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Two Decades of 
Significant Progress in SAT Solving
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Two major applications:
- Checking programs/circuits for bugs
- Finding exploits in software
(“does there exist an input which will

yield the following undesired behavior?”)

Many designs can be checked completely by
- reducing the “bug finding” problem to a huge CNF-SAT instance 

(e.g., 1 million variables and 5 million clauses) 
- checking UNSAT with a solver



A Huge Theory-Practice Gap

The performance of modern solvers seems to 
defy the theoretical claim that SAT is hard!

Practice: SAT instances that arise from a wide variety of 
domains are easy, more often than not!

– The unreasonable effectiveness of the Cook-Levin Theorem

Theory: SAT should not be easy… but it’s not impossible
– Fastest worst-case 3SAT algorithm [Hertli’11]: O(1.308n) time
– Exponential Time Hypothesis [IPZ’01] 

• 3SAT requires 𝛀 𝟏 + 𝜺 𝒏 time, for some 𝜺 > 𝟎

– Strong Exponential Time Hypothesis [CIP’09]
• For all 𝜺 > 𝟎 there is a 𝒌 such that 𝒌SAT needs 𝛀 𝟐 − 𝜺 𝒏 time
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A Huge Theory-Practice Gap

The performance of modern solvers seems to 
defy the theoretical claim that SAT is hard!
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How can we 
bridge the gap?

There is tractable substructure in real-world problems
But what structure? How do we quantify it?



Selman’s World

Bart Selman: 
‘Our world may be “friendly enough” to make 
many typical reasoning tasks poly-time ---
challenging the value of the conventional 
worst-case complexity view in CS.’

We can formalize what “friendly enough” 
means, and ask precise questions about 
“how friendly” tasks can be, while remaining 
in a “worst-case complexity” perspective
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The Origin of Backdoors
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Pr[Running time is at least T] ~ 1/Tα

where α is a small positive constant

Heavy-Tailed Running Time 
Distributions

Many diverse instances of combinatorial 
search problems, when solved by 

randomized backtracking algorithms, 
yield a runtime distribution that 
empirically looks “heavy-tailed”

[Gomes-Selman-Crato-Kautz’00]



The Origin of Backdoors
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Chen, Gomes, Selman ‘01

Consider a SAT instance F and branching 
solver S with the following properties:

1. There is one “special” variable 𝑥 in F

2. Solver S chooses 𝑥 with probability 1-p

3. If S chooses the variables 𝑦1, … , 𝑦𝑘 , 𝑥,
then S runs for 2𝑘 steps

Then, Pr[(Runtime of 𝑺) ≥ 𝟐𝒌] = 𝒑𝒌+𝟏

When 𝒑 ~
𝟏

𝟐α, have heavy-tailed running time



The Origin of Backdoors
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Heavy-Tailed Running Time 
Distributions

There did not seem to be universal 
agreement about whether the runtime 

distributions are truly heavy tailed

But there is universal agreement that
quick restarts of a SAT solver 
can be remarkably effective!

How to explain short runs?



Backdoors to Tractability [WGS’03]

Informally: 
• A backdoor to a given SAT instance is a subset of variables 

such that, once assigned appropriately, the remaining instance 
lies within a tractable subset of SAT

• The entire set of variables is always a backdoor set…

The primary question is: when do small backdoors exist? 

More formally:
• We define the notion of a “subsolver” 

(handles the tractability of problem instance)
• distinguish two types: backdoors and strong backdoors
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Canonical example: 

A(F) = if F is 2CNF/Horn/anti-Horn then output the answer
else output DK

The only non-trivial property is self-reducibility:
2CNF and Horn formulas are closed under variable substitution

Def. A subsolver A is an algorithm that, given any formula F, satisfies:
(Trichotomy) A(F) ∈ {SAT, UNSAT, DK} and never errs

(Efficiency) A on F runs in poly(|F|) time

(Triviality) On the formula F with no clauses, A(F) = SAT
On every F with an empty clause, A(F) = UNSAT

(Self-reducibility) If A(F) ≠ DK, then for every variable x of F,
A(F[x=0]) ≠ DK and A(F[x=1]) ≠ DK

Subsolvers (Polytime Heuristics)
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1. Definition is general enough to encompass many 
polynomial time constraint propagation methods
(including those for which there does not exist a clean syntactic 
characterization of the tractable subproblem)

2. Notion makes perfect sense for other constraint problems: 
e.g., Mixed Integer Programming, Constraint Satisfaction

Subsolvers (Polytime Heuristics)

