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Act: Motivation



Model Checking

Basic problem in logic/database theory:

Given a first-order sentence φ and a finite structure B,
decide if B |ù φ

Example:
When φk “ Dv1 . . . Dvk

Ź

i‰j Epvi , vjq and G is an undir graph,

G |ù φk iff G has a k -clique

Example:
When φk “ Dv1 . . . Dvk@yp

Žk
i“1py “ vi _ Epy , viqq

and G is an undir graph,

G |ù φk iff G has a dominating set of size ď k
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Studying complexity

General problem intractable — PSPACE-complete.

Restrict to a single first-order sentence: polytime tractable.

Here, we restrict to a set of first-order sentences Φ.

Def: The problem MCpΦq is...

Given φ P Φ and a finite struct B,
decide if B |ù φ
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Parameterized complexity

§ Argued: classical complexity notions (eg, poly time)
are not satisfactory in the study of query evaluation

§ Typical scenario: short query on BIG structure

ñ we might tolerate
a non-polynomial, bad dependence on query,
so long as have good dependence on structure

§ Parameterized complexity theory: classify problems up to
allowing arbitrary dependence on a parameter

Here: the query is the parameter
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Parameterized tractability

Def: A parameterized problem is a pair pQ, κq where
§ Q Ď Σ˚ is a language
§ κ : Σ˚ Ñ Σ˚ is a parameterization,

assumed here to be polytime computable

Ex: When discussing the problem MCpΦq,
we understand κ to be the projection κpφ,Bq “ φ

Def: A parameterized problem pQ, κq is FPT (“tractable”)
if D computable fn c : Σ˚ Ñ Σ˚ and a language Q1 P P such that

x P Q iff pcpκpxqq, xq P Q1

Compilation view: after applying an arbitrary compilation to the
parameter, can decide in polytime
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Dichotomy for existential positive logic

Thm (Chen ’14):
Let Φ be a set of tD,^,_u-sentences, of bounded arity.

§ If there exists k ě 1 such that each φ P Φ is logically
equivalent to a k -variable sentence,
then MCpΦq is in FPT

§ Else, MCpΦq is W[1]-hard

In first case, can compile each φ P Φ to a k -variable sentence
to show FPT inclusion

Example of first case: define Φ to contain each
tD,^,_u-sentence over a unary signature;
let us use unary-EP-MC to denote MCpΦq
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The length of compilation

Problem unary-EP-MC: given EP φ over a unary signature and
structure B, decide if B |ù φ

§ Problem is NP-complete
§ But at the same time, problem is FPT:
D computable fn c : Σ˚ Ñ Σ˚ & language Q1 P P such that

pφ,Bq P Q iff pcpφq, pφ,Bqq P Q1

We can infer that there is no polytime computable c
(otherwise would have unary-EP-MC in PTIME)

But, why not? Two potential explanations:

§ For any c (satisfying above), c is not polynomial length
§ There exists a c (satisfying above) of polynomial length,

but not polytime computable
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The length of compilation

Reason: there is no compilation c of polynomial length
(proved in Chen ’14)

We say that a fn c : Σ˚ Ñ Σ˚ has polynomial length
if D a poly p such that, for all x P Σ˚: |cpxq| ď pp|x |q

Here:
§ Think of poly length compilation as positive result
§ Will give a framework where we can prove negative results

— superpoly length lower bounds on compilations

Please note:

§ (Chen ’05) “Parameterized compilability” —
relax the notion of positive result; let c be “FPT-length”

§ (Chen ’15) “Parameter compilation” — framework for
distinguishing between polynomial / non-polynomial length
compilations
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Framework

Contribution: Give framework for understanding length of
compilations — so that, post-compilation, can solve in polytime

Inspired by and closely related to framework
by Cadoli, Donini, Liberatore & Schaerf ’02
— see our paper for more details/discussion
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Framework — motivation

For a problem, if many instances share a feature in common,
it may be fruitful to compile this feature into a format that allows
for faster decision

Examples:

§ Deciding connectivity of vertex pairs in graphs:
If many instances may share the same graph G,
may wish to compile G

§ Model checking / query evaluation:
If a query φ will be posed to many databases,
may wish to compile φ
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The base class

Def: A parameterized problem pQ, κq is in FPT
if D computable fn c : Σ˚ Ñ Σ˚ and a language Q1 P P such that

x P Q iff pcpκpxqq, xq P Q1

Compilation view: after applying an arbitrary compilation to the
parameter, can decide in polytime

Def: A parameterized problem pQ, κq is in poly-comp-PTIME
if c can be taken to be polynomial length
(“poly-length compilable to PTIME”)

Idea: Q is decidable in polytime (in |x |),
modulo knowledge of cpκpxqq — slice-wise advice
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Reduction

Def: Param problem pQ, κq poly-comp reduces
to param problem pQ1, κ1q if exists:
§ gpxq “ f pcpκpxqq, xq with polytime computable f ,

poly-length computable c
§ poly-length computable s : Σ˚ Ñ ℘pΣ˚q

such that
§ x P Q ô gpxq P Q1

§ κ1pgpxqq P spκpxqq
Note that spxq must be a set of size poly in |x |

Fact: This is a restricted version of FPT many-one reduction!

