Algorithmic and Hardness Results for the Colorful Components Problems

Guillaume Blin Univ. of Bordeaux / CNRS, Talence, France

Anna Adamaszek University of Copenhagen, Denmark

Alex Popa Nazarbayev University, Astana, Kazakhstan

> TU Wien July 2015

Problem(s) Definition(s)

Related work

Our Results

Minimum Singleton Vertices

Approximation algorithm for MEC

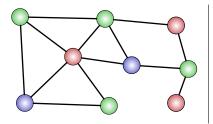
 $|V|^{1/3-\varepsilon}$ hardness of approximation for MEC

Hardness of approximation for MEC for 3 colors

Open problems

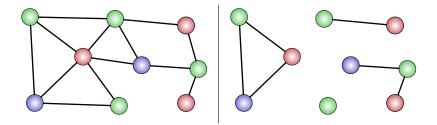
Colorful Components framework

Input: An undirected graph *G* with colored vertices. **Goal:** Delete edges to get *colorful components*.



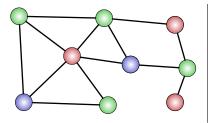
Colorful Components framework

Input: An undirected graph *G* with colored vertices. **Goal:** Delete edges to get *colorful components*.



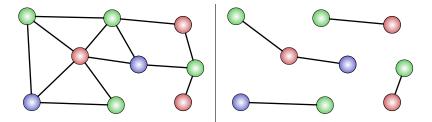
Minimum Singleton Vertices

Goal: Minimize the number of singleton vertices.



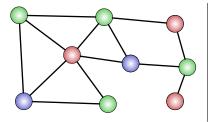
Minimum Singleton Vertices

Goal: Minimize the number of singleton vertices.



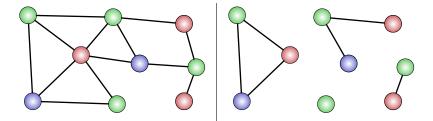
Maximum Edges in Transitive Closure

Goal: Maximize the number of edges in the transitive closure.



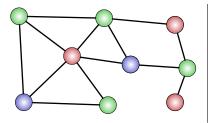
Maximum Edges in Transitive Closure

Goal: Maximize the number of edges in the transitive closure.



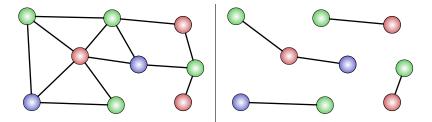
Minimum Colorful Components

Goal: Minimize the number of colorful components.



Minimum Colorful Components

Goal: Minimize the number of colorful components.



Related Work

Colorful Components asks for the minimum number of edge deletions.

- ► NP-hard for ≥ 3 colors + FPT algorithms [Bruckner, Hüffner, Komusiewicz, Niedermeier, Thiel, Uhlmann 2012]
- APX-hard
- Heuristics [Bruckner, Hüffner, Komusiewicz, Niedermeier, Thiel, Uhlmann 2012] and [Zheng, Swenson, Lyons, Sankoff 2011]
- Approximation algorithms for a special case [He, Liu, Zha 2000]
- ► *O*(log |*C*|) approximation (from Multi-Multiway Cut)

Related Work

- MSV and MEC are introduced by [Zheng, Swenson, Lyons, Sankoff 2011]
- Applications in comparative genomics
- Heuristics
- MSV and MEC are conjectured to be NP-hard
- 2/3 approximation for the dual of MSV (MAX-OREC) [Tremblay-Savard, Swenson 2012]

- 1 $O(|V| \cdot |E|)$ exact algorithm for MSV
 - The conjecture of [Zheng, Swenson, Lyons, Sankoff 2011] is disproved
 - Exact algorithm for MAX-OREC

- 1 $O(|V| \cdot |E|)$ exact algorithm for MSV
 - The conjecture of [Zheng, Swenson, Lyons, Sankoff 2011] is disproved
 - Exact algorithm for MAX-OREC
- 2a MEC is APX is hard for 3 colors
 - Reduction from Maximum Bounded 3-Dimensional Matching
 - Settles the complexity for constant number of colors

