (P=1[G (P=1[F (a)] ∧ P=1[F (b)])])]

(5.2)

Intuitively, models for this formula must either be of tree shape with a height
that depends on p or contain a SCC, which is not bottom. Figure 5.8 shows a model
for (5.2) which is almost a tree in the sense that the only SCCs are BSCCs. We can en-
force arbitrarily high values for n, by increasing p. Figure 5.9 shows a model whose
size is independent of p. However, we need a not bottom SCC. Our approach for the
conjunctive fragment did not consider any of those cases. Therefore, we would have
to adapt the procedure in a way that could handle such things. Unfortunately, we
have not been able to find a solution for this problem. However, we did find a solu-
tion for a simplified fragment that includes disjunctions, which we will present in a
subsequent section. But first, we will prove an interesting result about G-formulae
in this fragment.

Theorem 5.18. Let φ be a FqG1-formula, M a model, and P=1[G (φ)] ∈ L(s0), for some
s0 ∈ S. Then, there is a finite model for P=1[G (φ)].

Proof. Let G := {ψ ∈ sub(φ) | ψ = P=1[G (ξ)] for some ξ}, and s ∈ S, such that
|G \ L(s)| = mint∈S(|G \ L(t)|). Now, let M′ be a Markov chain, with S′ := {sψ ∈
post∗M(s) | PBr[F (ψ)] ∈ sub(φ) and ψ ∈ L(sψ)}, L′ := L|S′ , and P′ generating a
BSCC from S′. We claim that M′ is model for P=1[G (φ)]. Let t ∈ S′, and ψ ∈ L(t).
We apply induction over the structure of ψ in order to show that M′, t |= ψ.

I ψ = a or ψ = ¬a. Nothing to show.

II ψ = ξ ∧ ζ. Then, ξ, ζ ∈ L(t) = L′(t). From the induction hypothesis follows
that M′, t |= ξ, and M′, t |= ζ. Therefore, M′, t |= ξ ∧ ζ.

5.3. General FqG1-Fragment 43

III ψ = ξ ∨ ζ. Analogous to the previous case.

IV ψ = PBr[F (ξ)]. By the construction of S′, there is a state sξ ∈ S′ with ξ ∈ L′(sξ).
By the induction hypothesis, M′, sξ |= ξ. Moreover, since S′ is a BSCC, sξ is
reached from t almost surely, and therefore M′, t |= P=1[F (ξ)]⇒ PBr[F (ξ)].

V ψ = P=1[G (ξ)]. By construction, there is no state in post∗M(s) which satis-
fies a G-formula that is not satisfied by s. Since S′ ⊆ post∗M(s), the same G-
formulae must be satisfied by all states in S′. Thus, for all t′ ∈ post∗M(t) = S′,
P=1[G (ξ)] ∈ L′(t′), and hence ξ ∈ L′(t′). Induction hypothesis yields M′, t′ |=
ξ. Finally, we conclude M′, t |= P=1[G (ξ)].

5.3.1 FqG1-Fragment with qualitative Fs in Gs

We have already shown that it is not possible to obtain a similar normal form for
G-formulae as we did for the conjunctive fragment. In order to approach the sat-
isfiability problem for this fragment, we can simply enforce a certain normal form
and simplify the fragment that way. The properties that made the G normal form so
useful were qualitative Fs as well as the fact that they appeared only in conjunctions.
Hence, there are two possibilities how we can reduce the complexity of the general
FqG1-Fragment. Firstly, we can allow disjunctions only outside of Gs. However, this
fragment is trivial to solve, since it is not more expressive than the conjunctive one—
for every disjunction, there must be at least one disjunct that can be satisfied. We can
try all possible selections of disjuncts and forget about the disjunction completely.

Therefore, we shall rather try another restriction; i.e. we allow disjunctions ev-
erywhere, but all F-formulae within Gs must be qualitative. Then, we still have to
deal with the mentioned problem that some F-formulae might not appear in all (or
any) BSCCs. However, their qualitative nature simplifies the solution a lot. The
considered fragment is the following:

Φ ::= a | ¬a | Φ ∧Φ | Φ ∨Φ | PBr[F (Φ)] | P=1[G (Ψ)]

Ψ ::= a | ¬a | Ψ ∧Ψ | Ψ ∨Ψ | P=1[F (Ψ)] | P=1[G (Ψ)]

In this fragment, we can make the following statement: If a F-formula appears
within a G-formula, it will be satisfied almost surely. This gives rise to an intuitive idea:
Just like we postponed the F-formulae in the conjunctive fragment until the BSCCs,
we can postpone the F-formulae until a certain moment. Probably, there are various
options, when to terminate the F-formulae. We will go into the details of our decision
in a moment. Merely postponing F-formulae might not be enough, though. We have
to ensure that the height cannot grow arbitrarily. For this, we need to fix certain
equivalence classes for states. In this case, we will consider states as equivalent if
they terminate the same F-formulae. We will see that this is sufficient to preserve
model properties. Now, we can formalize our ideas.