Prop: poly-comp-PTIME is closed under poly-comp reduction

[pQ, κq reduces to pQ1, κ1q P poly-comp-PTIME
implies pQ, κq P poly-comp-PTIME]



Reduction

Def: Param problem pQ, κq poly-comp reduces
to param problem pQ1, κ1q if exists:
§ gpxq “ f pcpκpxqq, xq with polytime computable f ,

poly-length computable c
§ poly-length computable s : Σ˚ Ñ ℘pΣ˚q

such that
§ x P Q ô gpxq P Q1

§ κ1pgpxqq P spκpxqq

Note that spxq must be a set of size poly in |x |

Fact: This is a restricted version of FPT many-one reduction!

Prop: poly-comp-PTIME is closed under poly-comp reduction

[pQ, κq reduces to pQ1, κ1q P poly-comp-PTIME
implies pQ, κq P poly-comp-PTIME]



Reduction

Def: Param problem pQ, κq poly-comp reduces
to param problem pQ1, κ1q if exists:
§ gpxq “ f pcpκpxqq, xq with polytime computable f ,

poly-length computable c
§ poly-length computable s : Σ˚ Ñ ℘pΣ˚q

such that
§ x P Q ô gpxq P Q1

§ κ1pgpxqq P spκpxqq
Note that spxq must be a set of size poly in |x |

Fact: This is a restricted version of FPT many-one reduction!

Prop: poly-comp-PTIME is closed under poly-comp reduction

[pQ, κq reduces to pQ1, κ1q P poly-comp-PTIME
implies pQ, κq P poly-comp-PTIME]
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Chopped classes

Def: A param problem pQ, κq is in chopped-C if
D polytime computable f , poly-length computable c
where gpxq “ f pcpκpxqq, xq has:

§ x P Q iff gpxq P Q1 where Q1 P C
§ |gpxq| ď pp|κpxq|q for a polynomial p

Example problem: Minimal model checking

tpφ, yq | φ is a prop formula, y is a minimal model of φ u

§ In coNP
§ In chopped-coNP under κpφ, yq “ φ:

Take gpφ, yq “ pφ, yq if y is an assignment to vars of φ,
a no instance otherwise
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Chopped classes — facts

Fact: poly-comp-PTIME “ chopped-PTIME

Thm: chopped-NP is not contained in poly-comp-PTIME,
unless the PH collapses.

Follows from Karp-Lipton plus...

Thm: If chopped-C Ď chopped-C1, then C Ď C1{poly

Note that the chopped classes stratify FPT...

Prop: If each lang in C is computable, then chopped-C is in FPT
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Completeness

Prop: Let C be a complexity class; assume that Q is
C-complete under many-one polytime reduction.
Then, pQ, lenq is complete for chopped-C.

Here, len is the parameterization lenpxq “ 1n

giving the length of a string, in unary
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Completeness: examples

Prop: The following problems are chopped-NP-complete:

1. pHamiltonian Path, γq
where γpGq “ number of nodes in graph G

2. p3-SAT, νq
where νpF q “ number of variables in F

3. pCIRCUIT-SAT, µ` νq
where pµ` νqpCq = total number of gates in C

4. pd-HITTING SET, π2q, for each d ě 2
where π2pH, kq “ k

Here, d-HITTING SET is the problem of deciding, given pH, kq
where H is a hypergraph where each edge has size ď d ,
if there’s a hitting set of size ď k

Note: Can show
§ unary-EP-MC is chopped-NP-hard
§ Minimal model checking is chopped-co-NP-complete
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Kernelization
In the first three problems just given, if the parameter is
bounded, the number of problem instances is bounded

Example: in 3-SAT, if the number n of variables is bounded,
problem instances can only talk about 3-clauses on n variables

In the d-HITTING SET problem, this is not true:
for a fixed k , hypergraphs H may have arbitrary size

But this problem is in chopped-NP, due to...