- 1 $O(|V| \cdot |E|)$ exact algorithm for MSV
 - The conjecture of [Zheng, Swenson, Lyons, Sankoff 2011] is disproved
 - Exact algorithm for MAX-OREC
- 2a MEC is APX is hard for 3 colors
 - Reduction from Maximum Bounded 3-Dimensional Matching
 - Settles the complexity for constant number of colors
- 2b MEC is NP-hard to approximate within $|V|^{1/3-\varepsilon}$
 - Holds for trees and even if the color appears at most twice
 - Reduction from the Independent Set

- 1 $O(|V| \cdot |E|)$ exact algorithm for MSV
 - The conjecture of [Zheng, Swenson, Lyons, Sankoff 2011] is disproved
 - Exact algorithm for MAX-OREC
- 2a MEC is APX is hard for 3 colors
 - Reduction from Maximum Bounded 3-Dimensional Matching
 - Settles the complexity for constant number of colors
- 2b MEC is NP-hard to approximate within $|V|^{1/3-\varepsilon}$
 - Holds for trees and even if the color appears at most twice
 - Reduction from the Independent Set
- 2c $\sqrt{2 \cdot OPT}$ -approximation algorithm for MEC
 - Based on the exact algorithm for MSV

- 1 $O(|V| \cdot |E|)$ exact algorithm for MSV
 - The conjecture of [Zheng, Swenson, Lyons, Sankoff 2011] is disproved
 - Exact algorithm for MAX-OREC
- 2a MEC is APX is hard for 3 colors
 - Reduction from Maximum Bounded 3-Dimensional Matching
 - Settles the complexity for constant number of colors
- 2b MEC is NP-hard to approximate within $|V|^{1/3-\varepsilon}$
 - Holds for trees and even if the color appears at most twice
 - Reduction from the Independent Set
- 2c $\sqrt{2 \cdot OPT}$ -approximation algorithm for MEC
 - Based on the exact algorithm for MSV
 - 3 MCC is hard to approximate within $|V|^{1/2-\epsilon}$
 - Reduction from Minimum Clique Partition

Lemma

In any feasible solution, for any color c, the number of singletons is at least:

$$s_c = max(|V'| - |ar{N}(V')|)$$

V' = a set of vertices colored with c $\overline{N}(V') = neighborhood with color \neq c$

Proof.

Fix a feasible partition G' and a color c. Let V' be a set that maximizes s_c .

Proof.

Fix a feasible partition G' and a color c. Let V' be a set that maximizes s_c .

For each non-singleton $v' \in V'$ pick a neighbor n(v') in G'.

Proof.

Fix a feasible partition G' and a color c. Let V' be a set that maximizes s_c .

For each non-singleton $v' \in V'$ pick a neighbor n(v') in G'. Any two vertices in V' are in different components of $G' \Rightarrow$ the vertices n(v') are disjoint.

Proof.

Fix a feasible partition G' and a color c. Let V' be a set that maximizes s_c .

For each non-singleton $v' \in V'$ pick a neighbor n(v') in G'. Any two vertices in V' are in different components of $G' \Rightarrow$ the vertices n(v') are disjoint.

non-singletons $\leq |\bar{N}(V')|$ # singletons is at least $|V'| - |\bar{N}(V')|$

1. Start with an edgeless graph G'

- 1. Start with an edgeless graph G'
- 2. At each step add an alternating path of odd length

- 1. Start with an edgeless graph G'
- 2. At each step add an alternating path of odd length
- 3. The path has edges from G and every second edge is in G'

- 1. Start with an edgeless graph G'
- 2. At each step add an alternating path of odd length
- 3. The path has edges from G and every second edge is in G'
- 4. # singleton vertices of color *c* decreases

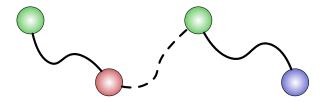
- 1. Start with an edgeless graph G'
- 2. At each step add an alternating path of odd length
- 3. The path has edges from G and every second edge is in G'
- 4. # singleton vertices of color *c* decreases
- 5. # other singletons does not increase

- 1. Start with an edgeless graph G'
- 2. At each step add an alternating path of odd length
- 3. The path has edges from G and every second edge is in G'
- 4. # singleton vertices of color *c* decreases
- 5. # other singletons does not increase
- 6. Each connected component of G' is a singleton, edge or star

- 1. Start with an edgeless graph G'
- 2. At each step add an alternating path of odd length
- 3. The path has edges from G and every second edge is in G'
- 4. # singleton vertices of color *c* decreases
- 5. # other singletons does not increase
- 6. Each connected component of G' is a singleton, edge or star
- 7. When there is no alternating path, we match the lower bound

How to find alternating paths?