Construction of reduced models For a formula ψ, let ψ̂ be defined as in the proof
for theorem 5.13; that is, we replace all nested F-formulae by atomic propositions.
Then, for a tree model M for φ, we define M̂ := (S, P, L̂), with L̂(s) := {ψ̂ |
ψ ∈ L(s)}. From this, we can construct the canonical reduction red(selM̂, M̂) =:
(S′, P′, L̂′) =: M̂′. Finally, we create M′ := (S′, P′, L′), with L′ := L|S′ . So far, the

44 Chapter 5. PCTL Fragments

procedure is exactly the same as in the proof for theorem 5.13. However, we now
have to deal with the yet unsatisfied F-formulae. For this, we will use M, in order to
expand M′, such that M′ models φ. In a sense, we will learn from the states that we
omitted in M′. Let s ∈ S, and t ∈ postM′(s). Further, we denote ρM

st for the unique
path leading from s to t in M. Slightly abusing notation, we denote

ρM
st [ψ] :=

{
ρM

st [i] if ψ ∈ L(ρM
st [i]) and @j > i.ψ ∈ L(ρM

st [j])
undefined otherwise

for the last state on ρM
st that satisfies ψ. Using this, we can determine which states

we need to add to M′ in order to obtain a model, namely:

T(ρM
st) := {ρM

st [ψ] | ∃P=1[G (ξ)] ∈ sub(φ).(P=1[F (ψ)] ∈ sub(ξ))}

Now, we can define our model M̃, with

S̃ := S′ ∪
⋃

s∈S′
t∈postM′ (s)

T(ρM
st)

L̃ := L|S̃

P̃(s, t) :=

P′(s, t) if s, t ∈ S′ and T(ρM
st) = ∅

P′(s, t′) if t ∈ T(ρM
st′) and T(ρM

st′) ∩ pre∗M(t) = ∅
1 if s, t ∈ T(ρM

s′t′), s ∈ pre∗M(t) and
T(ρM

s′t′) ∩ post∗M(s) ∩ pre∗M(t) = ∅
1 if s ∈ T(ρM

s′t) and T(ρM
s′t) ∩ post∗M(s) = ∅

0 otherwise

M̃
s0

sel1

sel2

BSCCs

FIGURE 5.10: Reduction of models for FqG1-
formulae with qualitative Fs in Gs. Note that
the BSCCs will be added later. See proof for

theorem 5.20

M̃ extends M′ by simple chains of
states that terminate F-formulae. Fig-
ure 5.10 illustrates this. sel1 and sel2 are
the selections. In the conjunctive FqG1-
fragment, we directly connected those
sets. Here, we insert simple chains be-
tween the selections. The construction
guarantees that we have at most one
state per F-formula to terminate. This
is obtained by postponing the termina-
tion until the last possible moment be-
fore selM̂(s). In fact, one could proba-
bly postpone it even further. However,
we think that this way it is easier to for-
malize and as it still yields the desired
result, we prefer this version. The con-
struction of P̃ preserves the probabili-
ties in a certain sense, as the following lemma states.

Lemma 5.19. Let ρM̃, ρM′ be two finite paths in M̃ and M′, respectively, such that
ρM̃[0] = ρM′ [0], and ρM̃[n] = ρM′ [m] where n := len(ρM̃) and m := len(ρM′). Then,
P̃∗(ρM̃[0], ρM̃[n]) = P′∗(ρM′ [0], ρM′ [m]).

5.3. General FqG1-Fragment 45

Proof. Let ρM̃, ρM′ be such paths. From the construction of P̃, we can see that ρM̃ 6=
ρM′ is only possible if there are s := ρM′ [k], t := ρM′ [k + 1] with T(ρM

st) 6= ∅. We will
now show that P′∗(s, t) = P′(s, t) = P̃∗(s, t).

The first equality is straight forward since t is defined as the successor of s in M′.
Now, let t′ ∈ postM̃(s) (and t′ occurs on ρM̃). We can assume that t′ 6= t and therefore
t′ ∈ T(ρM

st), and there is no t′′ ∈ T(ρM
st) ∩ pre∗M(t′). Then, by definition, P̃(s, t′) =

P′(s, t). Moreover, for u, v ∈ T(ρM
st), with v ∈ postM̃(u), and P̃(u, v) = 1. Therefore,

P̃∗(t′, t) = 1, and then P̃∗(s, t) = P′(s, t). Now, we can repeat this argument for
every fragment on the paths that differ and obtain the equality in the claim.

This result essentially implies that the F-formulae that are not nested in Gs are
still satisfied in M̃. The proof of the following theorem demonstrates how to obtain
a model for φ from M̃.

Theorem 5.20. For a satisfiable FqG1-formula φ, with only qualitative Fs in Gs, there is a
model of size f (|φ|), where f is a computable function.

Proof. M̃ can be extended to such a model. As in the proof for theorem 5.13, we
can see that the size of M′ is bounded, and it has leaves that have to satisfy only
G-formulae. Again, when we say leaves, we actually mean infinite chains without
F-formulae in the labels. We can, therefore, easily see that M̃ is bounded, as well.
However, M̃ might not be a model yet, since the formulae in the leaves might not be
satisfied. Yet, we can create models of bounded size for those due to theorem 5.18
and corollary 5.16. In order to avoid the introduction of another name for this model,
we will use M̃ when we refer to the extended version of our previously defined M̃.
Now, we still have to show that our new M̃ indeed models φ. For this, we will prove
that for all s ∈ S′, and ψ ∈ L′(s), M̃, s |= ψ.

