A Strongly Exponential Separation of DNNFs from CNFs

Simone Bova (TU Wien)
joint work with
Florent Capelli, Stefan Mengel, and Friedrich Slivovsky

Symposium on Knowledge Compilation
June 4-6, 2015
Outline

Motivation

Contribution

Proof
Outline

Motivation

Contribution

Proof
Motivation

In choosing a *representation language* for a propositional theory there is a trade-off between “succinctness” and “tractability”.

Darwiche and Marquis (2002) systematically investigate a hierarchy of representation languages that strike this balance in different ways.

Contribution

Proof
Representation Languages

Figure: Inclusion relation on representation languages (Hasse diagram).
Representation Languages

Negation Normal Forms (NNF) Boolean circuits having unbounded fanin AND and OR gates with negations pushed to the input gates.

Decomposable NNFs (DNNF) NNFs where subcircuits leading into each AND gate are defined on disjoint sets of variables.

Deterministic DNNFs (dDNNF) DNNFs where subcircuits leading into each OR gate never simultaneously evaluate to 1.

Conjunctive Normal Forms (CNF) NNFs where...

Prime Implicate Forms (PI) CNFs where entailed clauses are already entailed by a single clause in the CNF and no clause in the CNF is entailed by another.

...

size(C) is the number of arcs in the DAG underlying C (for C in NNF).
Example

Figure: A DNNF.
Let $S, T \subseteq \text{NNF}$.

Say that S is \textit{(polysize) compilable} into T (or T is \textit{at least as succinct as} S) if there exists a polynomial $p : \mathbb{N} \rightarrow \mathbb{N}$ such that for all $C \in S$ there exists $D \in T$ equivalent to C such that

$$\text{size}(D) \leq p(\text{size}(C)).$$

Write $S \leadsto T$ if S is compilable into T, and $S \not\leadsto T$ otherwise.
The succinctness relation is presented in Darwiche and Marquis (2002).

It follows from previous results including

- Quine (1959),
- Chandra and Markowsky (1978),
- Bryant (1986),
- Wegener (1987),
- Gergov and Meinel (1994),
- Gogic, Kautz, Papdimitriou, and Selman (1995),
- Selman and Kautz (1996),
- Cadoli and Donini (1997), and
- Darwiche (1999).
Succinctness Relation

![Diagram showing the succinctness relation among different classes of Boolean functions: MODS, OBDD, DNNF, DNF, dDNNF, NNF, IP, FBDD, PI, OBDD, and MODS.](image)

Figure: $S \rightarrow T$ means $S \sim T$ unknown.
Motivation

Contribution

Proof

Succinctness Relation

[Diagram showing the succinctness relation between different logical forms: NNF, DNNF, OBDD, dDNNF, IP, FBDD, PI, MODS, DNF, CNF.]

Figure: S $\rightarrow\rightarrow$ T means S $\sim\sim$ T unknown. S $\not\rightarrow\rightarrow$ T means S $\not\sim\sim$ T unless PH collapses.
<table>
<thead>
<tr>
<th>Motivation</th>
<th>Contribution</th>
<th>Proof</th>
</tr>
</thead>
</table>

DNNF vs CNF

- $DNNF \not\Rightarrow CNF$: $x_1 \oplus \cdots \oplus x_n$ has linear OBDD (and thus DNNF) size, but at least 2^n clauses in any CNF representation (Bryant).

- $CNF \not\Rightarrow DNNF$: If CNF $\Rightarrow DNNF$, then "clause entailment admits polysize compilation", then PH collapses (Selman and Kautz; Cadoli and Donini).
DNNF vs CNF

DNNF $\not\rightarrow$ CNF: $x_1 \oplus \cdots \oplus x_n$ has linear OBDD (and thus DNNF) size, but at least 2^n clauses in any CNF representation (Bryant).
DNNF vs CNF

DNNF $\not\rightarrow$ CNF: $x_1 \oplus \cdots \oplus x_n$ has linear OBDD (and thus DNNF) size, but at least 2^n clauses in any CNF representation (Bryant).

CNF $\not\rightarrow$ DNNF: If CNF \leadsto DNNF, then “clause entailment admits polysize compilation”, then PH collapses (Selman and Kautz; Cadoli and Donini).
Outline

Motivation

Contribution

Proof
<table>
<thead>
<tr>
<th>Motivation</th>
<th>Contribution</th>
<th>Proof</th>
</tr>
</thead>
<tbody>
<tr>
<td>$\text{CNF} \not\sim \text{DNNF}$</td>
<td>Weakly Exponential, $2^{n\Omega(1)}$</td>
<td></td>
</tr>
</tbody>
</table>
Let CLIQUE\(_n(x)\) be the monotone Boolean function sending its \(\binom{n}{2}\) inputs to 1 iff the corresponding \(n\)-vertex graph contains a clique on \(k(n) = n^{\Omega(1)}\) vertices.