Def. A subsolver A is an algorithm that, given any formula F, satisfies:
(Trichotomy) A(F) ∈ {SAT, UNSAT, DK} and never errs

(Efficiency) A on F runs in poly(|F|) time

(Triviality) On the formula F with no clauses, A(F) = SAT
On every F with an empty clause, A(F) = UNSAT

(Self-reducibility) If A(F) ≠ DK, then for every variable x of F,
A(F[x=0]) ≠ DK and A(F[x=1]) ≠ DK
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Backdoors (applies to satisfiable instances):

Strong backdoors (applies to satisfiable and unsatisfiable instances):

Backdoor Sets (w.r.t. Subsolvers)

Backdoors are an algorithm-dependent notion
A problem instance may have a “small” backdoor or “large” backdoor 
depending on which polynomial time heuristics are in the SAT solver

Observation: If P=NP then there exists a subsolver A
such that every SAT formula has an A-backdoor of size zero

Def. A subset 𝑆 of variables of F is an A-backdoor for F if 
there is an assignment 𝑎𝑆: 𝑆 → 0,1 such that A(F[𝑎𝑆]) = SAT

Def. A subset 𝑆 of variables of F is an A-strong backdoor for F if 
for every assignment 𝑎𝑆: 𝑆 → 0,1 we have A(F[𝑎𝑆]) ≠ DK
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All possible CNF formulas

Intuition for Backdoors
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All possible CNF formulas

“Islands of tractability”

Intuition for Backdoors
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A “small” backdoor set means that the 
problem instance is “close” to one of these “islands of tractability”
After setting a small number of variables, we arrive at some island

Our
real-world
instance

All possible CNF formulas

“Islands of tractability”

Intuition for Backdoors
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Lemma (“Backdoors are monotone”) If 𝑺 is an A-backdoor for F, 
then for all 𝑻 ⊃ 𝑺, the set 𝑻 is also an A-backdoor for F

The Importance of Self-Reducibility

Proof: Suppose F is SAT and 𝑺 is an A-backdoor for F
Then there is 𝒂𝑺 : 𝑺 → 𝟎, 𝟏 such that A(F[𝒂𝑺]) = SAT

That is, 𝒂𝑺 can be extended to a SAT assignment 𝒂 on all variables
Let 𝒂𝑻: 𝑻 → 𝟎, 𝟏 be the restriction of 𝒂 to the set 𝑻

(i.e., for all variables 𝒙 in 𝑻, 𝒂𝑻(𝒙) = 𝒂 𝒙 )
By self-reducibility, if A(F[𝒂𝑺]) = SAT then A(F[𝒂𝑻]) = SAT as well
QED

This property seems critical to the utility of backdoors in SAT solvers. 
One only has to assign the backdoor variables at some point
in the branching, rather than having to necessarily choose them first



The existence of small backdoor sets 
is not tautological!

Just because a problem instance is solved efficiently in 
practice, that does not necessarily imply the instance 
must have a small backdoor (w.r.t. the subsolver being used)

For example: it could be that even the smallest backdoors 
are “large” but there are many of them, so finding a 
backdoor is like finding hay in a haystack

Proposition: A “small” backdoor of size 𝑩 implies that there 

are at least 𝒏−𝑩
𝒌

backdoors of size 𝒌 + 𝑩

Possessing small backdoors is a stronger condition than 
possessing many backdoors
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Almost all formulas don’t have
small (weak or strong) backdoors

Theorem: Let A be a subsolver handling 2-SAT or Horn-SAT
Whp, for sufficiently large d (below the k-SAT threshold)
a random k-SAT instance with n variables and dn clauses has 
minimum A-backdoor size at least cn

Intuition: With high probability, a backdoor set of variables must 
“hit” many clauses in order to simplify a random k-CNF instance 
enough to become Horn or 2-SAT

So for “almost all” instances, there is no small backdoor set with 
respect to these natural subsolvers. 

(This could also explain why randomized backtracking performs 
poorly on large enough random 3-SAT instances)

The existence of small backdoors in a problem instance means 
that it is “far from random”



Every satisfiable k-CNF formula 
has a backdoor of “nontrivial” size

Theorem [Implicit in PPZ’99, “Satisfiability Coding Lemma”]
Let A be a subsolver that does unit propagation

(whenever it finds a clause of size 1, it sets the variable)
Every satisfiable k-CNF formula contains a backdoor set (wrt A) 
of size at most n(1-1/(2k)) 
Furthermore, such a backdoor can be found whp, by simply 
trying random variable assignments and unit propagation.

