
Background Interference Separation Conclusions Ownership Posvals

Reasoning about Interference
(or lack thereof)

Cliff Jones

Newcastle University

TUV
2016-03-08

Reasoning about Interference (or lack thereof) Cliff Jones [1]

Background Interference Separation Conclusions Ownership Posvals

My prejudices

• verification tackled by von Neumann and Turing
• the search has been for ‘tractability’ [Jon03]

• the real payoff from formal methods is in design
• code analysis can detect errors
• unfortunately it does!
• is it more productive to avoid their insertion?
• formalism should support/check intuition
• ‘posit and prove’
• furthermore: a genie offers you a choice . . .

• we understand complex systems from the top-down
• i.e. via abstractions
• ‘compositionality’ is a practical concern

• what if one is stuck with 10n lines of legacy code?
• top-down abstractions are useful in bottom-up analysis

Reasoning about Interference (or lack thereof) Cliff Jones [2]

Background Interference Separation Conclusions Ownership Posvals

Some lessons from VDM
VDM program development [Jon80]; VDM language description [BJ82]

• predicate restricted types (thanks to Lockwood Morris)
• relations (over ⌃) are essential for post conditions (. . .)
• ‘real world’ specifications don’t fit on a line

• keywords for structure
• . . . also for defining (rd/wr) ‘frame’

• data abstraction/reification crucial in design
• retrieve functions
• ‘adequacy’

• (avoid) ‘implementation bias’
• but there are understood cases where one can’t

• cf. reservations about ghost (auxiliary) variables

Reasoning about Interference (or lack thereof) Cliff Jones [3]

Background Interference Separation Conclusions Ownership Posvals

Concurrency

• my main interest is in ‘shared variable’ concurrency
• others have developed similar ideas for processes

(communication-based) concurrency
• interference: because construct ‘variables’ in ⇡-calculus

• the real payoff from formal methods is in design
• concurrency

• inherent in some top-level applications
• for performance = distribute computation or data

• ‘compositionality’
• is a practical concern
• is difficult to achieve for concurrency

Reasoning about Interference (or lack thereof) Cliff Jones [4]

Background Interference Separation Conclusions Ownership Posvals

Issues in concurrency
look at issues (don’t start with notation(s))

• interference
• separation
• ownership
• ‘linearisability’ (vs. splitting atoms)
• progress
• . . .
• distributing data

Reasoning about Interference (or lack thereof) Cliff Jones [5]

Background Interference Separation Conclusions Ownership Posvals

Concurrency: pre Owicki

• Hoare (post Axiomatic Basis)
• [Hoa69] — pick up [Hoa72] under “separation”

• interference (i.e. shared alphabets)
• Ashcroft [Ash75] (TR in 1973)

• proof of “cross product” of control points
• labour intensive!

• completely post facto
• non compositional
• arbitrary/fixed granularity assumption

• assignments taken to be atomic
• cf. so-called “Reynold’s rule”

Reasoning about Interference (or lack thereof) Cliff Jones [6]

Background Interference Separation Conclusions Ownership Posvals

Susan Owicki [Owi75]
supervised by David Gries

p1 p1

q1 q2

Reasoning about Interference (or lack thereof) Cliff Jones [7]

Background Interference Separation Conclusions Ownership Posvals

Owicki/Gries [Owi75, OG76]

• interference (i.e. shared alphabets)
• separate sequential reasoning
• post facto: final ‘Einmischungsfrei’ PO
• non compositional
• arbitrary/fixed granularity assumption

Reasoning about Interference (or lack thereof) Cliff Jones [8]

Background Interference Separation Conclusions Ownership Posvals

Rely/Guarantee (R/G) idea is simple
face interference (in specifications and design process)

pre
z}|{
�0 · · ·

rely
z }| {
�i �i+1 · · · �j �j+1| {z }

guar

· · · �f

| {z }
post

• assumptions pre/rely
• commitments guar/post

rely relations are an abstraction of interference to be tolerated
their expressive weakness might be a good thing!
‘power’ can beget intractability

Reasoning about Interference (or lack thereof) Cliff Jones [9]

Background Interference Separation Conclusions Ownership Posvals

One 5-tuple proof rule
many other possible rules

Par-I

{P,R _ G2} S1 {G1,Q1}
{P,R _ G1} S2 {G2,Q2}
{P,R} S1 || S2 {G1 _ G2,Q1 ^ Q2 ^ (R _ G1 _ G2)⇤}

scope for variation in rules much larger (than in Hoare logic)
here: for composition (more compact than decomposition)

but, actually, less useful

Reasoning about Interference (or lack thereof) Cliff Jones [10]

