
Substructure in SAT

1

Ryan Williams Stanford

Two Decades of
Significant Progress in SAT Solving

2

Two major applications:
- Checking programs/circuits for bugs
- Finding exploits in software
(“does there exist an input which will

yield the following undesired behavior?”)

Many designs can be checked completely by
- reducing the “bug finding” problem to a huge CNF-SAT instance

(e.g., 1 million variables and 5 million clauses)
- checking UNSAT with a solver

A Huge Theory-Practice Gap

The performance of modern solvers seems to
defy the theoretical claim that SAT is hard!

Practice: SAT instances that arise from a wide variety of
domains are easy, more often than not!

– The unreasonable effectiveness of the Cook-Levin Theorem

Theory: SAT should not be easy… but it’s not impossible
– Fastest worst-case 3SAT algorithm [Hertli’11]: O(1.308n) time
– Exponential Time Hypothesis [IPZ’01]

• 3SAT requires 𝛀 𝟏 + 𝜺 𝒏 time, for some 𝜺 > 𝟎

– Strong Exponential Time Hypothesis [CIP’09]
• For all 𝜺 > 𝟎 there is a 𝒌 such that 𝒌SAT needs 𝛀 𝟐 − 𝜺 𝒏 time

3

A Huge Theory-Practice Gap

The performance of modern solvers seems to
defy the theoretical claim that SAT is hard!

4

How can we
bridge the gap?

There is tractable substructure in real-world problems
But what structure? How do we quantify it?

Selman’s World

Bart Selman:
‘Our world may be “friendly enough” to make
many typical reasoning tasks poly-time ---
challenging the value of the conventional
worst-case complexity view in CS.’

We can formalize what “friendly enough”
means, and ask precise questions about
“how friendly” tasks can be, while remaining
in a “worst-case complexity” perspective

5

Outline

• The Origins of Backdoors

• Intuition and Properties of Backdoors

• Backdoors in Theory

• Backdoors in Practice

• Related Work

• Final Thoughts

6

The Origin of Backdoors

7

Pr[Running time is at least T] ~ 1/Tα

where α is a small positive constant

Heavy-Tailed Running Time
Distributions

Many diverse instances of combinatorial
search problems, when solved by

randomized backtracking algorithms,
yield a runtime distribution that
empirically looks “heavy-tailed”

[Gomes-Selman-Crato-Kautz’00]

The Origin of Backdoors

8

Chen, Gomes, Selman ‘01

Consider a SAT instance F and branching
solver S with the following properties:

1. There is one “special” variable 𝑥 in F

2. Solver S chooses 𝑥 with probability 1-p

3. If S chooses the variables 𝑦1, … , 𝑦𝑘 , 𝑥,
then S runs for 2𝑘 steps

Then, Pr[(Runtime of 𝑺) ≥ 𝟐𝒌] = 𝒑𝒌+𝟏

When 𝒑 ~
𝟏

𝟐α, have heavy-tailed running time

The Origin of Backdoors

9

Heavy-Tailed Running Time
Distributions

There did not seem to be universal
agreement about whether the runtime

distributions are truly heavy tailed

But there is universal agreement that
quick restarts of a SAT solver
can be remarkably effective!

How to explain short runs?

Backdoors to Tractability [WGS’03]

Informally:
• A backdoor to a given SAT instance is a subset of variables

such that, once assigned appropriately, the remaining instance
lies within a tractable subset of SAT

• The entire set of variables is always a backdoor set…

The primary question is: when do small backdoors exist?

