
Complexity aspects of

CNF to CNF compilation

Ondřej Čepek

Charles University in Prague, Czech Republic

(joint work with M.Babka, T.Balyo, Š.Gurský, P.Kučera, and V.Vlček)

Symposium on New Frontiers in Knowledge Compilation

Vienna Center for Logic and Algorithms, June 4-6, 2015

CNF to CNF compilation

 Input: arbitrary CNF

 Output: logically equivalent CNF with “good”

inference properties

 Compilation method: add implicates

 What do we mean by “good” inference

properties?

2

“Good” inference properties

 In general – polynomial time procedure to

 prove that a given clause is an implicate of the

given CNF (clausal entailment)

 discover all entailed literals after any partial

substitution

 In our context – we want unit propagation

(UP) to suffice for both tasks

3

Clausal entailment by UP

 Clause C is 1-provable w.r.t. CNF formula F

iff unit propagation on F  C derives  .

 CNF F is unit refutation complete if every

implicate of F is 1-provable w.r.t. F.

(definition due to Alvaro del Val 1994)

 URC = class of unit refutation complete CNFs

4

Literal entailment by UP

 CNF F is propagation complete if for any

partial assignment x1, … ,xk and any literal d :

if d is entailed from F by x1, … ,xk then d is

also entailed by unit propagation on F after

fixing the values of x1, … ,xk. (definition due

to Lucas Bordeaux, Joao Marques-Silva 2012)

 PC = class of propagation complete CNFs

5

URC versus PC

 Easy to see PC  URC but not vice versa

F = (a  b  x)  (a  c  x)

 F is not in PC (b=0 and c=0 entail a=1 but

unit propagation does not discover this fact)

 F is in URC (the only prime implicate not

explicitly present in F is a  b  c and it is

clearly 1-provable)
6

How to achieve PC?

 Which clauses are worth adding?

 Clause C = x1  … xk is an empowering

implicate for CNF F if C (after a possible

renumbering) contains an empowered literal

xk such that

 F  x1  …  xk-1 entails xk

 unit propagation run on F  x1  …  xk-1

entails neither  nor xk

(definition due to Darwiche, Pipatsrisawat 2011)
7

Notes on empowering implicates

 Asserting clauses learnt by CDCL SAT

solvers are empowering implicates for the

“current” CNF held by the solver.

 CNF F is propagation complete iff there exists

no empowering implicate for F.

 CNF F can be turned into a propagation

complete CNF by repeatedly adding

empowering implicates (compilation process)

8

Complexity issues of such KC

 Given CNF F and clause C what is the

complexity of deciding whether C is an

empowering implicate for F?

 Given CNF F what is the complexity of

deciding whether there exists an empowering

implicate for F?

 Given CNF F how many empowering

implicates need to be added to achieve PC?

9

Result 1

 Question: Given CNF F and clause C what is

the complexity of deciding whether C is an

empowering implicate for F?

 Answer: The problem is co-NP-complete.

10

Result 2

 Question: Given CNF F what is the

complexity of deciding whether there exists

an empowering implicate for F?

 Answer: The problem is NP-complete.

 Corollary: Testing whether a given CNF is PC

is co-NP-complete.

11

Result 3

 Question: Given CNF F how many

empowering implicates need to be added to

achieve propagation completeness?

 Answer: There are CNFs for which an

exponential number of empowering clauses

has to be added to arrive to a PC formula.

12

Connection to CSP

 In CSP each variable Xi has its finite domain D(Xi).

 Constraint – specifies which combinations of values

from domains are allowed.

 Propagator P for a constraint C – an algorithm that

restricts the domains of variables appearing in C

 P detects dis-entailment  P returns an empty

domain whenever C has no solution

 P enforces domain consistency  for every domain

value d  D(Xi) returned by P, there is a solution of

C in which Xi = d. 13

Binarization of CSP variables

 Direct encoding – one Boolean variable for

every value in every domain

xij = 1  Xi = j for j  D(Xi)

 ALO clauses

i : (xi1  xi2  … xip)

 AMO clauses

i jk : (xij  xik)

14

CNF decomposition for a propagator

 CNF decomposition FP for a propagator P is a

CNF on variables (x,y) where x is the set of

variables from the direct encoding and y is a

set of auxiliary variables, such that

 UP derives  on FP  P returns an empty domain

 xij  0 by UP on FP  P removes j from D(Xi)

 P detects dis-entailment  FP is URC

 P enforces domain consistency  FP is PC

 15

Open problem

 What is the gap between the size of the input

and the PC output if both CNFs are compiled

into some other representation (e.g. ZBDD)?

16

Thank you for your attention.

17