First, note that it was important to not include all states in S̃ in the claim since
this might not be true. Therefore, M̃ is not necessarily a model. However, the claim
is sufficient in order to show that M̃ can be transformed into a model for φ. We
show the claim by induction over ψ. In order for the proof to succeed, we need
to additionally prove that for all P=1[G (ξ)] ∈ L′(s), all ζ ∈ sub(ξ), and all t ∈
post∗M̃(s), ζ ∈ L̃(t) implies M̃, t |= ζ; i.e. we need to guarantee that G-formulae hold
in all states of M̃, not only in S′.

I ψ = a. There is nothing to show.

II ψ = ξ ∧ ζ. If ψ 6∈ sub(P=1[G (ϑ)]), for some ϑ, then we only have to consider
states in S′. Since we did not change the labels, ξ ∈ L′(s), and ζ ∈ L′(s). By
the induction hypothesis, M̃, s |= ξ, and M̃, s |= ζ, and therefore M̃, s |= ξ ∧ ζ.
Otherwise, ξ, ζ ∈ sub(P=1[G (ϑ)]). Therefore, if s ∈ S̃ \ S′, we can still apply
the induction hypothesis and obtain the claim.

III ψ = ξ ∨ ζ. Analogous to the previous case.

IV ψ = P=1[G (ξ)]. We have to consider all states in S̃. We know that ξ ∈ L̃(s),
and, therefore, by the induction hypothesis M̃, s |= ξ. The construction of
P̃ preserves the order of states; that is, post∗M̃(s) ⊆ post∗M(s). Hence, for all
t ∈ post∗M̃(s), P=1[G (ξ)] ∈ L̃(t). Thus M̃, s |= P=1[G (ξ)].

V ψ = PBr[F (ξ)]. If there is no P=1[G (ζ)], such that ψ ∈ sub(ζ), then we can
assume that s ∈ S′. From lemma 5.19 we know that for every finite path in M̃
starting at s, the probability is the same as the corresponding path in M′. From
theorem 4.10, we know that M′, s |= ψ, and therefore M̃, s |= ψ.

46 Chapter 5. PCTL Fragments

{a}
s0

{a} {a}

∅ ∅ ∅ ∅

{a, b} {a, b}

selM(s0)

FIGURE 5.11: Example of a model for a FqG1-formula

{a}
s0

{a, b} ∅ ∅ {a, b}

FIGURE 5.12: Reduced version of the model in figure 5.11

Now assume that ψ ∈ sub(P=1[G (ζ)]). Then, ψ = P=1[F (ξ)]. If s ∈ S′ is a leaf,
then our extension guarantees that M̃, s |= ψ. Therefore, we can assume that s
is not a leaf in M′ and thus there is a t ∈ postM′(s) and t 6= s. Either, ψ ∈ L̃(t),
or there is a state t′ ∈ post∗M(s) ∩ pre∗M(t), with ξ ∈ L(t′). In the latter case,
by construction of M̃, t′ ∈ post∗M̃(s) ∩ pre∗M̃(t). In the other case, we can apply
the same argument at a latter point on the path. In any way, whenever there is
at least one state on a path that satisfies ξ, at least one will be included. Since
such states are reached almost surely in M, the same goes for M̃. If s ∈ S̃ \ S′,
then similar arguments yields the claim. Therefore, M̃, s |= ψ.

The essential idea was to insert simple chains in order to preserve the satisfaction
of nested F-formulae. This only worked because of the qualitative nature of those.
If we allowed for arbitrary F-formulae, such simple chains might not suffice any-
more. Instead, we might have to preserve not only the order of the inserted states
but also (parts of) their subtrees. This, however, might lead to models of arbitrary
height. At the beginning of this section, we have already shown that this problem is
fundamental, and that there is no easy way around it.

Example 5.21. Consider the formula

φ := P≥1/2[F (P=1[G (a)])] ∧ P=1[G (P=1[F (¬a)] ∨ P=1[F (b)])].

Figure 5.11 shows a model for φ. The blue boxes illustrate the canonical selection
of s0. Figure 5.12 shows the corresponding reduced chain. However, it is not a
model for φ. The reason is that neither states satisfying ¬a nor such that satisfy b
are reached almost surely from s0. By including additional states, the chain in figure
5.13 corrects this, and thereby we obtain a model φ.

5.4. Semi-recursive Uq-Fragment 47

{a}
s0

∅ ∅ ∅ ∅

{a, b} {a, b}

FIGURE 5.13: Corrected version of the model in figure 5.12

5.4 Semi-recursive Uq-Fragment

For now, we have only considered fragments that consisted purely out of Fs and Gs.
The reason for this is that they are simpler than Us and Rs in the sense that they
make sort of qualitative claims—either some formula is satisfied somewhere or not.
U-formulae can additionally express properties of the path before some formula is
satisfied. This makes them much more complicated than Fs. Therefore, we will con-
sider those in isolation. As in Gs, we might have to deal with repeated U-formulae,
if they appear in the first argument to another U-formula. Since we were not able
to find a solution for that problem in this fragment, we will simply avoid it, and
consider what we call the semi-recursive Uq-Fragment.