More formally:
• We define the notion of a “subsolver”

(handles the tractability of problem instance)
• distinguish two types: backdoors and strong backdoors

11

Canonical example:

A(F) = if F is 2CNF/Horn/anti-Horn then output the answer
else output DK

The only non-trivial property is self-reducibility:
2CNF and Horn formulas are closed under variable substitution

Def. A subsolver A is an algorithm that, given any formula F, satisfies:
(Trichotomy) A(F) ∈ {SAT, UNSAT, DK} and never errs

(Efficiency) A on F runs in poly(|F|) time

(Triviality) On the formula F with no clauses, A(F) = SAT
On every F with an empty clause, A(F) = UNSAT

(Self-reducibility) If A(F) ≠ DK, then for every variable x of F,
A(F[x=0]) ≠ DK and A(F[x=1]) ≠ DK

Subsolvers (Polytime Heuristics)

12

1. Definition is general enough to encompass many
polynomial time constraint propagation methods
(including those for which there does not exist a clean syntactic
characterization of the tractable subproblem)

2. Notion makes perfect sense for other constraint problems:
e.g., Mixed Integer Programming, Constraint Satisfaction

Subsolvers (Polytime Heuristics)

Def. A subsolver A is an algorithm that, given any formula F, satisfies:
(Trichotomy) A(F) ∈ {SAT, UNSAT, DK} and never errs

(Efficiency) A on F runs in poly(|F|) time

(Triviality) On the formula F with no clauses, A(F) = SAT
On every F with an empty clause, A(F) = UNSAT

(Self-reducibility) If A(F) ≠ DK, then for every variable x of F,
A(F[x=0]) ≠ DK and A(F[x=1]) ≠ DK

13

Backdoors (applies to satisfiable instances):

Strong backdoors (applies to satisfiable and unsatisfiable instances):

Backdoor Sets (w.r.t. Subsolvers)

Backdoors are an algorithm-dependent notion
A problem instance may have a “small” backdoor or “large” backdoor
depending on which polynomial time heuristics are in the SAT solver

Observation: If P=NP then there exists a subsolver A
such that every SAT formula has an A-backdoor of size zero

Def. A subset 𝑆 of variables of F is an A-backdoor for F if
there is an assignment 𝑎𝑆: 𝑆 → 0,1 such that A(F[𝑎𝑆]) = SAT

Def. A subset 𝑆 of variables of F is an A-strong backdoor for F if
for every assignment 𝑎𝑆: 𝑆 → 0,1 we have A(F[𝑎𝑆]) ≠ DK

Outline

• The Origins of Backdoors

• Intuition and Properties of Backdoors

• Backdoors in Theory

• Backdoors in Practice

• Related Work

• Final Thoughts

14

15

All possible CNF formulas

Intuition for Backdoors

16

All possible CNF formulas

“Islands of tractability”

Intuition for Backdoors

17

A “small” backdoor set means that the
problem instance is “close” to one of these “islands of tractability”
After setting a small number of variables, we arrive at some island

Our
real-world
instance

All possible CNF formulas

“Islands of tractability”

Intuition for Backdoors

18

Lemma (“Backdoors are monotone”) If 𝑺 is an A-backdoor for F,
then for all 𝑻 ⊃ 𝑺, the set 𝑻 is also an A-backdoor for F

The Importance of Self-Reducibility

Proof: Suppose F is SAT and 𝑺 is an A-backdoor for F
Then there is 𝒂𝑺 : 𝑺 → 𝟎, 𝟏 such that A(F[𝒂𝑺]) = SAT

That is, 𝒂𝑺 can be extended to a SAT assignment 𝒂 on all variables
Let 𝒂𝑻: 𝑻 → 𝟎, 𝟏 be the restriction of 𝒂 to the set 𝑻

(i.e., for all variables 𝒙 in 𝑻, 𝒂𝑻(𝒙) = 𝒂 𝒙)
By self-reducibility, if A(F[𝒂𝑺]) = SAT then A(F[𝒂𝑻]) = SAT as well
QED

This property seems critical to the utility of backdoors in SAT solvers.
One only has to assign the backdoor variables at some point
in the branching, rather than having to necessarily choose them first

The existence of small backdoor sets
is not tautological!

