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My prejudices

• verification tackled by von Neumann and Turing
• the search has been for ‘tractability’ [Jon03]

• the real payoff from formal methods is in design
• code analysis can detect errors
• unfortunately it does!
• is it more productive to avoid their insertion?
• formalism should support/check intuition
• ‘posit and prove’
• furthermore: a genie offers you a choice . . .

• we understand complex systems from the top-down
• i.e. via abstractions
• ‘compositionality’ is a practical concern

• what if one is stuck with 10n lines of legacy code?
• top-down abstractions are useful in bottom-up analysis
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Some lessons from VDM
VDM program development [Jon80]; VDM language description [BJ82]

• predicate restricted types (thanks to Lockwood Morris)
• relations (over ⌃) are essential for post conditions (. . . )
• ‘real world’ specifications don’t fit on a line

• keywords for structure
• . . . also for defining (rd/wr) ‘frame’

• data abstraction/reification crucial in design
• retrieve functions
• ‘adequacy’

• (avoid) ‘implementation bias’
• but there are understood cases where one can’t

• cf. reservations about ghost (auxiliary) variables
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Concurrency

• my main interest is in ‘shared variable’ concurrency
• others have developed similar ideas for processes

(communication-based) concurrency
• interference: because construct ‘variables’ in ⇡-calculus

• the real payoff from formal methods is in design
• concurrency

• inherent in some top-level applications
• for performance = distribute computation or data

• ‘compositionality’
• is a practical concern
• is difficult to achieve for concurrency
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Issues in concurrency
look at issues (don’t start with notation(s))

• interference
• separation
• ownership
• ‘linearisability’ (vs. splitting atoms)
• progress
• . . .
• distributing data
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Concurrency: pre Owicki

• Hoare (post Axiomatic Basis)
• [Hoa69] — pick up [Hoa72] under “separation”

• interference (i.e. shared alphabets)
• Ashcroft [Ash75] (TR in 1973)

• proof of “cross product” of control points
• labour intensive!

• completely post facto
• non compositional
• arbitrary/fixed granularity assumption

• assignments taken to be atomic
• cf. so-called “Reynold’s rule”
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Susan Owicki [Owi75]
supervised by David Gries

p1 p1

q1 q2
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Owicki/Gries [Owi75, OG76]

• interference (i.e. shared alphabets)
• separate sequential reasoning
• post facto: final ‘Einmischungsfrei’ PO
• non compositional
• arbitrary/fixed granularity assumption
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Rely/Guarantee (R/G) idea is simple
face interference (in specifications and design process)

pre
z}|{
�0 · · ·

rely
z }| {
�i �i+1 · · · �j �j+1| {z }

guar

· · · �f

| {z }
post

• assumptions pre/rely
• commitments guar/post

rely relations are an abstraction of interference to be tolerated
their expressive weakness might be a good thing!
‘power’ can beget intractability
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One 5-tuple proof rule
many other possible rules

Par-I

{P,R _ G2} S1 {G1,Q1}
{P,R _ G1} S2 {G2,Q2}
{P,R} S1 || S2 {G1 _ G2,Q1 ^ Q2 ^ (R _ G1 _ G2)⇤}

scope for variation in rules much larger (than in Hoare logic)
here: for composition (more compact than decomposition)

but, actually, less useful
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Developments from R/G

• early
• over 20 theses
• zB Ketil Stoelen deals with progress
• . . .
• Leonor Prensa Nieto formalise soundness proof in Isabelle

• . . .
• recent

• RGSep [Vaf07]
• Bornat (twice) on Simpson’s ‘4-slot’ algorithm
• (Concurrent) Kleene Algebras
• Armstrong (2016) looks at soundness via Kleene Algebras
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R/G rethought [JHC15, HJC14]
“pulling apart” R/G

Original rely/guarantee (R/G) can be presented as 5-tuples

But instead of
{P,R} S {G,Q}

We now follow the ‘refinement calculus’:
x:
î
P,Q
ó

x:
î
Q
ó

= / v

and wrap rely/guar around any statement
rely R • c
guar G • c
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(Some) Laws of the new algebraic R/G

Nested-G: (guar g1 • (guar g2 • c)) = (guar g1 ^ g2 • c)

Intro-G: c v (guar g • c)

Trading-G-Q: (guar g • [g⇤ ^ q]) = (guar g • [q])

Intro-multi-Par: ^i[qi] v ki (guar gr • (rely gr • [qi]))
(asymmetric version below)
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(Parallel) Sieve of Eratosthenes

1 2 3 4 5 6 7 8 9 10 11 12 ...