The monotone circuit complexity of CLIQUE\(_n\) is weakly exponential in \(n\) (Alon and Boppana, 1987).
Let CLIQUE\(_n\) be the monotone Boolean function sending its \(\binom{n}{2}\) inputs to 1 iff the corresponding \(n\)-vertex graph contains a clique on \(k(n) = n^{\Omega(1)}\) vertices.

The monotone circuit complexity of CLIQUE\(_n\) is weakly exponential in \(n\) (Alon and Boppana, 1987).

Let \(T\) be NTM deciding the clique problem in polytime.

Given \(T\), construct for all \(n \geq 1\) a CNF \(F_n(x, y)\) of size polynomial in \(n\) such that \(\exists yF_n(x, y)\) computes CLIQUE\(_n\)\((x)\).
Let $\text{CLIQUE}_n(x)$ be the monotone Boolean function sending its $\binom{n}{2}$ inputs to 1 iff the corresponding n-vertex graph contains a clique on $k(n) = n^{\Omega(1)}$ vertices.

The monotone circuit complexity of CLIQUE_n is weakly exponential in n (Alon and Boppana, 1987).

Let T be NTM deciding the clique problem in polytime.

Given T, construct for all $n \geq 1$ a CNF $F_n(x, y)$ of size polynomial in n such that $\exists y F_n(x, y)$ computes $\text{CLIQUE}_n(x)$.

Let $D_n(x, y)$ be a DNNF computing $F_n(x, y)$.
Let $\text{CLIQUE}_n(x)$ be the monotone Boolean function sending its $\binom{n}{2}$ inputs to 1 iff the corresponding n-vertex graph contains a clique on $k(n) = n^{\Omega(1)}$ vertices.

The monotone circuit complexity of CLIQUE_n is weakly exponential in n (Alon and Boppana, 1987).

Let T be NTM deciding the clique problem in polytime.

Given T, construct for all $n \geq 1$ a CNF $F_n(x, y)$ of size polynomial in n such that $\exists y F_n(x, y)$ computes $\text{CLIQUE}_n(x)$.

Let $D_n(x, y)$ be a DNNF computing $F_n(x, y)$.

There exists a monotone DNNF computing $\exists y D_n(x, y) \equiv \text{CLIQUE}_n(x)$ having size polynomial in D_n (Darwiche, 2001; Krieger, 2007).
Let CLIQUE$_n$(x) be the monotone Boolean function sending its $\binom{n}{2}$ inputs to 1 iff the corresponding n-vertex graph contains a clique on $k(n) = n^{\Omega(1)}$ vertices.

The monotone circuit complexity of CLIQUE$_n$ is weakly exponential in n (Alon and Boppana, 1987).

Let T be NTM deciding the clique problem in polytime.

Given T, construct for all $n \geq 1$ a CNF $F_n(x, y)$ of size polynomial in n such that $\exists y F_n(x, y)$ computes CLIQUE$_n(x)$.

Let $D_n(x, y)$ be a DNNF computing $F_n(x, y)$.

There exists a monotone DNNF computing $\exists y D_n(x, y) \equiv$ CLIQUE$_n(x)$ having size polynomial in D_n (Darwiche, 2001; Krieger, 2007).

Hence $D_n(x, y)$ has size weakly exponential in n.
<table>
<thead>
<tr>
<th>Motivation</th>
<th>Contribution</th>
<th>Proof</th>
</tr>
</thead>
<tbody>
<tr>
<td>CNF ↳ DNNF</td>
<td>*Strongly Exponential, (2^{\Omega(n)})</td>
<td></td>
</tr>
</tbody>
</table>
Theorem (B, Capelli, Mengel, Slivovsky)

There exist $c > 0$ and a class \mathcal{F} of CNFs of increasing size such that for all $F \in \mathcal{F}$ and all $D \in \text{DNNF}$ equivalent to F,

$$\text{size}(D) \geq 2^{c \cdot \text{size}(F)}.$$
Consequences in circuit complexity.

FBDD Improve weakly exponential lower bounds on CNF to FBDD compilation (Bollig and Wegener, 1998; Beame et al., 2014).

Multilinear Boolean Circuits Improve weakly exponential lower bounds (Krieger, 2007).
Consequences in knowledge compilation.

Corollary

\[S \not\rightarrow T \text{ for all } (S, T) \in \{\text{PI, CNF, NNF}\} \times \{\text{dDNNF, DNNF}\}. \]

Proof.