Def: A param problem pQ, κq has a polynomial kernelization
if D polytime computable K : Σ˚ Ñ Σ˚, polynomial p such that

x P Q ô K pxq P Q and |K pxq| ď pp|κpxq|q

Prop: If a param problem pQ, κq with Q P NP has a polynomial
kernelization, then pQ, κq is in chopped-NP



Kernelization
In the first three problems just given, if the parameter is
bounded, the number of problem instances is bounded

Example: in 3-SAT, if the number n of variables is bounded,
problem instances can only talk about 3-clauses on n variables

In the d-HITTING SET problem, this is not true:
for a fixed k , hypergraphs H may have arbitrary size

But this problem is in chopped-NP, due to...

Def: A param problem pQ, κq has a polynomial kernelization
if D polytime computable K : Σ˚ Ñ Σ˚, polynomial p such that

x P Q ô K pxq P Q and |K pxq| ď pp|κpxq|q

Prop: If a param problem pQ, κq with Q P NP has a polynomial
kernelization, then pQ, κq is in chopped-NP



Kernelization
In the first three problems just given, if the parameter is
bounded, the number of problem instances is bounded

Example: in 3-SAT, if the number n of variables is bounded,
problem instances can only talk about 3-clauses on n variables

In the d-HITTING SET problem, this is not true:
for a fixed k , hypergraphs H may have arbitrary size

But this problem is in chopped-NP, due to...

Def: A param problem pQ, κq has a polynomial kernelization
if D polytime computable K : Σ˚ Ñ Σ˚, polynomial p such that

x P Q ô K pxq P Q and |K pxq| ď pp|κpxq|q

Prop: If a param problem pQ, κq with Q P NP has a polynomial
kernelization, then pQ, κq is in chopped-NP



Kernelization
In the first three problems just given, if the parameter is
bounded, the number of problem instances is bounded

Example: in 3-SAT, if the number n of variables is bounded,
problem instances can only talk about 3-clauses on n variables

In the d-HITTING SET problem, this is not true:
for a fixed k , hypergraphs H may have arbitrary size

But this problem is in chopped-NP, due to...

Def: A param problem pQ, κq has a polynomial kernelization
if D polytime computable K : Σ˚ Ñ Σ˚, polynomial p such that

x P Q ô K pxq P Q and |K pxq| ď pp|κpxq|q

Prop: If a param problem pQ, κq with Q P NP has a polynomial
kernelization, then pQ, κq is in chopped-NP



Kernelization
In the first three problems just given, if the parameter is
bounded, the number of problem instances is bounded

Example: in 3-SAT, if the number n of variables is bounded,
problem instances can only talk about 3-clauses on n variables

In the d-HITTING SET problem, this is not true:
for a fixed k , hypergraphs H may have arbitrary size

But this problem is in chopped-NP, due to...

Def: A param problem pQ, κq has a polynomial kernelization
if D polytime computable K : Σ˚ Ñ Σ˚, polynomial p such that

x P Q ô K pxq P Q and |K pxq| ď pp|κpxq|q

Prop: If a param problem pQ, κq with Q P NP has a polynomial
kernelization, then pQ, κq is in chopped-NP



Kernelization
In the first three problems just given, if the parameter is
bounded, the number of problem instances is bounded

Example: in 3-SAT, if the number n of variables is bounded,
problem instances can only talk about 3-clauses on n variables

In the d-HITTING SET problem, this is not true:
for a fixed k , hypergraphs H may have arbitrary size

But this problem is in chopped-NP, due to...

Def: A param problem pQ, κq has a polynomial kernelization
if D polytime computable K : Σ˚ Ñ Σ˚, polynomial p such that

x P Q ô K pxq P Q and |K pxq| ď pp|κpxq|q

Prop: If a param problem pQ, κq with Q P NP has a polynomial
kernelization, then pQ, κq is in chopped-NP



Wrap-up

We initiated a theory of compilability that makes use of
notions/concepts from parameterized complexity
— with connections to classical notions such as FPT,
kernelization, ...

For the future:

§ Try to classify problems of interest / established
parameterized problems according to their compilability

§ What can we say about color coding (embedding under
bounded treewidth)?
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A closing meditation

Many characterizations of FPT (see e.g. Flum/Grohe, Chap 1)

Characterization: pQ, κq in FPT iff pQ, κq has a kernelization

The study of when param problems have
polynomial kernelizations (and how good these can be)
led/lead to a rich, deep body of work

Characterization: pQ, κq is in FPT iff it can be “compiled” to a
PTIME language Q1, via a computable c, so that:

x P Q iff pcpκpxqq, xq P Q1

Here we initiated a theory for understanding when we have
polynomial-length compilations
Is there an entire area to be discovered here?

“Kernelization is just one technique in parameterized complexity and its

systematic study opened up a whole new world of research questions. Could

it be that exploring other basic techniques turns out to be as fruitful as the

study of kernelization?” — Dániel Marx, ’12 survey
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