- Start with a singleton of col. c
- Connect a vertex of col. *c* with a vertex of col. ≠ *c* and viceversa
- Alternate edges in $E \setminus E'$ with edges in E'



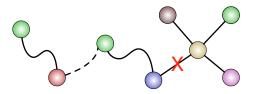
Where to end the alternating path?

Alex Popa Colorful Components Problems

Slide 14/21

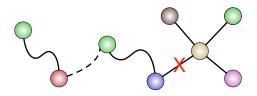
Where to end the alternating path?

► End vertex is a leaf of a star ⇒ remove the leaf from the star

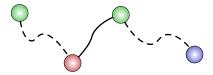


Where to end the alternating path?

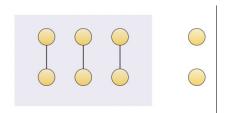
► End vertex is a leaf of a star ⇒ remove the leaf from the star



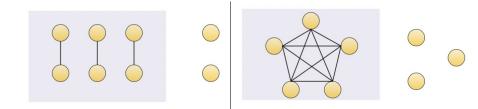
No col. c in the component ⇒ one singleton less + vertices of color c are "switched" between components



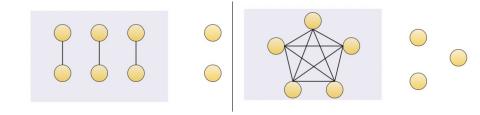
$\sqrt{2 \cdot OPT}$ -approximation



$\sqrt{2 \cdot OPT}$ -approximation



$\sqrt{2 \cdot OPT}$ -approximation

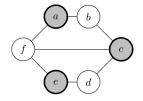


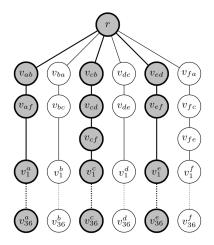
(Handwaving)

In the worst case: $OPT = {|V| \choose 2}$ and MSV = |V|/2

Approximation ratio:
$$\frac{\binom{|V|}{2}}{\frac{|V|}{2}} = \sqrt{2 \cdot \text{OPT}}$$

$|V|^{1/3-\varepsilon}$ hardness of approximation for MEC





Hardness of approximating MEC

Lemma

IS of size $\alpha \Rightarrow MEC$ of value $\binom{\alpha n^2}{2}$.

Lemma

MEC of value $n^5/2 + \alpha^2 \cdot n^4 \Rightarrow$ IS of size α .

Theorem

It is NP-hard to approximate MEC within a factor of $|V|^{1/3-\varepsilon}$.

Proof.

NP-hard: IS $< n^{\varepsilon}$ or IS $\geq n^{1-\varepsilon}$? $OPT_{MEC} \leq n^{5}/2 + n^{4+2\varepsilon}$ $OPT_{MEC} \geq n^{6-2\varepsilon}/2$ The number of vertices of *G*' is in $\Theta(n^{3})$

APX-hardness of MEC for |C| = 3

Reduction from Max Bounded 3D-matching: each element is in \leq 3 triples.

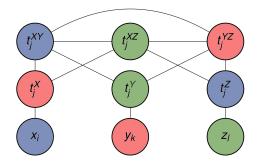


Figure : A subgraph corresponding to a triple $t_i = (x_i, y_k, z_l)$

APX-hardness of MEC for |C| = 3

All the vertices are matchend $\Rightarrow OPT_{MEC} = 6 \cdot \#$ triples + # elements

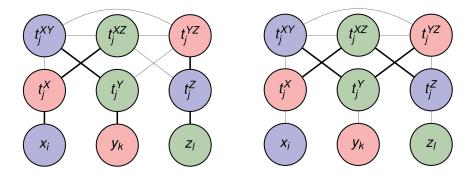


Figure : A triple from T' (left) and a triple from $T \setminus T'$ (right).

Future work

- Other meaningful objective functions.
- Test MSV algorithm on real data.
- Close the gap between the hardness and approximability of MEC.
- Maximizing the number of edges in the connected components.

Merci!

Dziękuję!

Спасибо!

Mulţumesc!

Thank you!