Just because a problem instance is solved efficiently in
practice, that does not necessarily imply the instance
must have a small backdoor (w.r.t. the subsolver being used)

For example: it could be that even the smallest backdoors
are “large” but there are many of them, so finding a
backdoor is like finding hay in a haystack

Proposition: A “small” backdoor of size 𝑩 implies that there

are at least 𝒏−𝑩
𝒌

backdoors of size 𝒌 + 𝑩

Possessing small backdoors is a stronger condition than
possessing many backdoors

17

Outline

• The Origins of Backdoors

• Intuition and Properties of Backdoors

• Backdoors in Theory

• Backdoors in Practice

• Related Work

• Final Thoughts

20

Almost all formulas don’t have
small (weak or strong) backdoors

Theorem: Let A be a subsolver handling 2-SAT or Horn-SAT
Whp, for sufficiently large d (below the k-SAT threshold)
a random k-SAT instance with n variables and dn clauses has
minimum A-backdoor size at least cn

Intuition: With high probability, a backdoor set of variables must
“hit” many clauses in order to simplify a random k-CNF instance
enough to become Horn or 2-SAT

So for “almost all” instances, there is no small backdoor set with
respect to these natural subsolvers.

(This could also explain why randomized backtracking performs
poorly on large enough random 3-SAT instances)

The existence of small backdoors in a problem instance means
that it is “far from random”

Every satisfiable k-CNF formula
has a backdoor of “nontrivial” size

Theorem [Implicit in PPZ’99, “Satisfiability Coding Lemma”]
Let A be a subsolver that does unit propagation

(whenever it finds a clause of size 1, it sets the variable)
Every satisfiable k-CNF formula contains a backdoor set (wrt A)
of size at most n(1-1/(2k))
Furthermore, such a backdoor can be found whp, by simply
trying random variable assignments and unit propagation.

Intuition: A 1/(2k)-fraction of the variables will be assigned
by unit propagation, in expectation

The rest is set to correct values with probability ≥ 2-n(1-1/(2k)

Corollary k-SAT is solvable in O(2n(1-1/(2k)) time

23

Generic Strategies for Solving SAT
with Small Backdoors

Three simple strategies for solving instances with small
backdoor sets, that work for all subsolvers

• A deterministic algorithm

• A randomized algorithm
– Provably better worst-case performance over the

deterministic one

• A heuristic randomized algorithm
– Assumes existence of a good heuristic for choosing

variables to branch on

– We believe this is close to what happens in practice

24

When there is a backdoor of size k,

takes about O(𝒏
𝒌

𝟐𝒌) calls to the sub-solver

Easy SAT algorithm for small backdoors

For increasing k=1,2,…
Try all k-sets S of variables and all possible Boolean

assignments to S.
If the subsolver outputs SAT on some S,

output “SAT”
If there is an S for which the subsolver outputs

UNSAT on all assignments to S, output “UNSAT”

25

Idea: Try to backtrack on a superset of 𝒕 variables
that contain the backdoor set of size 𝒌

Assume a backdoor of size k.
A randomly chosen 𝒕-set of variables contains the backdoor,

with probability at least 𝒏−𝒌
𝒕−𝒌

/ 𝒏
𝒕

≥ 𝒕
𝒌

/ 𝒏
𝒌

Pick such a set and try all 𝟐𝒕 assignments with the subsolver.

Repeat for 𝟐 𝒏
𝒌

/ 𝒕
𝒌

times; takes about 𝟐𝒕 𝒏
𝒌

/ 𝒕
𝒌

calls.

When 𝟐𝒌 𝒕
𝒌

> 𝟐𝒕 then this strategy is faster

For example, if t = 2k then 𝟐𝒌 𝟐𝒌
𝒌

> 𝟕𝒌 > 𝟐𝒕

OPEN: What is the optimal randomized strategy?
(Count only the number of calls to the subsolver)

Randomized algorithm

26

Assume we have:

DFS, a generic depth first search randomized
backtrack search solver with:
• (polytime) subsolver A
• Heuristic H that (randomly) chooses variables to
branch on, in polynomial time
 H has probability 1/h of choosing a
backdoor variable (h > 1 is a fixed constant)

Call this ensemble (DFS, H, A)

Heuristic Randomized Algorithm

27

If there is a small backdoor,

then (DFS, H, A) has a restart strategy that runs
in polynomial time.

