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An example – MUSes
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• Formula is unsatisfiable but not irreducible

• Can remove clauses, and formula still unsatisfiable

• Minimal Unsatisfiable Subset (MUS):
– Irreducible subformula that is unsatisfiable

I MUSes are minimal sets

• Many applications: abstraction in software verification; debugging
declarative models; pinpointing in DLs; type error debugging; etc.



An example – MUSes

(x̄1 ∨ x̄2) (x1) (x5 ∨ x6) (x̄3 ∨ x̄4) (x2) (x3) (x4)

• Formula is unsatisfiable but not irreducible

• Can remove clauses, and formula still unsatisfiable

• Minimal Unsatisfiable Subset (MUS):
– Irreducible subformula that is unsatisfiable

I MUSes are minimal sets

• Many applications: abstraction in software verification; debugging
declarative models; pinpointing in DLs; type error debugging; etc.



An example – MUSes

(x̄1 ∨ x̄2) (x1) (x5 ∨ x6) (x̄3 ∨ x̄4) (x2) (x3) (x4)

• Formula is unsatisfiable but not irreducible

• Can remove clauses, and formula still unsatisfiable

• Minimal Unsatisfiable Subset (MUS):
– Irreducible subformula that is unsatisfiable

I MUSes are minimal sets

• Many applications: abstraction in software verification; debugging
declarative models; pinpointing in DLs; type error debugging; etc.



An example – MUSes

(x̄1 ∨ x̄2) (x1) (x5 ∨ x6) (x̄3 ∨ x̄4) (x2) (x3) (x4)

• Formula is unsatisfiable but not irreducible

• Can remove clauses, and formula still unsatisfiable

• Minimal Unsatisfiable Subset (MUS):
– Irreducible subformula that is unsatisfiable

I MUSes are minimal sets

• Many applications: abstraction in software verification; debugging
declarative models; pinpointing in DLs; type error debugging; etc.



An example – MUSes

(x̄1 ∨ x̄2) (x1) (x5 ∨ x6) (x̄3 ∨ x̄4) (x2) (x3) (x4)

• Formula is unsatisfiable but not irreducible

• Can remove clauses, and formula still unsatisfiable

• Minimal Unsatisfiable Subset (MUS):
– Irreducible subformula that is unsatisfiable

I MUSes are minimal sets

• Many applications: abstraction in software verification; debugging
declarative models; pinpointing in DLs; type error debugging; etc.



An example – MCSes

(x̄1 ∨ x̄2) (x1) (x5 ∨ x6) (x̄3 ∨ x̄4) (x2) (x3) (x4)

• Formula is unsatisfiable with satisfiable subformulas

• Can remove clauses such that remaining clauses are satisfiable

• Minimal Correction Subset (MCS):
– Irreducible subformula such that the complement is satisfiable

I MCSes are minimal sets

• Many applications: restore consistency; smallest MCSes are
MaxSAT solutions; MUS enumeration; minimal/maximal models;
etc.



An example – MCSes

(x̄1 ∨ x̄2) (x1) (x5 ∨ x6) (x̄3 ∨ x̄4) (x2) (x3) (x4)

• Formula is unsatisfiable with satisfiable subformulas

• Can remove clauses such that remaining clauses are satisfiable

• Minimal Correction Subset (MCS):
– Irreducible subformula such that the complement is satisfiable

I MCSes are minimal sets

• Many applications: restore consistency; smallest MCSes are
MaxSAT solutions; MUS enumeration; minimal/maximal models;
etc.



An example – MCSes

(x̄1 ∨ x̄2) (x1) (x5 ∨ x6) (x̄3 ∨ x̄4) (x2) (x3) (x4)

• Formula is unsatisfiable with satisfiable subformulas

• Can remove clauses such that remaining clauses are satisfiable

• Minimal Correction Subset (MCS):
– Irreducible subformula such that the complement is satisfiable

I MCSes are minimal sets

• Many applications: restore consistency; smallest MCSes are
MaxSAT solutions; MUS enumeration; minimal/maximal models;
etc.



An example – MCSes

(x̄1 ∨ x̄2) (x1) (x5 ∨ x6) (x̄3 ∨ x̄4) (x2) (x3) (x4)

• Formula is unsatisfiable with satisfiable subformulas

• Can remove clauses such that remaining clauses are satisfiable

• Minimal Correction Subset (MCS):
– Irreducible subformula such that the complement is satisfiable

I MCSes are minimal sets

• Many applications: restore consistency; smallest MCSes are
MaxSAT solutions; MUS enumeration; minimal/maximal models;
etc.