Background Interference Separation Conclusions Ownership Posvals

Developments from R/G

• early
• over 20 theses
• zB Ketil Stoelen deals with progress
• . . .
• Leonor Prensa Nieto formalise soundness proof in Isabelle

• . . .
• recent

• RGSep [Vaf07]
• Bornat (twice) on Simpson’s ‘4-slot’ algorithm
• (Concurrent) Kleene Algebras
• Armstrong (2016) looks at soundness via Kleene Algebras

Reasoning about Interference (or lack thereof) Cliff Jones [11]

Background Interference Separation Conclusions Ownership Posvals

R/G rethought [JHC15, HJC14]
“pulling apart” R/G

Original rely/guarantee (R/G) can be presented as 5-tuples

But instead of
{P,R} S {G,Q}

We now follow the ‘refinement calculus’:
x:
î
P,Q
ó

x:
î
Q
ó

= / v

and wrap rely/guar around any statement
rely R • c
guar G • c

Reasoning about Interference (or lack thereof) Cliff Jones [12]

Background Interference Separation Conclusions Ownership Posvals

(Some) Laws of the new algebraic R/G

Nested-G: (guar g1 • (guar g2 • c)) = (guar g1 ^ g2 • c)

Intro-G: c v (guar g • c)

Trading-G-Q: (guar g • [g⇤ ^ q]) = (guar g • [q])

Intro-multi-Par: ^i[qi] v ki (guar gr • (rely gr • [qi]))
(asymmetric version below)

Reasoning about Interference (or lack thereof) Cliff Jones [13]

Background Interference Separation Conclusions Ownership Posvals

(Parallel) Sieve of Eratosthenes

1 2 3 4 5 6 7 8 9 10 11 12 ...

REM(2)

REM(3)

Reasoning about Interference (or lack thereof) Cliff Jones [14]

Background Interference Separation Conclusions Ownership Posvals

Refinement calculus style development

Set s might initially contain all natural numbers up to some n
C is the set of all composite numbers

[s0 = s� C] = [s0 ✓ s ^ s� s0 ✓ C ^ s0 \ C = { }]
v by Intro-G

guar s0 ✓ s ^ s� s0 ✓ C • [s0 ✓ s ^ s� s0 ✓ C ^ s0 \ C = { }]
= by Trading-G-Q (s� s0 ✓ C is transitive)

guar s0 ✓ s ^ s� s0 ✓ C • [s0 \ C = { }]
v by Intro-multi-Par

guar s0 ✓ s ^ s� s0 ✓ C •
(ki guar s0 ✓ s • rely s0 ✓ s • [s0 \ ci = { }])

= Nested-G
guar s� s0 ✓ C ^ s0 ✓ s • (ki rely s0 ✓ s • [s0 \ ci = { }])

Reasoning about Interference (or lack thereof) Cliff Jones [15]

Background Interference Separation Conclusions Ownership Posvals

R/G observations

• asymmetric rely/guarantee conditions are important:
[q1 ^ q2] v (guar g1 • (rely g2 • [q1])) || (guar g2 • (rely g1 • [q2]))

• nice bonus of new style: guar-inv g • c
• apposite representations often key to avoiding locking

• FINDP
• QREL — (spotted in design of CLEANUP)
• SIEVE
• 4-SLOT
• only fully realised in [Jon07]

• (yet more) ‘abstract R/G’ (Ian Hayes looking at guar c • c0)
• cf. ‘phasing’, but
• remember ‘expressive weakness’ point!

Reasoning about Interference (or lack thereof) Cliff Jones [16]

Background Interference Separation Conclusions Ownership Posvals

Another issue: ‘separation’

• ‘separation’ = ‘non-interference’
• return to this later

• see what (data) abstraction can do for interference
• retaining my top-down prejudice

• ordinary (‘scoped’) variables assumed to be separate
• leave aside ‘by location’ parameter passing!

• towards a different view
• ‘heap’ variables as representations of scoped variables?

• this exercise in the same spirit as ‘taking apart’ R/G

Reasoning about Interference (or lack thereof) Cliff Jones [17]

Background Interference Separation Conclusions Ownership Posvals

Separation Logic (SL)
refresher!