\(\mathcal{F} \subseteq \text{PI}. \) The statement follows as \(\text{PI} \subseteq \text{CNF} \subseteq \text{NNF} \) and \(\text{dDNNF} \subseteq \text{DNNF}. \)
PI \not\leftrightarrow DNNF

Figure: Status (left), our contribution (center), status modulo our contribution (right).
<table>
<thead>
<tr>
<th>Motivation</th>
<th>Contribution</th>
<th>Proof</th>
</tr>
</thead>
</table>

Outline

- Motivation
- Contribution
- Proof
A graph CNF is a CNF of the form

\[\text{cnf}(G) = \bigwedge_{xy \in E} x \lor y \]

where \(G = (V, E) \) is a graph.
A graph CNF is a CNF of the form

\[\text{cnf}(G) = \bigwedge_{xy \in E} x \lor y \]

where \(G = (V, E) \) is a graph.

\[\begin{array}{c}
\text{x} \quad \text{w} \\
\text{y} \quad \text{z}
\end{array} \]

\[G = (\{x, y, w, z\}, \{xw, yz\}) \]
A graph CNF is a CNF of the form

$$\text{cnf}(G) = \bigwedge_{xy \in E} x \lor y$$

where $G = (V, E)$ is a graph.

$G = (\{x, y, w, z\}, \{xw, yz\})$

$$\text{cnf}(G) = (x \lor w) \land (y \lor z)$$
Graph CNFs

Let \(\text{vc}(G) \) denote the vertex covers of graph \(G \).
Graph CNFs

Let $vc(G)$ denote the vertex covers of graph G.

Then

$$\text{mod}(\text{cnf}(G)) = vc(G)$$
Let \(vc(G) \) denote the vertex covers of graph \(G \).

Then

\[
\text{mod(cnf}(G)) = vc(G)
\]

Then:

- \(cnf(G) \) is a monotone Boolean function.
- \(cnf(G) \) is nontrivial, if \(|E| \geq 1 \).
A fanin 2, monotone, and constant free DNNF is said nice.
A fanin 2, monotone, and constant free DNNF is said nice.

Lemma (Krieger)

Let D be a DNNF computing a nontrivial monotone Boolean function f. There exists a nice DNNF D' equivalent to D st

$$\text{size}(D') \leq 2 \cdot \text{size}(D)$$
A fanin 2, monotone, and constant free DNNF is said nice.

Lemma (Krieger)

Let D be a DNNF computing a nontrivial monotone Boolean function f. There exists a nice DNNF D' equivalent to D st

$$\text{size}(D') \leq 2 \cdot \text{size}(D)$$

Proof (Sketch).

For monotonicity, replace each label of the form $\neg x$ by the constant 1. □
A fanin 2, monotone, and constant free DNNF is said nice.

Lemma (Krieger)

Let D be a DNNF computing a nontrivial monotone Boolean function f. There exists a nice DNNF D' equivalent to D st

$$\text{size}(D') \leq 2 \cdot \text{size}(D)$$

Proof (Sketch).

For monotonicity, replace each label of the form $\neg x$ by the constant 1.

The size of a graph CNF on nice DNNFs is linear in its DNNF size.
Nice DNNFs

Figure: A nice DNNF (right) computing the vertex covers of a graph (left).
<table>
<thead>
<tr>
<th>Motivation</th>
<th>Contribution</th>
<th>Proof</th>
</tr>
</thead>
</table>

Vertex Covers

Which fraction of vertex covers of a graph contain a fixed subset of vertices?

For $G = (V, E)$ and $I \subseteq V$, write $vc(G,I) = \{C \in vc(G) : I \subseteq C\}$ for the vertex covers of G containing I.

Theorem (Razgon; B, Capelli, Mengel, Slivovsky)

Let $G = (V, E)$ be a degree d graph and let $I \subseteq V$. Then $|vc(G,I)| \leq 2 - f(d)|I| |vc(G)|$ where $f(d) = \log_2(1 + 2 - d) > 0$.

If $|I|$ is large (linear in $|V|$), then $vc(G,I)$ is very small (exponentially small in $|V|$).
Vertex Covers

Which fraction of vertex covers of a graph contain a fixed subset of vertices?
Vertex Covers

Which fraction of vertex covers of a graph contain a fixed subset of vertices?

For \(G = (V, E) \) and \(I \subseteq V \), write

\[
\text{vc}(G, I) = \{C \in \text{vc}(G) : I \subseteq C\}
\]

for the vertex covers of \(G \) containing \(I \).
Vertex Covers

Which fraction of vertex covers of a graph contain a fixed subset of vertices?

For $G = (V, E)$ and $I \subseteq V$, write

$$vc(G, I) = \{C \in vc(G) : I \subseteq C\}$$

for the vertex covers of G containing I.

Theorem (Razgon; B, Capelli, Mengel, Slivovsky)

Let $G = (V, E)$ be a degree d graph and let $I \subseteq V$. Then

$$|vc(G, I)| \leq 2^{-f(d)|I|} |vc(G)|$$

where $f(d) = \log_2(1 + 2^{-d}) > 0$.

If $|I|$ is large (linear in $|V|$),
then $vc(G, I)$ is very small (exponentially small in $|V|$).
Let $G = (V, E)$ be a graph.
Let $G = (V, E)$ be a graph.