An example – MCSes

(x̄1 ∨ x̄2) (x1) (x5 ∨ x6) (x̄3 ∨ x̄4) (x2) (x3) (x4)(x̄1 ∨ x̄2) (x1) (x5 ∨ x6) (x̄3 ∨ x̄4) (x2) (x3) (x4)

• Formula is unsatisfiable with satisfiable subformulas

• Can remove clauses such that remaining clauses are satisfiable

• Minimal Correction Subset (MCS):
– Irreducible subformula such that the complement is satisfiable

I MCSes are minimal sets

• Many applications: restore consistency; smallest MCSes are
MaxSAT solutions; MUS enumeration; minimal/maximal models;
etc.



An example – MCSes

(x̄1 ∨ x̄2) (x1) (x5 ∨ x6) (x̄3 ∨ x̄4) (x2) (x3) (x4)(x̄1 ∨ x̄2) (x1) (x5 ∨ x6) (x̄3 ∨ x̄4) (x2) (x3) (x4)

• Formula is unsatisfiable with satisfiable subformulas

• Can remove clauses such that remaining clauses are satisfiable

• Minimal Correction Subset (MCS):
– Irreducible subformula such that the complement is satisfiable

I MCSes are minimal sets

• Many applications: restore consistency; smallest MCSes are
MaxSAT solutions; MUS enumeration; minimal/maximal models;
etc.



Enumeration problems

Enumeration
Problems

Model
Enumer-

ation

MCS Enu-
meration

MUS Enu-
meration

...



An example – MCS&MUS enumeration

• MCS enumeration is easy:
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– Unclear how to block MUSes

– Minimal hitting set dualization

I Explicit: find all MCSes and dualize
I Implicit: exploit hitting set dualization and iteratively find MCses

and MUSes
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Application of enumeration – prime compilation

• Enumerate all prime implicates for:
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(((a ∧ b) ∨ (a ∧ ¬b)) ∧ c) ∨ (b ∧ c)

– Primes: (b ∧ c); (a ∧ c)

• Enumeration of primes studied since the 1930s!
– Formula minimization; Knowledge compilation; ...

• How to enumerate primes of non-clausal formulae, with SAT
oracles?
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Propositional formulae

• Clausal:

– CNF: conjunction of disjunctions of literals

(c ∨ a) ∧ (c ∨ ¬a) ∧ (a ∨ b ∨ d) ∧ (a ∨ b ∨ ¬d)

– DNF: disjunction of conjunctions of literals

(c ∧ a) ∨ (c ∧ ¬a) ∨ (a ∧ b ∧ d) ∨ (a ∧ b ∧ ¬d)

– Other notation: Product of Sums (POS) / Sum of Products (SOP)

• Non-clausal:

– Non-CNF and non-DNF
– Propositional formulae: well-formed formulae built with standard

connectives ¬, ∧, ∨

(((a ∧ b) ∨ (a ∧ ¬b)) ∧ c) ∨ (b ∧ c)
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Defining primes

• Given formula F , a prime implicate is a non-empty set of
non-complementary literals q, s.t.

F � (∨l∈q l) ∧ ∀q′(q F 2 (∨l∈q′ l)

• Prime implicate q given implicate c, q ⊆ c

• Given formula F , a prime implicant is a non-empty set of
non-complementary literals p, s.t.

(∧l∈p l) � F ∧ ∀p′(p (∧l∈p′ l) 2 F

• Prime implicant p given implicant t, p ⊆ t

• Each prime implicant (resp. implicate) of F is a minimal
hitting set of the prime implicates (resp. implicants) of F [R94]
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Computing primes

• Extract one prime implicant for F in CNF:

– Find satisfying assignment µ of F
– Drop literals from µ while F satisfied

• Similar for prime implicate with F in DNF and falsifying
assignment

• How about the general case of prime implicates for CNF,
prime implicants for DNF, or primes for non-clausal?