REM(2)

REM(3)
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Refinement calculus style development

Set s might initially contain all natural numbers up to some n
C is the set of all composite numbers

[s0 = s� C] = [s0 ✓ s ^ s� s0 ✓ C ^ s0 \ C = { }]
v by Intro-G

guar s0 ✓ s ^ s� s0 ✓ C • [s0 ✓ s ^ s� s0 ✓ C ^ s0 \ C = { }]
= by Trading-G-Q (s� s0 ✓ C is transitive)

guar s0 ✓ s ^ s� s0 ✓ C • [s0 \ C = { }]
v by Intro-multi-Par

guar s0 ✓ s ^ s� s0 ✓ C •
(ki guar s0 ✓ s • rely s0 ✓ s • [s0 \ ci = { }])

= Nested-G
guar s� s0 ✓ C ^ s0 ✓ s • (ki rely s0 ✓ s • [s0 \ ci = { }])
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R/G observations

• asymmetric rely/guarantee conditions are important:
[q1 ^ q2] v (guar g1 • (rely g2 • [q1])) || (guar g2 • (rely g1 • [q2]))

• nice bonus of new style: guar-inv g • c
• apposite representations often key to avoiding locking

• FINDP
• QREL — (spotted in design of CLEANUP)
• SIEVE
• 4-SLOT
• only fully realised in [Jon07]

• (yet more) ‘abstract R/G’ (Ian Hayes looking at guar c • c0)
• cf. ‘phasing’, but
• remember ‘expressive weakness’ point!
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Another issue: ‘separation’

• ‘separation’ = ‘non-interference’
• return to this later

• see what (data) abstraction can do for interference
• retaining my top-down prejudice

• ordinary (‘scoped’) variables assumed to be separate
• leave aside ‘by location’ parameter passing!

• towards a different view
• ‘heap’ variables as representations of scoped variables?

• this exercise in the same spirit as ‘taking apart’ R/G
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Separation Logic (SL)
refresher!

• basic idea is, again, simple
• to prove things about S1 k S2
• would like to conjoin their pre/post conditions

• history
• parallelism with ‘scoped’ variables — [Hoa72]
• mentioned by Peter O’Hearn at Tony’s 2009 event
• ‘Separation Logic’ for ‘heap’ variables — [Rey02]
• Concurrent Separation Logic — Peter O’Hearn [O’H07]

• ‘heap’ variables can’t be handled by ‘alphabets’
• SL designed for this case

• origin: bottom-up code analysis
• heap variables
• “probably avoid SL for ‘scoped’ variables!”
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Two key SL proof rules

‘Separating conjunction’ – P ⇤ Q (only if P and Q are separate)

SL-concurrency

{P1} s1 {Q1}
{P2} s2 {Q2}
{P1 ⇤ P2} s1 || s2 {Q1 ⇤ Q2}

Frame rule

SL-frame
{P} s {Q}
{P ⇤ R} s {Q ⇤ R}
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‘Separation as an abstraction’
[JY15]

two examples:

• Reynold’s simple sequential (in-place) list reversal
• a concurrent merge sort
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Example 1: list reversal example (Reynolds)
John started . . .

The following program performs an in-place reversal of a list:

j : = nil; while i 6= nil do

(k : = [i + 1]; [i + 1] : = j; j : = i; i : = k).

(Here the notation [e] denotes the contents of the storage at
address e.)

He then derives a post condition using 9↵,� · list(↵, i) ⇤ list(�, j)
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Re-do the example with
‘Separation as an abstraction’

r, s:
î
r0 = rev(s)

ó

rev :X⇤ ! X⇤

rev(s) 4 · · ·

s and r are assumed to be distinct (‘scoped’) variables
that they are separate is a (useful and) natural abstraction
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first step of design

⌃0 = X⇤ ⇥ X⇤

it is straightforward to ‘posit & prove’:

r  [ ];
while s 6= [ ] do

STEP0
{rev(s0)y r0 = rev(s)y r ^ len s0 < len s}

od

STEP0 r, s:
î
s 6= { }, r0 = [hd s]y r ^ s0 = tl s

ó

We have finished thinking about reversing sequences!
We now think about data (representation)
NB: s and r are still assumed to be distinct variables
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(Heap but) Srep is a useful abstraction

Heap = Ptr m�! (X ⇥
î
Ptr
ó
)

Inductive definition of Srep ✓ Heap

{ } 2 Srep
sr 2 Srep ^ p 2 Ptr ^ p /2 dom sr )

({p 7! (v, start(sr))} [ sr) 2 Srep

start({ }) = nil

start({p 7! (v, start(sr))} [ sr) = p

Could develop a theory of Srep (e.g. Isabelle)
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Reify (X⇤ ⇥ X⇤) as ⌃1