• basic idea is, again, simple
• to prove things about S1 k S2
• would like to conjoin their pre/post conditions

• history
• parallelism with ‘scoped’ variables — [Hoa72]
• mentioned by Peter O’Hearn at Tony’s 2009 event
• ‘Separation Logic’ for ‘heap’ variables — [Rey02]
• Concurrent Separation Logic — Peter O’Hearn [O’H07]

• ‘heap’ variables can’t be handled by ‘alphabets’
• SL designed for this case

• origin: bottom-up code analysis
• heap variables
• “probably avoid SL for ‘scoped’ variables!”

Reasoning about Interference (or lack thereof) Cliff Jones [18]

Background Interference Separation Conclusions Ownership Posvals

Two key SL proof rules

‘Separating conjunction’ – P ⇤ Q (only if P and Q are separate)

SL-concurrency

{P1} s1 {Q1}
{P2} s2 {Q2}
{P1 ⇤ P2} s1 || s2 {Q1 ⇤ Q2}

Frame rule

SL-frame
{P} s {Q}
{P ⇤ R} s {Q ⇤ R}

Reasoning about Interference (or lack thereof) Cliff Jones [19]

Background Interference Separation Conclusions Ownership Posvals

‘Separation as an abstraction’
[JY15]

two examples:

• Reynold’s simple sequential (in-place) list reversal
• a concurrent merge sort

Reasoning about Interference (or lack thereof) Cliff Jones [20]

Background Interference Separation Conclusions Ownership Posvals

Example 1: list reversal example (Reynolds)
John started . . .

The following program performs an in-place reversal of a list:

j : = nil; while i 6= nil do

(k : = [i + 1]; [i + 1] : = j; j : = i; i : = k).

(Here the notation [e] denotes the contents of the storage at
address e.)

He then derives a post condition using 9↵,� · list(↵, i) ⇤ list(�, j)

Reasoning about Interference (or lack thereof) Cliff Jones [21]

Background Interference Separation Conclusions Ownership Posvals

Re-do the example with
‘Separation as an abstraction’

r, s:
î
r0 = rev(s)

ó

rev :X⇤ ! X⇤

rev(s) 4 · · ·

s and r are assumed to be distinct (‘scoped’) variables
that they are separate is a (useful and) natural abstraction

Reasoning about Interference (or lack thereof) Cliff Jones [22]

Background Interference Separation Conclusions Ownership Posvals

first step of design

⌃0 = X⇤ ⇥ X⇤

it is straightforward to ‘posit & prove’:

r [];
while s 6= [] do

STEP0
{rev(s0)y r0 = rev(s)y r ^ len s0 < len s}

od

STEP0 r, s:
î
s 6= { }, r0 = [hd s]y r ^ s0 = tl s

ó

We have finished thinking about reversing sequences!
We now think about data (representation)
NB: s and r are still assumed to be distinct variables

Reasoning about Interference (or lack thereof) Cliff Jones [23]

Background Interference Separation Conclusions Ownership Posvals

(Heap but) Srep is a useful abstraction

Heap = Ptr m�! (X ⇥
î
Ptr
ó
)

Inductive definition of Srep ✓ Heap

{ } 2 Srep
sr 2 Srep ^ p 2 Ptr ^ p /2 dom sr)

({p 7! (v, start(sr))} [sr) 2 Srep

start({ }) = nil

start({p 7! (v, start(sr))} [sr) = p

Could develop a theory of Srep (e.g. Isabelle)

Reasoning about Interference (or lack thereof) Cliff Jones [24]

Background Interference Separation Conclusions Ownership Posvals

Reify (X⇤ ⇥ X⇤) as ⌃1

⌃1 = (Srep⇥ Srep)

where

inv-⌃1((sr, rr)) 4 sep(sr, rr)

sep : Srep⇥ Srep! B

sep(sr, rr) 4
dom sr \ dom rr = { }

Reasoning about Interference (or lack thereof) Cliff Jones [25]

Background Interference Separation Conclusions Ownership Posvals

STEP on ⌃1

STEP1 rr, sr:

2

6664

sr 6= { },
let p = start(sr) in

sr0 = {p}�� sr^
rr0 = rr [{p 7! (sr(p)1, start(rr))}

3

7775

Lemma 1 STEP1 preserves inv-⌃1

Reasoning about Interference (or lack thereof) Cliff Jones [26]

Background Interference Separation Conclusions Ownership Posvals

Data reification (homomorphic rule)

A

R

retr

OP-A

OP-R

retr retr

Reasoning about Interference (or lack thereof) Cliff Jones [27]