Definition 5.22 (Semi-recursive Uq-fragment). The semi-recursive Uq-fragment con-
sists of formulae of the form

Φ ::= A | Φ ∧Φ | Φ ∨Φ | PBr[(A) U (Φ)]

A ::= a | ¬a | A ∧ A | A ∨ A

What makes this fragment simple, is the fact that the first argument cannot be a
propagating formula. It is, therefore, similar to the pure F-Fragment, except that it
allows general formulae of propositional logic as the first argument, and not only>.
Since we avoid repeating U-formulae, we can minimize models of this fragment by
simply minimizing the Hintikka chain and applying our canonical reduction.

Theorem 5.23. A satisfiable, semi-recursive Uq-formula φ has a model of size f (|φ|), where
f is a computable function.

Proof. Let M be a minimal Hintikka chain and φ ∈ L(s0), for some s0 ∈ S. From
theorem 4.10, we already know that M′ := red(selM, M) is a Hintikka chain and can
thus be transformed into a model. We will now show that the size of M′ can be
limited.

Let s ∈ S′ and PBr[(ψ) U (ξ)] ∈ L(s). Observe that ψ cannot contain any U-
formulae by definition. First assume that there is a formula PB′r′ [(ζ) U (ϑ)], with
PBr[(ψ) U (ξ)] ∈ sub(ϑ). Then, due to the minimal Hintikka condition (MH5), ϑ ∈
L(s) and then due to (MH3), PB′′r′′ [(ζ) U (ϑ)] 6∈ L(t), for any t ∈ post∗M′(s).

Now, assume that no formula ζ exists in L(s), with PBr[(ψ) U (ξ)] ≺ ζ. Let
T ⊆ S, such that for all states t ∈ T, ξ ∈ L(t). Then, for all successors t′ ∈ post∗(t),
PB′r′ [(ψ) U (ξ)] 6∈ L(t′). Therefore, whenever a U-formula is terminated at some
state, all successors have less formulae to satisfy. Since in M′ at least one U-formula
is terminated after every step, the height of the tree is limited by |φ|. By this, we

48 Chapter 5. PCTL Fragments

∅

s0

∅ ∅

{a, e}
s1

{ f } { f , a}
s2

{c, d, e}

{a, e} { f , a} { f , a} {a, e}

{c, d, e} {c, d, e}{ f } { f } {c, d, e}{c, d, e}{ f }{ f }

selM(s0)
selM(s1)
selM(s2)

FIGURE 5.14: Example of a model for a semi-recursive Uq-formula

∅

s0

{a, e} { f } { f , a} {c, d, e}

{c, d, e} {c, d, e} { f } { f }

FIGURE 5.15: Reduced version of the model in figure 5.14

mean that after at most |φ| steps, we reach a state that does not have to satisfy any
propagating formulae. We can thus simply self loop with probability 1.

Due to theorem 4.4, we can limit the branching degree by |φ| + 2 and thus the
overall model size is limited by |φ||φ|+2.

Example 5.24. Consider the formula

φ :=
P≥1/2[(¬ f) U (P=1[(a ∧ e) U (c ∧ d ∧ e)])]∧
P≥1/2[(¬e) U (P=1[(¬c ∧ f) U (¬a ∧ ¬d ∧ f)])].

The Markov chains in figures 5.14 and 5.15 are both models for φ. The latter is the
reduced version of the former. This example also illustrates, how the minimization
of the Hintikka chain can help reducing the size: After having terminated the U-
formulae, we self-loop immediately and omit subsequent states.

49

6 Conclusion and Future Work

In this thesis, we have introduced various techniques to normalize models. We have
seen how one can vertically collapse models by applying reductions, and horizon-
tally collapse models by cutting off certain branches. We have shown that those
methods are applicable to models of quite general formulae and demonstrated how
they can help us to obtain limited models for the semi-recursive Uqq and the re-
stricted FqG1-fragments. For those fragments, we have even shown that the gen-
eral satisfiability problem is equivalent to the finite satisfiability problem. For the
FqGq-fragment, we have solved the finite satisfiability problem for G-formulae, and
argued why we cannot easily extend the result to general formulae in this frag-
ment. Furthermore, we discussed the limitations of the developed methods for other
fragments and presented a concrete example of a challenging formula in the FqG1-
fragment.

Future Work Many open questions still remain. Firstly, we solved the satisfia-
bility problem for quite restrictive fragments. Therefore, it would be interesting
to extend the results to more general ones. For instance, considering the full Uq-
fragment might be quite interesting. Similarly, overcoming our restriction in the
FqG1-fragment is certainly of interest. Of course, we could continue generalizing
the fragments until we can capture the whole of PCTL. From this the question arises,
whether satisfiability is at all decidable for general formulae—and if it is not, what
is the largest decidable fragment? Furthermore, it is certainly interesting to explore
the differences between general and finite satisfiability. What do we need to add in
order for those to be different problems? As soon as we start considering fragments
where those are indeed different, we need to understand which representation of
infinite Markov chains is sufficient to capture all possible models for the formulae.
One important thing that we have not covered at all, is the complexity of the consid-
ered problems.

