UNIVERSITAT ZU LUBECK

Stream Processing with
Local Temporal Reasoning

Ozgiir L. Ozcep

Workshop Stream Reasoning, Vienna
November 9, 2015

Local Reasoning on Streams

Taming the Potential Infinity of Streams

« <« « <« « <« <« <« <« « <« « < |«< < Sin
f f f f f f } } Time
0.0 1.0 2.0 3.0 4.0 5.0 6.0 7.0
Y v Sout
Fooy

v 4

v v

v v

v v 4
4 v

x
x
AR

v
v
v
v

4 4

» Window operator as a means to cope with potential infinity
» Grab finite portion of stream and do something on it

3/26

Local Reasoning Service

C/Rloc

<« « « <« <« <« <« <« < « <« <« < €| < <

Time

» Local calculation/reasoning C/Rjoc

» arithmetics, timeseries-analysis operations
» Entailment, satisfiability, query answering, abduction, revision,

4/26

High-Level Stream Processing

C/Rloc

« <« « <« <« <« <« <« < « <« €« € |«< <

T T T T T T T T Time
0.0 1.0 2.0 3.0 4.0 5.0 6.0 7.0

» Local calculation/reasoning C/Rjoc

» arithmetics, timeseries-analysis operations
» Entailment, satisfiability, query answering, abduction, revision,

» Background knowledge KB: static data, historical data, learned
data

5/26

OBDA within OPTIQUE

OPTIQUE

>

EU 7th framework program
(http://www.optique-project.eu/)

Two big data use cases from industrial partners

» STATOIL SAS: Querying data on wellbore related DBs
» SIEMENS: Querying sensor and event data from (gas) turbines

Cycle of constructing query, issueing it, and getting answers is
bottleneck in both use cases

Optique platform: OBDA with user support + optimizations
on different levels + Streaming

Liibeck (R. Méller, C. Neuenstadt, O.0.) responsible for
stream-temporal OBDA module — STARQL

7/26

 http://www.optique-project.eu/

Ontology-Based Data Access

» Use ontologies as interface ...

» to access (here: query)

» data stored in some format ...

> using mappings @ Query
Ontology

>

Classical OBDA TBox ABOX

> Relational data
» ABox is virtual
> Query answering by H

mappings

rewriting/unfolding
("Reasoning by rewriting')

» Weak ontology language
(no qualified existentials on

left-hand of inclusions)

=
]

8/26

Data models
Std. ontologies

End-user

Visualisation
& Analysis
A

IT-expert

>> > D> > > > >
results

A
A
A
~ ~ ~ L
D - -
streaming data temporal data static data

Distributed DSMS EXAREME

Reasoning within STARQL

Window Semantics in STARQL

'—»llll

» Group elements according to specified criterion (including
timestamps) into mini-bags

» Technically: Result is a sequence of ABoxes/RDF graphs

11/26

Incorporating the Background Knowledge

‘.

.

12 /26

Sequencing in STARQL

Information Need

Output every 1 minute those temperature sensors having value
above 90 over the last minute

Representation in STARQL

CREATE STREAM S_out AS

CONSTRUCT { ?7sens rdf:type :tooHigh }<NOW>

FROM S_in [NOW , NOW - 1 minute]-> 1 minute,
ABOX, TBOX

WHERE { ?sens rdf:type TempSens }

SEQUENCE BY StdSeq AS seq

HAVING FORALL i IN seq FORALL ?7x

IF { 7?sens :hasVal ?x }<i> THEN ?x > 90

13/26

Why at all Bother with State Sequences?

» Building microcosm for LTL like temporal reasoning on states
> But note

» Temporal logic frameworks presuppose state sequences
» In contrast, sequence construction is part of STARQL query

» Use case may require different types of states

» cluster states using machine learning techniques
» states corresponding to consistent ABoxes

14 /26

Types of Reasoning in STARQL

Representation in STARQL

CREATE STREAM S_out AS
CONSTRUCT { ?7sens rdf:type :tooHigh }<NOW>
FROM S_in [NOW , NOW - 1 minute]-> 1 minute,
ABOX, TBOX
WHERE { ?sens rdf:type TempSens }
SEQUENCE BY StdSeq AS seq
HAVING FORALL i IN seq FORALL 7x
IF { 7sens :hasVal ?x }<i> THEN ?7x > 90

15/26

Types of Reasoning in STARQL

Determining certain answers
» Has to incorporate TBox (e.g. BT TempSens C TempSens)
» Handled by rewriting

