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Model Checking

Basic problem in logic/database theory:
Given a first-order sentence ¢ and a finite structure B,

decide if B = ¢

Example:

When ¢, = vy ... v, /\,-# E(v;,v;) and G is an undir graph,

G = ¢ iff G has a k-clique
Example:
When ¢, = v ...HVKVy(\/L(y =viv E(y,vi))

and G is an undir graph,

G = ¢ iff G has a dominating set of size < k
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Studying complexity

General problem — PSPACE-complete.

Restrict to a single first-order sentence: polytime tractable.
Here, we restrict to a set of first-order sentences .

Def: The problem MC(®) is...

Given ¢ € ® and a finite struct B,
decide if B = ¢
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Parameterized complexity

Argued: classical complexity notions (eg, poly time)
are satisfactory in the study of query evaluation

Typical scenario: query on structure

= we might tolerate
a non-polynomial, dependence on query,
so long as have good dependence on structure

Parameterized complexity theory: classify problems up to
allowing arbitrary dependence on a parameter

Here: the query is the parameter
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Parameterized tractability

Def: A parameterized problem is a pair (Q, k) where
Q < x*is alanguage
kX% — Y*is a parameterization,
assumed here to be polytime computable

Ex: When discussing the problem MC(®),
we understand « to be the projection x(¢,B) = ¢

Def: A parameterized problem (Q, ) is FPT (“tractable”)
if 3 computable fn ¢ : ¥* — ¥* and a language Q € P such that

x € Qiff (c(k(x)),x) e @

Compilation view: after applying an arbitrary compilation to the
parameter, can decide in polytime
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Dichotomy for existential positive logic

Thm (Chen ’14):
Let ® be a set of {3, A, v}-sentences, of bounded arity.

If there exists k > 1 such that each ¢ € ® is logically
equivalent to a k-variable sentence,
then MC(®) is in FPT

Else, MC(®) is W[1]-hard

In first case, can compile each ¢ € ® to a k-variable sentence
to show FPT inclusion

Example of first case: define ¢ to contain each
{3, A, v}-sentence over a unary signature;
let us use unary-EP-MC to denote MC(®)
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The length of compilation

Problem unary-EP-MC: given EP ¢ over a unary signature and
structure B, decide if B |= ¢
Problem is

But at the same time, problem is FPT:
3 computable fn ¢ : ¥* — ¥* & language Q' € P such that

(¢,B) € Qiff (c(¢), (¢,B)) e @

We can infer that there is no polytime computable ¢
(otherwise would have unary-EP-MC in PTIME)
But, why not? Two potential explanations:

For any c (satisfying above), c is not polynomial length

There exists a c¢ (satisfying above) of polynomial length,
but not polytime computable
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The length of compilation
Reason: there is no compilation ¢ of polynomial length
(proved in Chen '14)

We say that a fn ¢ : ©* — ¥* has polynomial length
if 3 a poly p such that, for all x € £*: |c(x)| < p(|x|)

Here:
Think of poly length compilation as positive result

Will give a framework where we can prove negative results
— superpoly length lower bounds on compilations

Please note:

(Chen ’05) “Parameterized compilability” —
relax the notion of positive result; let ¢ be “FPT-length”

(Chen ’15) “Parameter compilation” — framework for
distinguishing between polynomial / non-polynomial length
compilations
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Framework

Contribution: Give framework for understanding length of
compilations — so that, post-compilation, can solve in polytime

Inspired by and closely related to framework
by Cadoli, Donini, Liberatore & Schaerf ’02
— see our paper for more details/discussion
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Framework — motivation

For a problem, if many instances share a feature in common,
it may be fruitful to compile this feature into a format that allows
for faster decision

Examples:

Deciding connectivity of vertex pairs in graphs:
If many instances may share the same graph G,
may wish to compile G

Model checking / query evaluation:
If a query ¢ will be posed to many databases,
may wish to compile ¢
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The base class

Def: A parameterized problem (Q, ) is in FPT
if 3 computable fn ¢ : ¥* — ¥* and a language Q € P such that

x € Qiff (c(k(x)),x) e @

Compilation view: after applying an arbitrary compilation to the
parameter, can decide in polytime

Def: A parameterized problem (Q, k) is in poly-comp-PTIME
if ¢ can be taken to be polynomial length
(“poly-length compilable to PTIME”)

ldea: Q is decidable in polytime (in |x|),
modulo knowledge of ¢(x(x)) — slice-wise advice
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Reduction

Def: Param problem (Q, k) poly-comp reduces
to param problem (@', ') if exists:
g(x) = f(c(k(x)), x) with polytime computable f,
poly-length computable ¢
poly-length computable s : ¥* — p(X*)
such that
xeQegx)eQ
K(9(x)) € s(k(x))
Note that s(x) must be a set of size poly in |x|
Fact: This is a restricted version of FPT many-one reduction!