Background Interference Separation Conclusions Ownership Posvals

Data reification proof — standard (VDM) rule

retr0 :⌃1 ! ⌃0

retr0((sr, rr)) 4 (gather(sr), gather(rr))

gather: Srep! X⇤

gather({ }) = []
gather({p 7! (v, start(sr))} [sr) = [v]y gather(sr)

Lemma 2 (‘Adequacy’) There is a ⌃1 representation of any ⌃0

Lemma 3 (‘Commutativity’) STEP1 models (under retr0) the
abstract STEP0

Reasoning about Interference (or lack thereof) Cliff Jones [28]

Background Interference Separation Conclusions Ownership Posvals

Reification to a single Heap

⌃2 = (Heap⇥ Ptr ⇥ Ptr)

where

inv-⌃2((hp, i, j)) 4

9sr, rr 2 Srep · sr [rr ✓ hp ^ i = start(sr) ^ j = start(rr)

• another exercise in data reification
• it is mandatory that sep holds between the two sub-heaps

because their union is used in (sr [rr) ✓ hp
• NB ✓ admits the possibility of other information in the heap

Reasoning about Interference (or lack thereof) Cliff Jones [29]

Background Interference Separation Conclusions Ownership Posvals

Relating ⌃2/⌃1

retr1 :⌃2 ! ⌃1

retr1((hp, i, j)) 4 (trace(hp, i)� hp, trace(hp, j)� hp)

trace :Heap⇥ Ptr ! Ptr-set

trace(hp, p) 4
if p = nil

then { }
else {p} [trace(hp, hp(p)2)

Lemma 4 trace from start(sr) characterises sr

Lemma 5 (‘Adequacy’) of ⌃2 wrt ⌃1/retr1

Theorem 1 (‘Commutativity’) STEP2 models (under retr1) STEP1

Reasoning about Interference (or lack thereof) Cliff Jones [30]

Background Interference Separation Conclusions Ownership Posvals

Comments on Example 1

• separation is an abstraction
• wot, no Separation Logic?
• representation shown to preserve the abstraction
• standard reification process

• wot, no R/G?
• no concurrency
• therefore, no interference

• layered design
• (only) first step is concerned with list reversal
• second is (only) about data representation

• (C++) code in the paper

Reasoning about Interference (or lack thereof) Cliff Jones [31]

Background Interference Separation Conclusions Ownership Posvals

Example 2: concurrent merge sort
SKIP!

is-sort :X⇤ ⇥ X⇤ ! B

is-sort(s, s0) 4 ordered(s0) ^ permutes(s0, s)

ordered :X⇤ ! B

ordered(s) 4 · · ·

permutes :X⇤ ⇥ X⇤ ! B

permutes(s, s0) 4 · · ·

Because concurrent processes are used, employ Intro-par

Reasoning about Interference (or lack thereof) Cliff Jones [32]

Background Interference Separation Conclusions Ownership Posvals

What has been achieved?

• reason about separation as an abstraction
• only standard (long-established) notions

• (like all reification steps) argue properties preserved
• key sorting ideas proved on the abstraction

• only need to show the implementation mirrors steps
• echoes Wirth: Algorithms + Data = Programming

• minimal use of R/G, mainly abstraction!
• this is not an argument against SL

• . . . a nice definition of Srep uses separating conjunction (*)
• as with ‘pulling apart’ R/G, get to issue (of separation)

Reasoning about Interference (or lack thereof) Cliff Jones [33]

Background Interference Separation Conclusions Ownership Posvals

A (non-specialist’s) view of SL
• basic idea works well for ‘disjoint concurrency’

• e.g. parallel merge sort
• (most papers) limit to ‘partial correctness’
• (too?) many extensions

• magic wand (fits algebraic view)
• fractional permissions Boyland
• Concurrent Abstract Predicates [DYDG+10]
• Next 700 Separation Logics [Par10]

• conceptual framework
• monoids
• Abstract Separation Logic [COY07]
• Views [DYBG+13]

• is it better to have everything under one (conceptual) roof?
• vs. (?)
• ‘natural abstractions’

Reasoning about Interference (or lack thereof) Cliff Jones [34]

Background Interference Separation Conclusions Ownership Posvals

Relating interference/separation

compare with RGSep [Vaf07]

A key (abstract) R/G law

[q1 ^ q2] v (guar g1 • (rely g2 • [q1])) || (guar g2 • (rely g1 • [q2]))

. . . covers complete or partial separation

Reasoning about Interference (or lack thereof) Cliff Jones [35]

Background Interference Separation Conclusions Ownership Posvals

Conclusions

• don’t take position:
“my notation (aka hammer) solves every problem”

• beware the siren the call of ‘universality’
• but ‘abstraction’ is a/the key to understanding
• start with the issues

• interference
• separation
• ownership
• progress
• ‘linearisability’ (vs. splitting atoms)
• . . .
• distributing data

Reasoning about Interference (or lack thereof) Cliff Jones [36]

Background Interference Separation Conclusions Ownership Posvals

Edward A Ashcroft.
Proving assertions about parallel programs.
Journal of Computer and System Sciences, 10(1):110–135, 1975.