51

A Alternative Proof for Theorem
5.2

In the subsequent proofs, we will deal with rather complex formulae. In order to
improve readability, we will abbreviate G- and F-formulae, such that the syntax be-
comes

Φ := a | ¬a | FBrΦ | G=1Φ

Lemma A.1.

G=1G=1ψ ≡ G=1ψ (A.1)
G=1FBrψ ≡ f in G=1F=1ψ (A.2)

F=1FBrψ ≡ FBrψ (A.3)
F=1G=1F=1ψ ≡ G=1F=1ψ (A.4)

G=1F=1G=1ψ ≡ F=1G=1ψ (A.5)

Proof. Let M be a model. First, observe that G=1ψ ∈ L(s0) implies that ψ ∈ L(s0),
whereas ψ ∈ L(s0) implies that F=1ψ ∈ L(s0).

Equality (A.1) Assume that G=1G=1ψ ∈ L(s0). Then, due to the above observa-
tion, G=1ψ ∈ L(s0). Now assume that G=1ψ ∈ L(s0). Then, G=1ψ ∈ L(s), for all
s ∈ post∗(s0). Therefore, Pr({π ∈ Cyl(s0) | π |= G (G=1ψ)}) = 1, which implies
G=1G=1ψ ∈ L(s0).

Equality (A.2) Assume that G=1FBrψ ∈ L(s0). Then, for all BSCCs T, and all states
t ∈ T, G=1FBrψ ∈ L(t), and therefore FBrψ ∈ L(t). Hence, there must be a state
t′ ∈ T, with ψ ∈ L(t′). Since T is a BSCC, t′ is reached almost surely from every
state in T. Therefore, G=1F=1ψ ∈ L(t). As we are considering finite models only,
every run ends up in a BSCC almost surely and thus G=1F=1ψ ∈ L(s0). The reverse
implication is obvious.

Equality (A.3) Assume F=1FBrψ ∈ L(s0). Then, there is a set T ⊆ post∗(s0), such
that for all t ∈ T, FBrψ ∈ L(t) and Pr({π ∈ Cyl(s0) | ∃i.π[i] ∈ T}) = 1. We can
compute the probability to reach ψ as follows

Pr({π ∈ Cyl(s0) | π |= F (ψ)})B ∑
t∈T

P∗(s0, t) · r = r

This means that FBrψ ∈ L(s0). The converse implication follows immediately
from the fact that ξ ∈ L(s0) implies F=1ξ ∈ L(s0).

Equality (A.4) Assume F=1G=1F=1ψ ∈ L(s0). Then, there is a set T ⊆ post∗(s),
where for all t ∈ T, G=1F=1ψ ∈ L(t) and Pr({π ∈ Cyl(s0) | ∃i.π[i] ∈ T}) = 1. Thus,

52 Appendix A. Alternative Proof for Theorem 5.2

for all t ∈ T, F=1ψ ∈ L(t). Therefore, F=1F=1ψ ∈ L(s0). Equality (A.3) yields F=1ψ ∈
L(s0). This argument can be applied to all states in post∗(s0)∩ pre∗(T). Therefore, for
all s ∈ post∗(s0), F=1ψ ∈ L(s) and then G=1F=1ψ ∈ L(s0). The converse implication
is again due to ξ ⇒ F=1ξ.

Equality (A.5) Assume F=1G=1ψ ∈ L(s0). Then, for every state s ∈ post∗(s0),
either F=1G=1ψ ∈ L(s) or G=1ψ ∈ L(s). In the latter case, however, it also holds that
F=1G=1ψ ∈ L(s0). Therefore, for every state s ∈ post∗(s0), F=1G=1ψ ∈ L(s), and
thus G=1F=1G=1ψ ∈ L(s0). The converse implication follows from G=1ψ⇒ ψ.

Lemma A.2 (Distributivity).

F=1(
∧

i

FBri ψi) ≡
∧

i

FBri ψi (A.6)

G=1(
∧

i

ψi) ≡
∧

i

G=1ψi (A.7)

F=1G=1(
∧

i

ψi) ≡
∧

i

F=1G=1ψi (A.8)

G=1F=1(ψ ∧ FBrξ) ≡ f in G=1(F=1ψ ∧ F=1ξ) (A.9)

G=1F=1(ψ ∧G=1ξ) ≡ G=1(F=1ψ ∧ F=1G=1ξ) (A.10)

Proof. Let M be a model. In general,

F=1
∧

i

ψi ⇒
∧

i

F=1ψi (A.11)

Equality (A.6) From the implication (A.11) follows

F=1
∧

i

FBri ψi ⇒
∧

i

F=1FBri ψi
(A.3)
≡

∧
i

FBri ψi

The converse implication is clear.

Equality (A.7) Assume
∧

i G=1ψi ∈ L(s0). Then, for all s ∈ post∗(s0), and all i,
ψi ∈ L(s). This implies that

∧
i ψi ∈ L(s) and therefore G=1

∧
i ψi ∈ L(s0).