A family \mathcal{I} of subsets of V covers $\text{vc}(G)$ if $\text{vc}(G) = \bigcup_{I \in \mathcal{I}} \text{vc}(G, I)$.
Let $G = (V, E)$ be a graph.

A family \mathcal{I} of subsets of V covers $vc(G)$ if $vc(G) = \bigcup_{I \in \mathcal{I}} vc(G, I)$.

Corollary

Let $G = (V, E)$ be a degree d graph and let \mathcal{I} cover $vc(G)$. Then

$$|\mathcal{I}| \geq 2^{f(d) \cdot \min\{|I| : I \in \mathcal{I}\}}$$

where $f(d) = \log_2(1 + 2^{-d}) > 0$.

If \mathcal{I} contains only large sets, then \mathcal{I} is very large.
Proof Strategy

Choose a \(d \)-bounded degree graph class \(\mathcal{G} \) and \(c > 0 \) such that, for every \(G = (V, E) \in \mathcal{G} \) and every nice DNNF \(D \) computing \(\text{vc}(G) \) we can find:
Choose a d-bounded degree graph class \mathcal{G} and $c > 0$ such that, for every $G = (V, E) \in \mathcal{G}$ and every nice DNNF D computing $vc(G)$ we can find:

- S distinct gates in D
Choose a d-bounded degree graph class \mathcal{G} and $c > 0$ such that, for every $G = (V, E) \in \mathcal{G}$ and every nice DNNF D computing $\text{vc}(G)$ we can find:

- S distinct gates in D
- a family \mathcal{I} covering $\text{vc}(G)$ such that

 $S \geq |\mathcal{I}|$ and each $I \in \mathcal{I}$ has size at least $c|V|$.
Proof Strategy

Choose a d-bounded degree graph class \mathcal{G} and $c > 0$ such that, for every $G = (V, E) \in \mathcal{G}$ and every nice DNNF D computing $\text{vc}(G)$ we can find:

- S distinct gates in D
- a family \mathcal{I} covering $\text{vc}(G)$ such that $S \geq |\mathcal{I}|$ and each $I \in \mathcal{I}$ has size at least $c|V|$.

Conclude by the theory of vertex covers that

$$|\text{gates}(D)| \geq S \geq |\mathcal{I}| \geq 2^{f(d) \cdot c|V|}.$$
Proof Strategy

Choose a d-bounded degree graph class \mathcal{G} and $c > 0$ such that, for every $G = (V, E) \in \mathcal{G}$ and every nice DNNF D computing $vc(G)$ we can find:

- S distinct gates in D
- a family \mathcal{I} covering $vc(G)$ such that $S \geq |\mathcal{I}|$ and each $I \in \mathcal{I}$ has size at least $c|V|$.

Conclude by the theory of vertex covers that

$$|\text{gates}(D)| \geq S \geq |\mathcal{I}| \geq 2^{f(d) \cdot c|V|}$$

for $f(d) > 0$ as in the corollary.
A certificate for a DNNF D is a DNNF T defined inductively on D as follows:

- output(T) = output(D).
- Let v be a \land-gate of D with wires from gates v_1 and v_2. If v is in T, then both v_1 and v_2 (and their wires to v) are in T.
- Let v be a \lor-gate of D with wires from gates v_1 and v_2. If v is in T, then exactly one of v_1 and v_2 (and its wire to v) is in T.
Certificates

Figure: Certificates for the DNNF displayed in previous examples.

A certificate for a DNNF D is a DNNF T defined inductively on D as follows:

- **output**(T) = **output**(D).
- Let v be a \wedge-gate of D with wires from gates v_1 and v_2.
 If v is in T, then both v_1 and v_2 (and their wires to v) are in T.
- Let v be a \lor-gate of D with wires from gates v_1 and v_2.
 If v is in T, then exactly one of v_1 and v_2 (and its wire to v) is in T.
For a DNNF D, write $\text{cert}(D) = \{T : T \text{ certificate of } D\}$.
For a DNNF D, write $\text{cert}(D) = \{T : T \text{ certificate of } D\}$.

Then

$$D \equiv \bigvee_{T \in \text{cert}(D)} T$$
Gate Elimination

Let D be a DNNF such that $\text{mod}(D) \subseteq \text{vc}(G)$ and v be a gate in D.
Gate Elimination

Let D be a DNNF st $\text{mod}(D) \subseteq \text{vc}(G)$ and v be a gate in D.

Let $D^{v=0}$ be obtained by relabelling v by 0 in D (and propagating).

\[
D^{v=0} \equiv (\bigvee_{T \in \text{cert}(T)} T)^{v=0} \\
\equiv \bigvee \{ T \in \text{cert}(D) : v \notin T \} \lor \bigvee \{ T \in \text{cert}(D) : v \in T \} \\
\equiv \bigvee \{ T \in \text{cert}(D) : v \notin T \} \lor T
\]
Gate Elimination

Let D be a DNNF st $\text{mod}(D) \subseteq \text{vc}(G)$ and v be a gate in D.