• And, how about enumeration of primes?
– Repeated application of procedure above does not work...
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Defining MUSes/MCSes/MSSes

• Given CNF F , with F � ⊥:

– M ⊆ F is a Minimal Unsatisfiable Subset (MUS) iff:

M � ⊥ ∧ ∀M′(M M ′ 2 ⊥

– S ⊆ F is a Maximal Satisfiable Subset (MSS) iff:

S 2 ⊥ ∧ ∀S(S′⊆F S ′ � ⊥

– C ⊆ F is a Minimal Correction Subset (MCS) iff:

F \ C 2 ⊥ ∧ ∀C ′(C F \ C ′ � ⊥

– An MCS C is the complement (wrt to F ) of an MSS S , C = F \ S

– Each MCS (resp. MUS) of F is a minimal hitting set of the
MUSes (resp. MCSes) of F [R’87,BL’03,BS’05,LS’08]
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Working with groups – MUSes

• Group of clauses 0, G0, denoting a set of background (or don’t
care) clauses

• Group of clauses i , Gi

• Set of groups of clauses Γ = {G1, . . . ,Gk}
• Conjunction of clauses in all groups unsatisfiable:∧

Gi∈G0∪Γ
c∈Gi

(c) � ⊥

• Group MUS, Ψ ⊆ Γ:∧
Gi∈G0∪Ψ

c∈Gi

(c) � ⊥ ∧ ∀Ψ′(Ψ

∧
Gi∈G0∪Ψ′

c∈Gi

(c) 2 ⊥
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Reducing primes to group MUSes – prime implicates

• Recall definition of prime implicate p ⊆ c :

F � (∨l∈q l) ∧ ∀q′(q F 2 (∨l∈q′ l)

• Can be rewritten as:

F ∧ ∧l∈q(¬l) � ⊥ ∧ ∀q′(q F ∧ ∧l∈q(¬l) 2 ⊥

• Reduction: [BM07]

– Start from implicate c
– Formula F corresponds to background group G0

– Each literal l of c represents a group with a unit clause (¬l)
– Each group MUS represents prime implicate of F given c

• Note: F is a (possibly non-clausal) propositional formula
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How about prime implicants?

• Recall definition of prime implicant p ⊆ t:

(∧l∈p l) � F ∧ ∀p′(p (∧l∈p′ l) 2 F

• Can be rewritten as:

(¬F ) ∧ (∧l∈p l) � ⊥ ∧ ∀p′(p(¬F ) ∧ (∧l∈p′ l) 2 ⊥

• Reduction: [BM07]

– Start from implicant t
– Formula ¬F corresponds to background group G0

– Each literal l of t represents a group with a unit clause (l)
– Each group MUS represents prime implicant of F given t

• How to compute group MUSes?
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Extracting MUSes

• Many algorithms, based on calls to SAT oracles:

– Deletion-based [CD91,BDTW93]

– QuickXplain [J04]

– Progression [MSJB13]

– ...

• Several optimizations:

– Clause set refinement [BDTW93,DHN06]

– Recursive model rotation [BLMS12]

– ...

• Applicable to plain MUS or group MUS

• Applicable to computing primes
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An example

F = (c ∨ a) ∧ (c ∨ ¬a) ∧ (a ∨ b ∨ d) ∧ (a ∨ b ∨ ¬d)

• Find prime implicate of F given implicate (c ∨ a)

• Group MUS formulation: G0 = F ; G1 = (¬c); G2 = (¬a)

• Standard deletion algorithm:

– Drop G1 = (¬c):

I G0 ∧ G2 2 ⊥, e.g. c = b = 1
I Thus, keep G1

– Drop G2 = (¬a):

I G0 ∧ G1 � ⊥
I Thus, remove G2

– Group MUS: G1

– { c } is a prime implicate of F , i.e. F � c
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Enumerating prime implicants of CNF formulae

• Search space must be larger than 2n

• Work with modified formula H: [PPP99,JMSSS14]

– Original variables: var(F ) = {v1, . . . , vn}
– Pair of new variables for each v ∈ var(F ): xv , x¬v

– Prevent one of the assignments to each new pair of variables:

L = {(¬xv ∨ ¬x¬v ) | v ∈ var(F )}

I xv = x¬v = 0: variable v unused
I xv = 0 ∧ x¬v = 1: negative literal of v used
I xv = 1 ∧ x¬v = 0: positive literal of v used

– Create C , by replacing each clause c ∈ F with a new clause ce :

I For each l ∈ c, either add literal xv , if l = v , or literal x¬v , if l = ¬v
– Enumerate minimal models of H = L ∪ C