Prop: poly-comp-PTIME is closed under poly-comp reduction

[(Q, k) reduces to (Q', k) € poly-comp-PTIME
implies (Q, k) € poly-comp-PTIME]
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Chopped classes

Def: A param problem (Q, ) is in chopped-C if
3 polytime computable f, poly-length computable ¢
where g(x) = f(c(k(x)), x) has:

x € Qiff g(x) e Q where Q@ €C

|9(x)| < p(|k(x)]) for a polynomial p

Example problem: Minimal model checking

{(p,y) | ¢isaprop formula, y is a minimal model of ¢ }

In coNP

In chopped-coNP under x(¢, y) = ¢:
Take g(¢,y) = (¢, y) if y is an assignment to vars of ¢,

a no instance otherwise
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Chopped classes — facts

Fact: poly-comp-PTIME = chopped-PTIME

Thm: chopped-NP is not contained in poly-comp-PTIME,
unless the PH collapses.

Follows from Karp-Lipton plus...
Thm: If chopped-C < chopped-C’, then C < C’/poly

Note that the chopped classes stratify FPT...
Prop: If each lang in C is computable, then chopped-C is in FPT
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Completeness

Prop: Let C be a complexity class; assume that Q is
C-complete under many-one polytime reduction.
Then, (Q, len) is complete for chopped-C.

Here, len is the parameterization len(x) = 1"
giving the length of a string, in unary
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Prop: The following problems are chopped-NP-complete:
(Hamiltonian Path, v)
where ~(G) = number of nodes in graph G
(3-SAT,v)
where v(F) = number of variables in F

(CIRCUIT-SAT, 1t + v/)
where (u + v)(C) = total number of gates in C

(d-HITTING SET, 7»), for each d > 2
where mo(H, k) = k

Here, d-HITTING SET is the problem of deciding, given (H, k)
where H is a hypergraph where each edge has size < d,
if there’s a hitting set of size < k

Note: Can show
unary-EP-MC is
Minimal model checking is
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Kernelization

In the first three problems just given, if the parameter is
bounded, the number of problem instances is bounded

Example: in 3-SAT, if the number n of variables is bounded,
problem instances can only talk about 3-clauses on n variables

In the d-HITTING SET problem, this is not true:
for a fixed k, hypergraphs H may have arbitrary size

But this problem is in chopped-NP, due to...

Def: A param problem (Q, k) has a polynomial kernelization
if 3 polytime computable K : ¥* — ¥*, polynomial p such that

xeQeK(x)eQ and |K(x)| < p(|x(x)])

Prop: If a param problem (Q, ) with Q € NP has a polynomial
kernelization, then (Q, ) is in chopped-NP
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We initiated a theory of compilability that makes use of
notions/concepts from parameterized complexity

— with connections to classical notions such as FPT,
kernelization, ...

For the future:
Try to classify problems of interest / established
parameterized problems according to their compilability

What can we say about color coding (embedding under
bounded treewidth)?



A closing meditation



A closing meditation
Many characterizations of FPT (see e.g. Flum/Grohe, Chap 1)



A closing meditation
Many characterizations of FPT (see e.g. Flum/Grohe, Chap 1)

Characterization: (Q, ) in FPT iff (Q, k) has a kernelization



A closing meditation
Many characterizations of FPT (see e.g. Flum/Grohe, Chap 1)
Characterization: (Q, k) in FPT iff (Q, k) has a kernelization

The study of when param problems have
polynomial kernelizations (and how good these can be)
led/lead to a rich, deep body of work



A closing meditation
Many characterizations of FPT (see e.g. Flum/Grohe, Chap 1)
Characterization: (Q, x) in FPT iff (Q, ) has a kernelization

The study of when param problems have
polynomial kernelizations (and how good these can be)
led/lead to a rich, deep body of work

Characterization: (Q, ) is in FPT iff it can be “compiled” to a
PTIME language @, via a computable ¢, so that:

x e Qiff (c(k(x)),x) e @



A closing meditation
Many characterizations of FPT (see e.g. Flum/Grohe, Chap 1)
Characterization: (Q, k) in FPT iff (Q, k) has a kernelization

The study of when param problems have
polynomial kernelizations (and how good these can be)
led/lead to a rich, deep body of work

Characterization: (Q, ) is in FPT iff it can be “compiled” to a
PTIME language @, via a computable ¢, so that:
x € Qiff (c(k(x)),x) e Q

Here we initiated a theory for understanding when we have
polynomial-length compilations



A closing meditation
Many characterizations of FPT (see e.g. Flum/Grohe, Chap 1)

Characterization: (Q, x) in FPT iff (Q, ) has a kernelization

The study of when param problems have
polynomial kernelizations (and how good these can be)
led/lead to a rich, deep body of work

Characterization: (Q, ) is in FPT iff it can be “compiled” to a
PTIME language @, via a computable ¢, so that:

x € Qiff (c(k(x)),x) e Q
Here we initiated a theory for understanding when we have

polynomial-length compilations
Is there an entire area to be discovered here?
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The study of when param problems have
polynomial kernelizations (and how good these can be)
led/lead to a rich, deep body of work

Characterization: (Q, ) is in FPT iff it can be “compiled” to a
PTIME language @, via a computable ¢, so that:

x e Qiff (c(k(x)),x) e @

Here we initiated a theory for understanding when we have
polynomial-length compilations
Is there an entire area to be discovered here?

“Kernelization is just one technique in parameterized complexity and its
systematic study opened up a whole new world of research questions. Could
it be that exploring other basic techniques turns out to be as fruitful as the
study of kernelization?” — Déniel Marx, ‘12 survey