If, on the other hand, G=1
∧

i ψi ∈ L(s0), then for every s ∈ post∗(s0),
∧

i ψi ∈ L(s),
and hence, for all i, ψi ∈ L(s). Thus

∧
i G=1ψi ∈ L(s0).

Equality (A.8) From equality (A.7) follows that F=1G=1
∧

i ψi ≡ F=1
∧

i G=1ψi, and
from the implication (A.11), F=1

∧
i G=1ψi ⇒

∧
i F=1G=1ψi.

Now assume that
∧

i F=1G=1ψi ∈ L(s0). Then, for all i, there is a set Ti ⊆
post∗(s0), where for all t ∈ Ti, G=1ψi ∈ L(t) and Pr({π ∈ Cyl(s0) | ∃j.π[j] ∈
Ti}) = 1. Let T :=

⋂
i Ti. Then, for all t ∈ T, and all i, G=1ψi ∈ L(t). What is left to

show is that Pr({π ∈ Cyl(s0) | ∃j.π[j] ∈ T}) = 1. Since for all s ∈ post∗(s0), either
F=1G=1ψi ∈ L(s) or G=1ψi ∈ L(s), the same holds for every T′ ⊆ pre∗(T), and in
particular for every Ti. Thus, T is reached almost surely.

Equality (A.9) Assume G=1(F=1ψ ∧ F=1ξ) ∈ L(s0). Then, for all states
s ∈ post∗(s0), F=1ψ ∈ L(s) and F=1ξ ∈ L(s). Let s′ be such that ψ ∈ L(s).
Then, F=1ξ ∈ L(s′) must also hold, and therefore ψ ∧ F=1ξ ∈ L(s′). Since this is true

Appendix A. Alternative Proof for Theorem 5.2 53

for all states that satisfy ψ, and those are reached almost surely from every state,
G=1(F=1(ψ ∧ F=1ξ)) ∈ L(s0).

For the converse implication, we can apply our proven equalities to obtain

G=1(F=1(ψ ∧ FBrξ))
(A.11)⇒ G=1(F=1ψ ∧ F=1FBrξ)

(A.3)
≡ G=1(F=1ψ ∧ FBrξ)

(A.7)
≡ G=1(F=1ψ) ∧G=1(FBrξ)

(A.2)
≡ f in G=1(F=1ψ) ∧G=1(F=1ξ)

(A.7)
≡ G=1(F=1ψ ∧ F=1ξ)

Equality (A.10) Assume G=1(F=1ψ ∧ F=1G=1ξ) ∈ L(s0). Then there is a set
T ⊆ post∗(s0), such that for all t ∈ T, G=1ξ ∈ L(t), and Pr({π ∈ Cyl(s0) |
∃i.π[i] ∈ T}) = 1. Since all successors of s0 satisfy F=1ψ, in particular this must
be true for all t ∈ T. Hence, there must be T′ ⊆ T, with all states satisfying ψ and
Pr({π ∈ Cyl(s0) | ∃i.π[i] ∈ T′}) = 1. Therefore, F=1(ψ ∧ G=1ξ) ∈ L(s0). This
argument can be applied to every successor of s0, and we therefore conclude that
G=1F=1(ψ ∧G=1ξ) ∈ L(s0). The converse implication follows immediately from
the implication (A.11).

Now we can provide an alternative proof for theorem 5.2. Recall the theorem
statement.

Theorem A.3. Let φ be a conjunctive FqG1-formula. Then, the following equality holds

G=1(φ) ≡ f in G=1(
∧
l∈A

l ∧ F=1G=1(
∧
l∈B

l) ∧
∧
i∈I

F=1(
∧

l∈Ci

l))

For appropriate A, B, Ci ⊂ L.

Proof. We apply induction over φ.

Case φ = l Then A := {l} and the claim holds.

54 Appendix A. Alternative Proof for Theorem 5.2

Case φ ≡ ψ ∧ ξ

G=1(ψ ∧ ξ)

(A.7)
≡ G=1ψ ∧G=1ξ

I.H≡ f in G=1(
∧

l∈Aψ

l ∧ F=1G=1(
∧

l∈Bψ

l) ∧
∧

i∈Iψ

F=1(
∧

l∈Cψ,i

l))

∧G=1(
∧

l∈Aξ

l ∧ F=1G=1(
∧

l∈Bξ

l) ∧
∧
i∈Iξ

F=1(
∧

l∈Cξ,i

l))

(A.7)
≡ G=1(

∧
l∈Aψ∪Aξ

l ∧ F=1G=1(
∧

l∈Bψ

l) ∧ F=1G=1(
∧

l∈Bξ

l)

∧
∧

i∈Iψ

F=1(
∧

l∈Cψ,i

l) ∧
∧
i∈Iξ

F=1(
∧

l∈Cξ,i

l))

(A.8)
≡ G=1(

∧
l∈Aψ∪Aξ

l ∧ F=1G=1(
∧

l∈Bψ∪Bξ

l)

∧
∧

i∈Iψ

F=1(
∧

l∈Cψ,i

l) ∧
∧
i∈Iξ

F=1(
∧

l∈Cξ,i

l))

Case φ = G=1ψ Then from equality (A.1) it follows that

G=1G=1ψ ≡ G=1ψ

and thus the claim holds by induction hypothesis.