• Use B (initially B = ∅) to block computed prime implicants

– H = L ∪ C ∪ B
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An example

F = (c ∨ a) ∧ (c ∨ ¬a) ∧ (a ∨ b ∨ d) ∧ (a ∨ b ∨ ¬d)

• Define L:

L = (¬xa ∨ ¬x¬a) ∧ (¬xb ∨ ¬x¬b) ∧ (¬xc ∨ ¬x¬c) ∧ (¬xd ∨ ¬x¬d)

• Define C :

C = (xc ∨ xa) ∧ (xc ∨ x¬a) ∧ (xa ∨ xb ∨ xd) ∧ (xa ∨ xb ∨ x¬d)

• Let H = L ∪ C ∪ B

• Find minimal models:

– xb = xc = 1, i.e. prime implicant is (b ∧ c); block with (¬xb ∨ ¬xc)
– xa = xc = 1, i.e. prime implicant is (a ∧ c); block with (¬xa ∨ ¬xc)
– No more (minimal) models
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• Clausal formulae:
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– Use of BDDs
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• Non-clausal formulae:
– Use of BDDs

I ZRes, with information about Tseitin variables [SdV’01]
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– NNF, tries, etc.

– Restricted to formulae with small number of variables



Other approaches

• Clausal formulae:
– Problem reformulation

I See above, but restricted

– Iterated consensus/resolution, since the 1950s
– Use of BDDs

I ZRes [SdV’01]

I ...

– ...

• Non-clausal formulae:
– Use of BDDs

I ZRes, with information about Tseitin variables [SdV’01]

I ...

– NNF, tries, etc.

– Restricted to formulae with small number of variables



Other approaches

• Clausal formulae:
– Problem reformulation

I See above, but restricted

– Iterated consensus/resolution, since the 1950s
– Use of BDDs

I ZRes [SdV’01]

I ...

– ...

• Non-clausal formulae:
– Use of BDDs

I ZRes, with information about Tseitin variables [SdV’01]

I ...

– NNF, tries, etc.

– Restricted to formulae with small number of variables



Outline

Background

Related Work

Primes for Non-Clausal Formulae

Results



An example

F = (((a ∧ b) ∨ (a ∧ ¬b)) ∧ c) ∨ (b ∧ c)

• Prime implicants of F?

– (b ∧ c)
– (a ∧ c)
– More?

• Prime implicates of F?

– (c)
– (a ∨ b)
– More?

• How to enumerate primes of non-clausal formulae, with SAT
oracles?
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Non-clausal prime compilation

• Recap SAT-based approach for CNF formulae:

H = L ∪ C ∪ B

– L: Disallow xv = x¬v = 1, for each pair {xv , x¬v}
– C : Encode clauses of F with new variables
– B: Block computed prime implicants

• For non-clausal formulae, the problem is how to represent C , since
F is not in CNF

– Unrealistic to convert non-clausal formulae to CNF

– And cannot introduce Tseitin variables

I Primes not preserved

• Idea: Construct C on demand as the algorithm executes;
terminate when B blocks all primes and C equivalent to F
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Non-clausal prime compilation – approach 1

• Iteratively compute maximal models AH of working formula H

– Initially H = L;C = ∅;B = ∅

– Why maximal models?

I Guarantees that one of the following two cases applies

• Each maximal model AH encodes assignment AF to variables of F

• Case 1: If AF � F , then AF is an implicant of F

– Extract prime implicant
– Report prime implicant
– Block prime implicant (in B)

• Case 2: If F � ¬AF , then AF is an implicate of F

– Extract prime implicate
– Block prime implicate (in C )

• Update H and repeat
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Algorithm 1

input : Formula F
output: PIn(F ) and prime implicate cover of F

H ← {(¬xv ∨ ¬x¬v ) | v ∈ var(F )} # Initially, C = ∅ and B = ∅

while true do
(st,AH)← MaxModel(H)
if not st then return

AF ← Map(AH) # Generate assignment for F

st← SAT(AF ∪ ¬F )
if not st then # AF � F; i.e. AF is an implicant

In ← ReduceImplicant(AF ,F )
ReportPrimeImplicant(In)
b ← {¬xl | l ∈ In} # Update B by blocking prime implicant

else # F � ¬AF; i.e. ¬AF is an implicate

Ie ← ReduceImplicate(AF ,F )
b ← {xl | l ∈ Ie} # Update C by blocking prime implicate

H ← H ∪ {b}
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Example for algorithm 1