Richard Bornat and Hasan Amjad.
Inter-process buffers in separation logic with rely-guarantee.
Formal Aspects of Computing, 22(6):735–772, 2010.

Dines Bjørner and Cliff B. Jones, editors.
Formal Specification and Software Development.
Prentice Hall International, 1982.

Cristiano Calcagno, Peter O’Hearn, and Hongseok Yang.
Local action and abstract separation logic.
In LICS 2007, pages 366–378. IEEE, 2007.

Thomas Dinsdale-Young, Lars Birkedal, Philippa Gardner, Matthew
Parkinson, and Hongseok Yang.
Views: compositional reasoning for concurrent programs.
In Proceedings of the 40th annual ACM SIGPLAN-SIGACT symposium
on Principles of programming languages, pages 287–300. ACM, 2013.

Reasoning about Interference (or lack thereof) Cliff Jones [36]

Background Interference Separation Conclusions Ownership Posvals

Thomas Dinsdale-Young, Mike Dodds, Philippa Gardner, Matthew J.
Parkinson, and Viktor Vafeiadis.
Concurrent abstract predicates.
In Proceedings of the 24th European conference on Object-oriented
programming, pages 504–528, Berlin, Heidelberg, 2010.
Springer-Verlag.

Ian J. Hayes, Cliff B. Jones, and Robert J. Colvin.
Laws and semantics for rely-guarantee refinement.
Technical Report CS-TR-1425, Newcastle University, July 2014.

C. A. R. Hoare.
An axiomatic basis for computer programming.
Communications of the ACM, 12(10):576–580, 583, October 1969.

C.A.R. Hoare.
Towards a theory of parallel programming.
In Operating System Techniques, pages 61–71. Academic Press, 1972.

Cliff B. Jones, Ian J. Hayes, and Robert J. Colvin.
Balancing expressiveness in formal approaches to concurrency.
Formal Aspects of Computing, 27(3):465–497, 2015.

Reasoning about Interference (or lack thereof) Cliff Jones [36]

Background Interference Separation Conclusions Ownership Posvals

C. B. Jones.
Software Development: A Rigorous Approach.
Prentice Hall International, Englewood Cliffs, N.J., USA, 1980.

Cliff B. Jones.
The early search for tractable ways of reasonning about programs.
IEEE, Annals of the History of Computing, 25(2):26–49, 2003.

C. B. Jones.
Splitting atoms safely.
Theoretical Computer Science, 375(1–3):109–119, 2007.

Cliff B. Jones and Nisansala Yatapanage.
Reasoning about separation using abstraction and reification.
In Radu Calinescu and Bernhard Rumpe, editors, Software Engineering
and Formal Methods, volume 9276 of LNCS, pages 3–19. Springer,
2015.

S. S. Owicki and D. Gries.
An axiomatic proof technique for parallel programs I.
Acta Informatica, 6:319–340, 1976.

Reasoning about Interference (or lack thereof) Cliff Jones [36]

Background Interference Separation Conclusions Ownership Posvals

P. W. O’Hearn.
Resources, concurrency and local reasoning.
Theoretical Computer Science, 375(1-3):271–307, May 2007.

S. Owicki.
Axiomatic Proof Techniques for Parallel Programs.
PhD thesis, Department of Computer Science, Cornell University, 1975.

Matthew Parkinson.
The next 700 separation logics.
volume 6217 of LNCS, pages 169–182. Springer, 2010.

John Reynolds.
A logic for shared mutable data structures.
In Gordon Plotkin, editor, LICS 2002. IEEE Computer Society Press,
July 2002.

Viktor Vafeiadis.
Modular fine-grained concurrency verification.
PhD thesis, University of Cambridge, 2007.

Reasoning about Interference (or lack thereof) Cliff Jones [37]

	Background
	Interference
	Separation
	Conclusions
	Ownership
	Posvals