Case φ = FBrψ From equality (A.2) it follows

G=1FBrψ ≡ f in G=1F=1ψ

This case will be covered next.

Case φ = F=1ψ Now we will show that

G=1F=1ψ ≡ G=1(F=1G=1(
∧
l∈B

l) ∧
∧
i∈I

F=1(
∧

l∈Ci

l))

For this, we will consider several subcases, which results in another induction.
In order to distinguish between the hypotheses, we will refer to the inductions as
the inner and outer induction, respectively.

Subcase ψ = l Setting C := {l} yields the claim.

Subcase ψ = FBrξ Applying Lemma A.1, we get

G=1F=1FBrξ
(A.3)
≡ G=1FBrξ

(A.2)
≡ f in G=1F=1ξ

and the claim holds by inner induction hypothesis.

Appendix A. Alternative Proof for Theorem 5.2 55

Subcase ψ = G=1ξ Applying the outer induction hypothesis and Lemmas A.1
and A.2 yields

G=1F=1G=1ξ

o.I.H≡ f in G=1F=1G=1(
∧
l∈A

l ∧ F=1G=1(
∧
l∈B

l) ∧
∧
i∈I

F=1(
∧

l∈Ci

l))

(A.8)
≡ G=1(F=1G=1(

∧
l∈A

l) ∧ F=1G=1F=1G=1(
∧
l∈B

l)

∧
∧
i∈I

F=1G=1F=1(
∧

l∈Ci

l))

(A.4)
(A.5)
≡ G=1(F=1G=1(

∧
l∈A

l) ∧ F=1G=1(
∧
l∈B

l) ∧
∧
i∈I

G=1F=1(
∧

l∈Ci

l))

(A.8)
≡ G=1(F=1G=1(

∧
l∈A∪B

l) ∧
∧
i∈I

G=1F=1(
∧

l∈Ci

l))

(A.7)
≡ G=1(F=1G=1(

∧
l∈A∪B

l)) ∧G=1G=1(
∧
i∈I

F=1(
∧

l∈Ci

l))

(A.1)
≡ G=1(F=1G=1(

∧
l∈A∪B

l)) ∧G=1(
∧
i∈I

F=1(
∧

l∈Ci

l))

(A.7)
≡ G=1(F=1G=1(

∧
l∈A∪B

l) ∧
∧
i∈I

F=1(
∧

l∈Ci

l))

ψ ≡ ∧
i ξi In this case we need to show that although F=1 does not distribute

over conjunctions in general, we still can get a formula of the desired form. We can
split the conjunction into subformulae like this:∧

i

ξi ≡
∧
l∈C

l ∧
∧

i

FBri ζi ∧
∧

i

G=1ϑi (A.12)

Then we can apply the induction hypotheses and the lemmas A.1 and A.2 to
obtain:

G=1F=1(
∧

i

ξi)

(A.12)
≡ G=1F=1(

∧
l∈C

l ∧
∧

i

G=1ϑi ∧
∧

i

FBrζi)

(A.9)
≡ G=1(F=1(

∧
l∈C

l ∧
∧

i

G=1ϑi) ∧
∧

i

F=1ζi)

(A.7)
≡ G=1(F=1(

∧
l∈C

l ∧G=1
∧

i

ϑi) ∧
∧

i

F=1ζi)

(A.10)
≡ G=1(F=1(

∧
l∈C

l) ∧ F=1G=1(
∧

i

ϑi) ∧
∧

i

F=1ζi)

56 Appendix A. Alternative Proof for Theorem 5.2

o.I.H≡ f in G=1(F=1(
∧
l∈C

l) ∧
∧

i

F=1ζi

∧ F=1G=1(
∧

l∈Aϑ

l ∧ F=1G=1(
∧

l∈Bϑ

l) ∧
∧

i∈Iϑ

F=1(
∧

l∈Cϑ,i

l)))

(A.8)
≡ G=1(F=1(

∧
l∈C

l) ∧
∧

i

F=1ζi ∧ F=1G=1(
∧

l∈Aϑ

l)

∧ F=1G=1F=1G=1(
∧

l∈Bϑ

l) ∧
∧

i∈Iϑ

F=1G=1F=1(
∧

l∈Cϑ,i

l))

(A.4)
(A.5)
≡ G=1(F=1(

∧
l∈C

l) ∧
∧

i

F=1ζi ∧ F=1G=1(
∧

l∈Aϑ

l)

∧ F=1G=1(
∧

l∈Bϑ

l) ∧
∧

i∈Iϑ

G=1F=1(
∧

l∈Cϑ,i

l))

(A.8)
≡ G=1(F=1(

∧
l∈C

l) ∧
∧

i

F=1ζi ∧ F=1G=1(
∧

l∈Aϑ∪Bϑ

l)

∧
∧

i∈Iϑ

G=1F=1(
∧

l∈Cϑ,i

l))