H = L ∪ B ∪ C

F = (((a ∧ b) ∨ (a ∧ ¬b)) ∧ c) ∨ (b ∧ c)

• SAT oracle query: F ∧ AF

AH AF Entailment Update B/C

xax¬axbx¬bxcx¬c

AH
1 = 100101 AF

1 = a,¬b,¬c F � ¬AF
1 (xc)

AH
2 = 100110 AF

2 = a,¬b, c AF
2 � F (¬xa ∨ ¬xc)

AH
3 = 010110 AF

3 = ¬a,¬b, c F � ¬AF
3 (xa ∨ xb)

AH
4 = 011010 AF

4 = ¬a, b, c AF
4 � F (¬xb ∨ ¬xc)
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Non-clausal prime compilation – approach 2

• Iteratively compute minimal models AH of working formula H

– Initially H = L;C = ∅;B = ∅

– Why minimal models?

I For prime implicants no need to reduce implicant

• Each minimal model AH encodes assignment AF to variables of F

• If AF � F , then AF is a prime implicant of F

– No need to extract prime implicant
– Report prime implicant
– Block prime implicant (in B)

• Else, find model M¬F of ¬F , i.e. M¬F � ¬F , and ¬M¬F is an
implicate of F

– Extract prime implicate
– Block prime implicate (in C )

• Update H and repeat
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Algorithm 2

input : Formula F
output: PIn(F ) and prime implicate cover of F

H ← {(¬xv ∨ ¬x¬v ) | v ∈ var(F )}

while true do
(st,AH)← MinModel(H)
if not st then return

AF ← Map(AH)
(st,M¬F )← SAT(AF ∪ ¬F )
if st then # F � ¬M¬F; i.e. ¬M¬F is an implicate

Ie ← ReduceImplicate(M¬F ,F )
b ← {xl | l ∈ Ie}

else # AF � F; i.e. AF is a prime implicant

In ← AF

ReportPrimeImplicant(In)
b ← {¬xl | l ∈ In}

H ← H ∪ {b}
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Example for algorithm 2

H = L ∪ B ∪ C

F = (((a ∧ b) ∨ (a ∧ ¬b)) ∧ c) ∨ (b ∧ c)

• SAT oracle query: F ∧ AF

AH AF ¬M¬F/¬st B/C

xax¬axbx¬bxcx¬c

000000 AF
1 = ∅ ¬a,¬b,¬c (xa ∨ xb)

001000 AF
2 = b ¬a, b,¬c (xc)

001010 AF
3 = b, c ¬st (¬xb ∨ ¬xc)

100010 AF
4 = a, c ¬st (¬xa ∨ ¬xc)
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Experimental setup

• Server: Intel Xeon E5-2630 2.60GHz, 64GByte

• TO: 3600s

• MO: 10 GByte

• Tools:

– primer: PRIMe compilER
– zres-tison [SdV01]

• Benchmarks:

– Quasigroup classification problems: 83
– Cryptanalysis of the Geffe stream generator: 600
– Crafted Fm ∨ PHPn: 30

I Fm = (x1 ∨ y1) ∧ · · · ∧ (xm ∨ ym)
I m ∈ {10, . . . , 20}
I n ∈ {6, . . . , 10}

– Crafted Fm ∨ GTn: 30

I n ∈ {12, . . . , 20}



Summary of results

QG6 Geffe gen. F+PHP F+GT Total

# instances 83 600 30 30 743

ZRes-tison 0 0 11 0 11

primer-a (PIn) 53 596 30 26 705

primer-a (PIe) 28 588 30 27 673

primer-b (PIn) 64 595 30 30 719

primer-b (PIe) 30 577 30 27 664



F+PHP scatter plot

10−2 10−1 100 101 102 103 104

primer-b (PIe computation)

10−2

10−1

100

101

102

103

104

Z
R

es
-t

is
on

3600 sec. timeout

36
00

se
c.

tim
eo

ut



Comparing algorithms
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Conclusions & future work

• Enumeration of prime implicants for non-clausal formulae with
SAT oracles

– Readily applicable to enumeration of prime implicates
– Can be effective if number of primes is not too large
– Another instantiation of problem solving with SAT oracles
– Exploiting recent work on computing MCSes (minimal/maximal

models) and MUSes (prime implicants/implicates)

I But also, MSMP in general

– Another example of exploiting duality relationships in enumeration
problems

• Improvements to proposed algorithms

• Applications of prime enumeration

• Other compilation languages?
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