⌃1 = (Srep⇥ Srep)

where

inv-⌃1((sr, rr)) 4 sep(sr, rr)

sep : Srep⇥ Srep! B

sep(sr, rr) 4
dom sr \ dom rr = { }

Reasoning about Interference (or lack thereof) Cliff Jones [25]
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STEP on ⌃1

STEP1 rr, sr:

2

6664

sr 6= { },
let p = start(sr) in

sr0 = {p}�� sr^
rr0 = rr [ {p 7! (sr(p)1, start(rr))}

3

7775

Lemma 1 STEP1 preserves inv-⌃1
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Data reification (homomorphic rule)

A

R

retr

OP-A

OP-R

retr retr
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Data reification proof — standard (VDM) rule

retr0 :⌃1 ! ⌃0

retr0((sr, rr)) 4 (gather(sr), gather(rr))

gather: Srep! X⇤

gather({ }) = [ ]
gather({p 7! (v, start(sr))} [ sr) = [v]y gather(sr)

Lemma 2 (‘Adequacy’) There is a ⌃1 representation of any ⌃0

Lemma 3 (‘Commutativity’) STEP1 models (under retr0) the
abstract STEP0
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Reification to a single Heap

⌃2 = (Heap⇥ Ptr ⇥ Ptr)

where

inv-⌃2((hp, i, j)) 4

9sr, rr 2 Srep · sr [ rr ✓ hp ^ i = start(sr) ^ j = start(rr)

• another exercise in data reification
• it is mandatory that sep holds between the two sub-heaps

because their union is used in (sr [ rr) ✓ hp
• NB ✓ admits the possibility of other information in the heap
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Relating ⌃2/⌃1

retr1 :⌃2 ! ⌃1

retr1((hp, i, j)) 4 (trace(hp, i)� hp, trace(hp, j)� hp)

trace :Heap⇥ Ptr ! Ptr-set

trace(hp, p) 4
if p = nil

then { }
else {p} [ trace(hp, hp(p)2)

Lemma 4 trace from start(sr) characterises sr

Lemma 5 (‘Adequacy’) of ⌃2 wrt ⌃1/retr1

Theorem 1 (‘Commutativity’) STEP2 models (under retr1) STEP1

Reasoning about Interference (or lack thereof) Cliff Jones [30]



Background Interference Separation Conclusions Ownership Posvals

Comments on Example 1

• separation is an abstraction
• wot, no Separation Logic?
• representation shown to preserve the abstraction
• standard reification process

• wot, no R/G?
• no concurrency
• therefore, no interference

• layered design
• (only) first step is concerned with list reversal
• second is (only) about data representation

• (C++) code in the paper
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Example 2: concurrent merge sort
SKIP!

is-sort :X⇤ ⇥ X⇤ ! B

is-sort(s, s0) 4 ordered(s0) ^ permutes(s0, s)

ordered :X⇤ ! B

ordered(s) 4 · · ·

permutes :X⇤ ⇥ X⇤ ! B

permutes(s, s0) 4 · · ·

Because concurrent processes are used, employ Intro-par
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What has been achieved?

• reason about separation as an abstraction
• only standard (long-established) notions

• (like all reification steps) argue properties preserved
• key sorting ideas proved on the abstraction

• only need to show the implementation mirrors steps
• echoes Wirth: Algorithms + Data = Programming

• minimal use of R/G, mainly abstraction!
• this is not an argument against SL

• . . . a nice definition of Srep uses separating conjunction (*)
• as with ‘pulling apart’ R/G, get to issue (of separation)
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A (non-specialist’s) view of SL
• basic idea works well for ‘disjoint concurrency’

• e.g. parallel merge sort
• (most papers) limit to ‘partial correctness’
• (too?) many extensions

• magic wand (fits algebraic view)
• fractional permissions Boyland
• Concurrent Abstract Predicates [DYDG+10]
• Next 700 Separation Logics [Par10]

• conceptual framework
• monoids
• Abstract Separation Logic [COY07]
• Views [DYBG+13]

• is it better to have everything under one (conceptual) roof?
• vs. (?)
• ‘natural abstractions’
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Relating interference/separation

compare with RGSep [Vaf07]

A key (abstract) R/G law

[q1 ^ q2] v (guar g1 • (rely g2 • [q1])) || (guar g2 • (rely g1 • [q2]))

. . . covers complete or partial separation

Reasoning about Interference (or lack thereof) Cliff Jones [35]



Background Interference Separation Conclusions Ownership Posvals

Conclusions

• don’t take position:
“my notation (aka hammer) solves every problem”

• beware the siren the call of ‘universality’
• but ‘abstraction’ is a/the key to understanding
• start with the issues

• interference
• separation
• ownership
• progress
• ‘linearisability’ (vs. splitting atoms)
• . . .
• distributing data
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