Representation in STARQL

CREATE STREAM S_out AS
CONSTRUCT { ?7sens rdf:type :tooHigh }<NOW>
FROM S_in [NOW , NOW - 1 minute]-> 1 minute,
ABOX, TBOX
WHERE { 7sens rdf:type TempSens }
SEQUENCE BY StdSeq AS seq
HAVING FORALL i IN seq FORALL 7x
IF { 7sens :hasVal ?x }<i> THEN ?x > 90

16 /26

Types of Reasoning in STARQL

Determining certain answers
» Has to incorporate TBox (e.g. BT TempSens C TempSens)
» Handled by rewriting

Representation in STARQL

CREATE STREAM S_out AS
CONSTRUCT { ?7sens rdf:type :tooHigh }<NOW>
FROM S_in [NOW , NOW - 1 minute]-> 1 minute,
ABOX, TBOX
WHERE { ?sens rdf:type TempSens }
SEQUENCE BY StdSeq AS seq
HAVING FORALL i IN seq FORALL 7x
IF { 7sens :hasVal 7x }<i> THEN 7x > 90

17/26

Types of Reasoning in STARQL

Local temporal reasoning on states

Representation in STARQL

CREATE STREAM S_out AS
CONSTRUCT { ?7sens rdf:type :tooHigh }<NOW>
FROM S_in [NOW , NOW - 1 minute]-> 1 minute,
ABOX, TBOX
WHERE { ?sens rdf:type TempSens }
SEQUENCE BY StdSeq AS seq
HAVING FORALL i IN seq FORALL 7x
IF { 7sens :hasVal ?7x }<i> THEN 7x > 90

18/26

Types of Reasoning in STARQL

Reasoning involved in constructing the state sequence
(in particular for checking consistency of mini ABoxes)

Representation in STARQL

CREATE STREAM S_out AS
CONSTRUCT { ?7sens rdf:type :tooHigh }<NOW>
FROM S_in [NOW , NOW - 1 minute]-> 1 minute,
ABOX, TBOX
WHERE { ?sens rdf:type TempSens }
SEQUENCE BY StdSeq AS seq
HAVING FORALL i IN seq FORALL 7x
IF { 7sens :hasVal ?x }<i> THEN ?7x > 90

19/26

Theoretical Results

» State elimination

» State abstraction means additional layer in OBDA stack
» Nonetheless, it can be eliminated
(0., Méller, Neuenstadt 2014, 2015)

20/26

Theoretical Results

» Relation to LTL approaches

Backend systems mostly have domain independent languages
LTL like query languages not domain independent

TCQs: CQs combined with LTL (Borgwardt et al. 13)

A fragment of STARQL embeds a safe fragment of TCQs
(0., Méller, Neuenstadt 2015)

v

v vy

21/26

Practical Results

v

Implemented STARQL sub-module with optimizations
Transformation realized to backend EXAREME
» Optimizations for distributed stream processing in EXAREME

v

v

Multiple Query/multiple stream handling

» Monitor different components (turbines, sensors)
» Monitor different hand-crafted well-proven patterns

v

Specific statistical and time-series operators

» Pearson-correlation (e.g. for detecting out faulty sensors)
» Calls for specific optimizations (local-sensitive hashing)

22/26

Future Work

Stream Reasoning for NLP

» Intention: Use stream semantics and techniques for natural
language processing (NLP)

» One of the (very few) application scenarios where
stream-processing historical data makes sense

» You could read a text in “parallel” but here, “order really
matters’:

» Meaning of sentence depends on meanings of preceding
sentences

» Discoure representation theory (DRT): Capture super-sentence
meaning by discourse structures

» Calls for state-based stream processing with a scopus storing
discourse structures

24 /26

Challenges

» Need for state-based stream processing with a scopus storing
discourse structures
» Discourse structure dynamically updated
» In general may grow arbitrarily

» Need for abduction style reasoning (Sherlock Holmes style
reasoning)
» From observations to possible explanations
» Have to constrain search space, anytime abduction

» Different orders to incorporate
» sentence (arrival) ordering (so)
» causal ordering (co)
» temporal ordering(s) (to)

Example
» Bob cried. Alice consoled him. (so corresponds to to)
» Bob cried. Alice insulted him. (so corresponds to co)

25/26

Thank you for your attention!

26 /26

	Local Reasoning on Streams
	OBDA within OPTIQUE
	Reasoning within STARQL
	Future Work