(A.7)
(A.1)
≡ G=1(

∧
i

F=1ζi ∧ F=1G=1(
∧

l∈Aϑ∪Bϑ

l) ∧ F=1(
∧
l∈C

l) ∧
∧

i∈Iϑ

F=1(
∧

l∈Cϑ,i

l))

(A.7)
i.I.H≡ G=1(

∧
i

(F=1G=1(
∧

l∈Bζi

l) ∧
∧

j∈Iζi

F=1(
∧

l∈Cζi ,j

l))

∧ F=1G=1(
∧

l∈Aϑ∪Bϑ

l) ∧ F=1(
∧
l∈C

l) ∧
∧

i∈Iϑ

F=1(
∧

l∈Cϑ,i

l))

(A.8)
≡ G=1(F=1G=1((

∧
i

∧
l∈Bζi

l) ∧ (
∧

l∈Aϑ∪Bϑ

l))∧

∧
∧

i

∧
j∈Iζi

F=1(
∧

l∈Cζi ,j

l) ∧ F=1(
∧
l∈C

l) ∧
∧

i∈Iϑ

F=1(
∧

l∈Cϑ,i

l))

57

B Hintikka Minimization
Algorithm

Algorithm 1 Minimization

MINIMIZE(s0)
function MINIMIZE(s)

L(s) := L(s) ∩ sub∗(φ) . (MH1)
for PBr[(ψ) U (ξ)] ∈ L(s) do . (MH5)

for ζ ∈ sub∗(ξ) ∩ L(s) do
if ξ 6∈ L(s) then

L(s) := L(s) \ {ζ}
end if

end for
end for
for t ∈ post(s) do

L(t) := L(t) ∩ sub∗(L(s)) . (MH2)
for PBr[(ψ) U (ξ)] ∈ ¬rep(L(s)) do . (MH3)

if ξ ∈ L(s) then
for r′ ∈ [0, 1],B′ ∈ {>,≥} do

L(t) := L(t) \ {PB′r′ [(ψ) U (ξ)]}
end for

end if
end for
for PBr[(ψ) R (ξ)] ∈ ¬rep(L(s)) do . (MH4)

if ψ ∧ ξ ∈ L(s) then
for r′ ∈ [0, 1],B′ ∈ {>,≥} do

L(t) := L(t) \ {PB′r′ [(ψ) R (ξ)]}
end for

end if
end for
MINIMIZE(t)

end for
end function

59

Bibliography

Alur, Rajeev, Costas Courcoubetis, and David Dill (1993). “Model-checking in dense
real-time”. In: Information and computation 104.1, pp. 2–34.

Baier, Christel and Joost-Pieter Katoen (2008). Principles of model checking. MIT press.
Bertrand, Nathalie, John Fearnley, and Sven Schewe (2012). “Bounded Satisfiability

for PCTL”. In: Computer Science Logic (CSL’12) - 26th International Workshop/21st
Annual Conference of the EACSL, CSL 2012, September 3-6, 2012, Fontainebleau,
France, pp. 92–106.

Brázdil, Tomáš, Vojtech Forejt, Jan Křetínskỳ, and Antonín Kucera (2008). “The sat-
isfiability problem for probabilistic CTL”. In: Logic in Computer Science, 2008.
LICS’08. 23rd Annual IEEE Symposium on. IEEE, pp. 391–402.

Chakraborty, Souymodip and Joost-Pieter Katoen (2016). “On the satisfiability of
some simple probabilistic logics”. In: Proceedings of the 31st Annual ACM/IEEE
Symposium on Logic in Computer Science. ACM, pp. 56–65.

Dimitrova, Rayna, Luis María Ferrer Fioriti, Holger Hermanns, and Rupak Majum-
dar (2016). “Probabilistic CTL ˆ{*} : The Deductive Way”. In: International Confer-
ence on Tools and Algorithms for the Construction and Analysis of Systems. Springer,
pp. 280–296.

Emerson, E Allen and Joseph Y Halpern (1982). “Decision procedures and expres-
siveness in the temporal logic of branching time”. In: Proceedings of the fourteenth
annual ACM symposium on Theory of computing. ACM, pp. 169–180.

Rosenthal, Jeffrey S (2006). A first look at rigorous probability theory. World Scientific
Publishing Co Inc.

	Declaration of Authorship
	Abstract
	Introduction
	Related Work
	Our Contribution

	Background on Probability Theory
	Probability Spaces and Markov Chains
	Markov Chains and their underlying Graphs

	Probabilistic Computational Tree Logic
	Syntax
	Semantics
	Normal Form

	General Model Properties
	Hintikka Chains
	General Collapsing Methods
	Horizontal Collapse
	Vertical Collapse

	PCTL Fragments
	Conjunctive Fq G1-fragment
	Solution for G-formulae
	General Solution

	Finite satisfiability for G-formulae within the Fq Gq-Fragment
	General Fq G1-Fragment
	Fq G1-Fragment with qualitative Fs in Gs

	Semi-recursive Uq-Fragment

	Conclusion and Future Work
	Alternative Proof for Theorem 5.2
	Hintikka Minimization Algorithm
	Bibliography