Let $D^{v=0}$ be obtained by relabelling v by 0 in D (and propagating).

\[
D^{v=0} \equiv \left(\bigvee_{T \in \text{cert}(T)} T \right)^{v=0}
\]

\[
\equiv \bigvee \{T \in \text{cert}(D) : v \not\in T\} \lor \bigvee \{T \in \text{cert}(D) : v \in T\}
\]

\[
\equiv \bigvee \{T \in \text{cert}(D) : v \not\in T\}
\]

Call

\[
A_{D,v} = \{z : z \in \text{vars}(T) \text{ for all } T \in \text{cert}(D) \text{ such that } v \in T\} \subseteq V
\]

the set of vertices agreed at v in D.
Example

Figure: Eliminating gate \(\bullet \) in \(D \) gives \(D^{\bullet} = 0 \).

By inspection \(\text{cert}(D^{\bullet}=0) = \text{cert}(D) \setminus \{T \in \text{cert}(D) : \bullet \in T\} \).

\(A_{D,\bullet} = \{w\} \).
Gate Elimination

Let $G = (V, E)$ be a graph, and D be a nice DNNF computing $\text{vc}(G)$.
Gate Elimination

Let $G = (V, E)$ be a graph, and D be a nice DNNF computing $\text{vc}(G)$.

Let $v_1\ldots,v_S$ be distinct gates in D, and $D_0, D_1, D_2, \ldots, D_S$ be DNNFs such that:
Gate Elimination

Let $G = (V, E)$ be a graph, and D be a nice DNNF computing $vc(G)$.

Let $v_1 \ldots, v_s$ be distinct gates in D, and $D_0, D_1, D_2, \ldots, D_s$ be DNNFs such that:

- $D_0 = D$
Let $G = (V, E)$ be a graph, and D be a nice DNNF computing $\text{vc}(G)$.

Let v_1, \ldots, v_S be distinct gates in D, and $D_0, D_1, D_2, \ldots, D_S$ be DNNFs such that:

- $D_0 = D$
- $D_1 = D_0^{v_1=0}$
Let $G = (V, E)$ be a graph, and D be a nice DNNF computing $\text{vc}(G)$.

Let $v_1 \ldots, v_S$ be distinct gates in D, and $D_0, D_1, D_2, \ldots, D_S$ be DNNFs such that:

- $D_0 = D$
- $D_1 = D_0^{v_1=0}$, $D_2 = D_1^{v_2=0}$
Let $G = (V, E)$ be a graph, and D be a nice DNNF computing $\text{vc}(G)$.

Let $v_1 \ldots, v_S$ be distinct gates in D, and $D_0, D_1, D_2, \ldots, D_S$ be DNNFs such that:

- $D_0 = D$
- $D_1 = D_0^{v_1=0}$, $D_2 = D_1^{v_2=0}$, ..., $D_i = D_{i-1}^{v_i=0}$
Gate Elimination

Let $G = (V, E)$ be a graph, and D be a nice DNNF computing $vc(G)$.

Let v_1, \ldots, v_S be distinct gates in D, and $D_0, D_1, D_2, \ldots, D_S$ be DNNFs such that:

- $D_0 = D$
- $D_1 = D_0^{v_1=0}$, $D_2 = D_1^{v_2=0}$, \ldots, $D_i = D_{i-1}^{v_i=0}$
- $D_S \equiv 0$
Gate Elimination

Let $G = (V, E)$ be a graph, and D be a nice DNNF computing $\text{vc}(G)$.

Let v_1, \ldots, v_S be distinct gates in D, and $D_0, D_1, D_2, \ldots, D_S$ be DNNFs such that:

- $D_0 = D$
- $D_1 = D_0^{v_1=0}$, $D_2 = D_1^{v_2=0}$, \ldots, $D_i = D_{i-1}^{v_i=0}$
- $D_S \equiv 0$

Let $I_i \subseteq A_{D_{i-1}, v_i}$.
Gate Elimination

Let $G = (V, E)$ be a graph, and D be a nice DNNF computing $\text{vc}(G)$.

Let $v_1 \ldots, v_S$ be distinct gates in D, and $D_0, D_1, D_2, \ldots, D_S$ be DNNFs such that:

- $D_0 = D$
- $D_1 = D_{0}^{v_1=0}$, $D_2 = D_{1}^{v_2=0}$, \ldots, $D_i = D_{i-1}^{v_i=0}$
- $D_S \equiv 0$

Let $I_i \subseteq A_{D_{i-1}, v_i}$.

Then $\mathcal{I} = \{I_i : i = 1, \ldots, S\}$ covers $\text{vc}(G)$.
Gate Elimination

Let $G = (V, E)$ be a graph, and D be a nice DNNF computing $vc(G)$.

