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CNF to CNF compilation 

 

 Input: arbitrary CNF 

 Output: logically equivalent CNF with “good” 

inference properties 

 Compilation method: add implicates 

 What do we mean by “good” inference 

properties? 
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“Good” inference properties 

 

 In general –  polynomial time procedure to 

 prove that a given clause is an implicate of the 

given CNF (clausal entailment) 

 discover all entailed literals after any partial 

substitution 

 In our context – we want unit propagation 

(UP) to suffice for both tasks 
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Clausal entailment by UP 

 

 Clause C is 1-provable w.r.t. CNF formula F 

iff unit propagation on F  C derives  . 

 CNF F is unit refutation complete if every 

implicate of F is 1-provable w.r.t. F. 

(definition due to Alvaro del Val 1994) 

 URC = class of unit refutation complete CNFs 

4 



Literal entailment by UP 

 

 CNF F is propagation complete if for any 

partial assignment x1, … ,xk and any literal d : 

if d is entailed from F by x1, … ,xk then d is 

also entailed by unit propagation on F after 

fixing the values of x1, … ,xk. (definition due 

to Lucas Bordeaux, Joao Marques-Silva 2012) 

 PC = class of propagation complete CNFs  
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URC versus PC 

 

 Easy to see PC  URC but not vice versa 

F = (a  b  x)  (a  c  x)          

 F is not in PC (b=0 and c=0 entail a=1 but 

unit propagation does not discover this fact)  

 F is in URC (the only prime implicate not 

explicitly present in F is a  b  c and it is 

clearly 1-provable) 
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How to achieve PC? 

 Which clauses are worth adding? 

 Clause C = x1  … xk is an empowering 

implicate for CNF F if C (after a possible 

renumbering) contains an empowered literal 

xk such that  

 F  x1  …  xk-1 entails xk  

 unit propagation run on F  x1  …  xk-1 

entails neither  nor xk  

(definition due to Darwiche, Pipatsrisawat 2011) 
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Notes on empowering implicates 

 Asserting clauses learnt by CDCL SAT 

solvers are empowering implicates for the 

“current” CNF held by the solver. 

 CNF F is propagation complete iff there exists 

no empowering implicate for F. 

 CNF F can be turned into a propagation 

complete CNF by repeatedly adding 

empowering implicates (compilation process) 
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Complexity issues of such KC 

 Given CNF F and clause C what is the 

complexity of deciding whether C is an 

empowering implicate for F? 

 Given CNF F what is the complexity of 

deciding whether there exists an empowering 

implicate for F? 

 Given CNF F how many empowering 

implicates need to be added to achieve PC? 
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Result 1 

 

 Question: Given CNF F and clause C what is 

the complexity of deciding whether C is an 

empowering implicate for F? 

 Answer: The problem is co-NP-complete.  
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Result 2 

 

 Question: Given CNF F what is the 

complexity of deciding whether there exists 

an empowering implicate for F? 

 Answer: The problem is NP-complete.  

 Corollary: Testing whether a given CNF is PC 

is co-NP-complete. 
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Result 3 

 

 Question: Given CNF F how many 

empowering implicates need to be added to 

achieve propagation completeness? 

 Answer: There are CNFs for which an 

exponential number of empowering clauses 

has to be added to arrive to a PC formula. 
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Connection to CSP 

 In CSP each variable Xi has its finite domain D(Xi).  

 Constraint – specifies which combinations of values 

from domains are allowed. 

 Propagator P for a constraint C – an algorithm that 

restricts the domains of variables appearing in C 

 P detects dis-entailment  P returns an empty 

domain whenever C has no solution 

 P enforces domain consistency  for every domain 

value d  D(Xi) returned by P, there is a solution of 

C in which Xi = d. 13 



Binarization of CSP variables 

 Direct encoding – one Boolean variable for 

every value in every domain 

xij = 1  Xi = j for j  D(Xi)  

 ALO clauses 

i : (xi1  xi2  … xip ) 

 AMO clauses 

i jk : (xij  xik) 
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CNF decomposition for a propagator 

 CNF decomposition FP for a propagator P is a 

CNF on variables (x,y) where x is the set of 

variables from the direct encoding and y is a 

set of auxiliary variables, such that 

 UP derives  on FP  P returns an empty domain 

 xij  0 by UP on FP  P removes j from D(Xi) 

 P detects dis-entailment  FP is URC 

 P enforces domain consistency  FP is PC 
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Open problem 

 

 What is the gap between the size of the input 

and the PC output if both CNFs are compiled 

into some other representation (e.g. ZBDD)? 
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Thank you for your attention. 
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