Heuristic Randomized Algorithm

Theorem [WGS’03]
If the minimum A-backdoor for F has size O(log n)/(log h), then
(DFS, H, A) has a restart strategy that solves F in polynomial
time.

Outline

• The Origins of Backdoors

• Intuition and Properties of Backdoors

• Backdoors in Theory

• Backdoors in Practice

• Related Work

• Final Thoughts

28

Backdoors in Practice

Subsolver used here: the SATz heuristics

A great deal of follow-up work since the initial experiments!
[Survey by Gomes, Kautz, Sabharwal, and Selman ‘07]

A Dynamic View (Bart’s Movies)

Variable-Variable Graph of an UNSAT Instance
as a SAT solver is being run on it

(random selection of variables to branch on)

Graph when SAT solver backtracks
directly on strong backdoor of UNSAT instance

(variables chosen by heuristics of solver)

A Dynamic View (Bart’s Movies)

Backdoors can help explain
why QBF is still hard in practice

Recall QBF = Quantified Boolean Formulas

e.g. (∃x)(∀y) (∃z)((x AND NOT(y)) OR z)

With QBF, the order of the quantified variables is critical:
one can’t just pick any old variables to branch on

If the presence of small backdoor sets are helping SAT solvers
work well, this makes sense:

In SAT, you can branch on any desired variable, so small
“bottleneck” variables can be eliminated early in search

(Note: Samer and Szeider have a notion of backdoor sets for QBF)

Outline

• The Origins of Backdoors

• Intuition and Properties of Backdoors

• Backdoors in Theory

• Backdoors in Practice

• Related Work

• Final Thoughts

33

Related Work

1. Operations Research [Crama, Ekin, Hammer ‘97]
Control sets: Small sets of variables for a formula
that, once those variables are deleted/set to the
right value, the resulting formula has some
“nice property”

2. Parameterized algs [Guo, Hueffner, Niedermeier ‘04]
Distance from triviality: Suppose one can make k
“edits” to a problem instance so that it’s then easy
to solve.
(Presumably such edits preserve the solvability.)
Can we solve the instance in O(f(k)nc)?

Outline

• The Origins of Backdoors

• Intuition and Properties of Backdoors

• Backdoors in Theory

• Backdoors in Practice

• Related Work

• Final Thoughts

35

Final Thoughts

A backdoor set of variables tries to isolate the
“difficult part” of a problem instance

Since instances in practice are often easy,
this part is often small.

Many real-world instances have small backdoors w.r.t.
modern SAT solver heuristics, and these solvers do
exploit it

A significant question still remains…

Why are the backdoors there?

Are there deeper reasons why these small bottlenecks
exist in practice, but not in random instances?

[Hemaspaandra-Williams ‘12]
Does the compressibility of practical SAT instances
relate to the sizes of backdoors?

The CNFs encountered in practice are the outputs of
highly regular reductions -- and the reductions are
given inputs which also highly regular.

Do “compressible solutions” always arise from
“compressible instances”?

Does structure imply suboptimality?

Small backdoors for hardware/software verification
are typically seen as a very positive aspect

But their presence can also indicate inefficiencies in
the designs of these systems.

(Indeed, SAT solvers can also be used to quickly find
security exploits as well!) [Brumley, Engler]

Theory would predict that we must be missing a wide
range of efficient and more secure software
designs, if everything we verify in practice has such
extreme structure.

[W ‘10,’11,’13] Improved algorithms solving circuit SAT
 Circuit complexity lower bounds!

Thank you!