Let v_1, \ldots, v_s be distinct gates in D, and $D_0, D_1, D_2, \ldots, D_s$ be DNNFs such that:

- $D_0 = D$
- $D_1 = D_{0}^{v_1=0}$, $D_2 = D_{1}^{v_2=0}$, \ldots, $D_i = D_{i-1}^{v_i=0}$
- $D_s \equiv 0$

Let $I_i \subseteq A_{D_{i-1}, v_i}$.

Then $\mathcal{I} = \{I_i: i = 1, \ldots, S\}$ covers $vc(G)$.

For the lower bound, we want $|I_i|$ linear in $|V|$.
Let D be a nice DNNF such that $\text{mod}(D) \subseteq \text{vc}(G)$.
DNNFs and Matchings

Let D be a nice DNNF such that $\text{mod}(D) \subseteq \text{vc}(G)$.

Let v be a gate in D and D_v be the subcircuit of D rooted at v (think of v as a candidate for elimination).
DNNFs and Matchings

Let D be a nice DNNF such that $\text{mod}(D) \subseteq \text{vc}(G)$.

Let v be a gate in D and D_v be the subcircuit of D rooted at v (think of v as a candidate for elimination).

Let $M = \{x_1y_1, \ldots, x_ny_n\}$ be a matching in G with $\{x_1, \ldots, x_n\} \subseteq \text{vars}(D_v)$ and $\{y_1, \ldots, y_n\} \subseteq \text{vars}(D) \setminus \text{vars}(D_v)$.

![Figure: Graph G (left) has edge xw across gate v in its DNNF D (right).]
Let D be a nice DNNF such that $\text{mod}(D) \subseteq \text{vc}(G)$.

Let v be a gate in D and D_v be the subcircuit of D rooted at v (think of v as a candidate for elimination).

Let $M = \{x_1y_1, \ldots, x_ny_n\}$ be a matching in G with $\{x_1, \ldots, x_n\} \subseteq \text{vars}(D_v)$ and $\{y_1, \ldots, y_n\} \subseteq \text{vars}(D) \setminus \text{vars}(D_v)$.

Figure: Graph G (left) has edge xw “across” gate v in its DNNF D (right).
DNNFs and Matchings

\[M = \{x_1y_1, \ldots, x_ny_n\} \text{ matching in } G \text{ “across” gate } v \text{ in } D. \]

Claim

For all \(i = 1, \ldots, n \), at least one of the following two statements holds:

1. \(x_i \in \text{vars}(T) \) for all \(T \in \text{cert}(D) \) such that \(v \in T. \)
2. \(y_i \in \text{vars}(T) \) for all \(T \in \text{cert}(D) \) such that \(v \in T. \)
DNNFs and Matchings

\[M = \{x_1y_1, \ldots, x_ny_n\} \text{ matching in } G \text{ “across” gate } v \text{ in } D. \]

Claim

For all \(i = 1, \ldots, n \), at least one of the following two statements holds:

1. \(x_i \in \text{vars}(T) \) for all \(T \in \text{cert}(D) \) such that \(v \in T \).
2. \(y_i \in \text{vars}(T) \) for all \(T \in \text{cert}(D) \) such that \(v \in T \).
DNNFs and Matchings

\[M = \{x_1y_1, \ldots, x_ny_n\} \text{ matching in } G \text{ “across” gate } v \text{ in } D. \]

Claim

For all \(i = 1, \ldots, n \), at least one of the following two statements holds:

1. \(x_i \in \text{vars}(T) \) for all \(T \in \text{cert}(D) \) such that \(v \in T \).
2. \(y_i \in \text{vars}(T) \) for all \(T \in \text{cert}(D) \) such that \(v \in T \).

\[I_M = \{x_i: i \in [n] \text{ such that (1) holds}\} \cup \{y_i: i \in [n] \text{ such that (2) holds}\} \subseteq A_{D,v}. \]
Motivation

Claim

For all $i = 1, \ldots, n$, at least one of the following two statements holds:

1. $x_i \in \text{vars}(T)$ for all $T \in \text{cert}(D)$ such that $v \in T$.
2. $y_i \in \text{vars}(T)$ for all $T \in \text{cert}(D)$ such that $v \in T$.

$I_M = \{x_i : i \in [n] \text{ such that (1) holds}\} \cup \{y_i : i \in [n] \text{ such that (2) holds}\} \subseteq A_{D,v}$.

$|I_M| \geq |M|$ by the claim.
A graph $G = (V, E)$ is an (e, d)-expander ($0 < e, d \geq 3$) if:

- G has degree d.
- For all $I \subseteq V$ st $|I| \leq |V|/2$,
 \[|N_I| \geq e|I| \]

where N_I is the neighbourhood of I in G.
A graph $G = (V, E)$ is an (e, d)-expander ($0 < e, d \geq 3$) if:

- G has degree d.
- For all $I \subseteq V$ st $|I| \leq |V|/2$, $|N_I| \geq e|I|$

where N_I is the neighbourhood of I in G.

Theorem (Pinsker, 1973)

For every $d \geq 3$ there exist $e > 0$ and a family $\{G_i\}_{i \in \mathbb{N}}$ of graphs of increasing size such that each G_i is an (e, d)-expander.
Lemma

Let $G = (V, E)$ be a (e, d)-expander and D be a nice DNNF st $\text{mod}(D) \subseteq \text{vc}(G)$. There exists $v \in D$ and $I \subseteq A_{D,v}$ such that $|I|$ is linear in $|V|$.
Expander Graphs

Lemma

Let $G = (V, E)$ be a (e, d)-expander and D be a nice DNNF st $\text{mod}(D) \subseteq \text{vc}(G)$. There exists $v \in D$ and $I \subseteq A_{D,v}$ such that $|I|$ is linear in $|V|$.

Proof (Idea).

$|C| \geq |V| / (d+1)$ for all $C \in \text{vc}(G)$.

Find (greedily) $v \in D$ st $|V| / (d+1) \leq |\text{vars}(D_v)| \leq |V| / 2$.

$|N_{\text{vars}}(D_v)| \geq e |\text{vars}(D_v)| = \Omega(|V|)$.

Find matching M in G of size $\Omega(|V|)$ between $\text{vars}(D_v)$ and $N_{\text{vars}}(D_v) \subseteq \text{vars}(D) \setminus \text{vars}(D_v)$.

$I = I_M \subseteq A_{D,v}$.

$|I| \geq |M| = \Omega(|V|)$.
Expander Graphs

Lemma

Let $G = (V, E)$ be a (e, d)-expander and D be a nice DNNF st $\text{mod}(D) \subseteq \text{vc}(G)$. There exists $v \in D$ and $I \subseteq A_{D,v}$ such that $|I|$ is linear in $|V|$.

Proof (Idea).

- $|C| \geq |V|/(d + 1)$ for all $C \in \text{vc}(G)$.
Lemma

Let $G = (V, E)$ be a (e, d)-expander and D be a nice DNNF st $\text{mod}(D) \subseteq \text{vc}(G)$. There exists $v \in D$ and $I \subseteq A_{D,v}$ such that $|I|$ is linear in $|V|$.

Proof (Idea).

- $|C| \geq |V|/(d + 1)$ for all $C \in \text{vc}(G)$.
- Find (greedily) $v \in D$ st $|V|/(d + 1) \leq |\text{vars}(D_v)| \leq |V|/2$.
Lemma

Let $G = (V, E)$ be a (e, d)-expander and D be a nice DNNF st mod(D) \subseteq vc(G). There exists $v \in D$ and $I \subseteq A_{D,v}$ such that $|I|$ is linear in $|V|$.

Proof (Idea).

- $|C| \geq |V|/(d + 1)$ for all $C \in$ vc(G).
- Find (greedily) $v \in D$ st $|V|/(d + 1) \leq |\text{vars}(D_{v})| \leq |V|/2$.
- $|N_{\text{vars}(D_{v})}| \geq e|\text{vars}(D_{v})| = \Omega(|V|)$.

Expander Graphs
Expander Graphs

Lemma

Let $G = (V, E)$ be a (e, d)-expander and D be a nice DNNF st $\text{mod}(D) \subseteq \text{vc}(G)$. There exists $v \in D$ and $I \subseteq A_{D,v}$ such that $|I|$ is linear in $|V|$.

Proof (Idea).

- $|C| \geq |V|/(d + 1)$ for all $C \in \text{vc}(G)$.
- Find (greedily) $v \in D$ st $|V|/(d + 1) \leq |\text{vars}(D_v)| \leq |V|/2$.
- $|\text{N}_{\text{vars}(D_v)}| \geq e|\text{vars}(D_v)| = \Omega(|V|)$.
- Find matching M in G of size $\Omega(|V|)$ between $\text{vars}(D_v)$ and $\text{N}_{\text{vars}(D_v)} \subseteq \text{vars}(D) \setminus \text{vars}(D_v)$.
Expander Graphs

Lemma

Let $G = (V, E)$ be a (e, d)-expander and D be a nice DNNF such that $\text{mod}(D) \subseteq \text{vc}(G)$. There exists $v \in D$ and $I \subseteq A_{D,v}$ such that $|I|$ is linear in $|V|$.

Proof (Idea).

- $|C| \geq |V|/(d + 1)$ for all $C \in \text{vc}(G)$.
- Find (greedily) $v \in D$ st $|V|/(d + 1) \leq |\text{vars}(D_v)| \leq |V|/2$.
- $|N_{\text{vars}(D_v)}| \geq e|\text{vars}(D_v)| = \Omega(|V|)$.
- Find matching M in G of size $\Omega(|V|)$ between $\text{vars}(D_v)$ and $N_{\text{vars}(D_v)} \subseteq \text{vars}(D) \setminus \text{vars}(D_v)$.
- $I = I_M \subseteq A_{D,v}$.
Expander Graphs

Lemma

Let $G = (V, E)$ be a (e, d)-expander and D be a nice DNNF st $\text{mod}(D) \subseteq \text{vc}(G)$. There exists $v \in D$ and $I \subseteq A_{D,v}$ such that $|I|$ is linear in $|V|$.

Proof (Idea).

- $|C| \geq |V|/(d + 1)$ for all $C \in \text{vc}(G)$.
- Find (greedily) $v \in D$ st $|V|/(d + 1) \leq |\text{vars}(D_v)| \leq |V|/2$.
- $|N_{\text{vars}(D_v)}| \geq e|\text{vars}(D_v)| = \Omega(|V|)$.
- Find matching M in G of size $\Omega(|V|)$ between $\text{vars}(D_v)$ and $N_{\text{vars}(D_v)} \subseteq \text{vars}(D) \setminus \text{vars}(D_v)$.
- $I = I_M \subseteq A_{D,v}$.
- $|I| \geq |M| = \Omega(|V|)$.

□
Proof Sketch

Let \(G = (V, E) \) be a \((e, d)\)-expander and \(D \) a nice DNNF computing \(vc(G) \).

Find \(v_1 \in D \) and \(I_1 \subseteq \mathcal{A} \) such that \(|I_1|\) is linear in \(|V|\).

Eliminate \(v_1 \) to obtain \(D_1 = D_{v_1} = 0 \).

Iterate, unless \(D_1 \equiv 0 \).

\[I = \{I_1, I_2, \ldots\} \] covers \(vc(G) \).

\(|I|\) is exponentially large in \(|V|\).

Hence \(D \) as well.
Proof Sketch

Let $G = (V, E)$ be a (e, d)-expander and D a nice DNNF computing $\text{vc}(G)$.
Proof Sketch

Let $G = (V, E)$ be a (e, d)-expander and D a nice DNNF computing $\text{vc}(G)$.

Find $v_1 \in D$ and $I_1 \subseteq A_{D,v_1}$ such that $|I_1|$ is linear in $|V|$.
Proof Sketch

Let $G = (V, E)$ be a (e, d)-expander and D a nice DNNF computing $\text{vc}(G)$.

Find $v_1 \in D$ and $I_1 \subseteq A_{D,v_1}$ such that $|I_1|$ is linear in $|V|$.

Eliminate v_1 to obtain $D_1 = D^{v_1=0}$.
Proof Sketch

Let $G = (V, E)$ be a (e, d)-expander and D a nice DNNF computing $\text{vc}(G)$.

Find $v_1 \in D$ and $I_1 \subseteq A_{D,v_1}$ such that $|I_1|$ is linear in $|V|$.

Eliminate v_1 to obtain $D_1 = D^{v_1=0}$.

Iterate, unless $D_1 \equiv 0 \ldots$
Proof Sketch

Let $G = (V, E)$ be a (e, d)-expander and D a nice DNNF computing $\text{vc}(G)$.

Find $v_1 \in D$ and $I_1 \subseteq A_{D,v_1}$ such that $|I_1|$ is linear in $|V|$.

Eliminate v_1 to obtain $D_1 = D^{v_1=0}$.

Iterate, unless $D_1 \equiv 0 \ldots$

$I = \{I_1, I_2, \ldots\}$ covers $\text{vc}(G)$.
Let \(G = (V, E) \) be a \((e, d)\)-expander and \(D \) a nice DNNF computing \(\text{vc}(G) \).

Find \(v_1 \in D \) and \(I_1 \subseteq A_{D,v_1} \) such that \(|I_1| \) is linear in \(|V| \).

Eliminate \(v_1 \) to obtain \(D_1 = D^{v_1=0} \).

Iterate, unless \(D_1 \equiv 0 \ldots \)

\(\mathcal{I} = \{I_1, I_2, \ldots\} \) covers \(\text{vc}(G) \).

|\(\mathcal{I} \)| is exponentially large in \(|V| \).
Proof Sketch

Let $G = (V, E)$ be a (e, d)-expander and D a nice DNNF computing $\text{vc}(G)$.

Find $v_1 \in D$ and $I_1 \subseteq A_{D,v_1}$ such that $|I_1|$ is linear in $|V|$.

Eliminate v_1 to obtain $D_1 = D^{v_1=0}$.

Iterate, unless $D_1 \equiv 0 \ldots$

$\mathcal{I} = \{I_1, I_2, \ldots\}$ covers $\text{vc}(G)$.

$|\mathcal{I}|$ is exponentially large in $|V|$.

Hence D as well.
Thank you for your attention!