Intuition: A 1/(2k)-fraction of the variables will be assigned 
by unit propagation, in expectation

The rest is set to correct values with probability ≥ 2-n(1-1/(2k)

Corollary  k-SAT is solvable in O(2n(1-1/(2k)) time
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Generic Strategies for Solving SAT 
with Small Backdoors

Three simple strategies for solving instances with small 
backdoor sets, that work for all subsolvers

• A deterministic algorithm

• A randomized algorithm
– Provably better worst-case performance over the 

deterministic one 

• A heuristic randomized algorithm
– Assumes existence of a good heuristic for choosing 

variables to branch on

– We believe this is close to what happens in practice
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When there is a backdoor of size k, 

takes about O( 𝒏
𝒌

𝟐𝒌) calls to the sub-solver

Easy SAT algorithm for small backdoors

For increasing k=1,2,… 
Try all k-sets S of variables and all possible Boolean 

assignments to S.
If the subsolver outputs SAT on some S, 

output “SAT” 
If there is an S for which the subsolver outputs 

UNSAT on all assignments to S, output “UNSAT”
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Idea: Try to backtrack on a superset of 𝒕 variables 
that contain the backdoor set of size 𝒌

Assume a backdoor of size k.
A randomly chosen 𝒕-set of variables contains the backdoor, 

with probability at least 𝒏−𝒌
𝒕−𝒌

/ 𝒏
𝒕

≥ 𝒕
𝒌

/ 𝒏
𝒌

Pick such a set and try all 𝟐𝒕 assignments with the subsolver.

Repeat for 𝟐 𝒏
𝒌

/ 𝒕
𝒌

times; takes about 𝟐𝒕 𝒏
𝒌

/ 𝒕
𝒌

calls.

When 𝟐𝒌 𝒕
𝒌

> 𝟐𝒕 then this strategy is faster

For example, if t = 2k then 𝟐𝒌 𝟐𝒌
𝒌

> 𝟕𝒌 > 𝟐𝒕

OPEN: What is the optimal randomized strategy? 
(Count only the number of calls to the subsolver)

Randomized algorithm
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Assume we have:

DFS, a generic depth first search randomized
backtrack search solver with:
• (polytime) subsolver A
• Heuristic H that (randomly) chooses variables to 
branch on, in polynomial time
 H has probability 1/h of choosing a
backdoor variable (h > 1 is a fixed constant)

Call this ensemble (DFS, H, A)

Heuristic Randomized Algorithm
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If there is a small backdoor, 

then (DFS, H, A) has a restart strategy that runs 
in polynomial time.

Heuristic Randomized Algorithm

Theorem [WGS’03] 
If the minimum A-backdoor for F has size O(log n)/(log h), then 
(DFS, H, A) has a restart strategy that solves F in polynomial 
time. 
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Backdoors in Practice

Subsolver used here:  the SATz heuristics

A great deal of follow-up work since the initial experiments!
[Survey by Gomes, Kautz, Sabharwal, and Selman ‘07]



A Dynamic View (Bart’s Movies)

Variable-Variable Graph of an UNSAT Instance 
as a SAT solver is being run on it

(random selection of variables to branch on)



Graph when SAT solver backtracks 
directly on strong backdoor of UNSAT instance

(variables chosen by heuristics of solver)

A Dynamic View (Bart’s Movies)



Backdoors can help explain 
why QBF is still hard in practice

Recall QBF = Quantified Boolean Formulas

e.g. (∃x)(∀y) (∃z)((x  AND  NOT(y)) OR z) 

With QBF, the order of the quantified variables is critical: 
one can’t just pick any old variables to branch on

If the presence of small backdoor sets are helping SAT solvers 
work well, this makes sense: 

In SAT, you can branch on any desired variable, so small 
“bottleneck” variables can be eliminated early in search

(Note: Samer and Szeider have a notion of backdoor sets for QBF)
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Related Work

1. Operations Research [Crama, Ekin, Hammer ‘97]
Control sets: Small sets of variables for a formula 
that, once those variables are deleted/set to the 
right value, the resulting formula has some 
“nice property”

2. Parameterized algs [Guo, Hueffner, Niedermeier ‘04]
Distance from triviality: Suppose one can make k 
“edits” to a problem instance so that it’s then easy 
to solve.
(Presumably such edits preserve the solvability.)
Can we solve the instance in O(f(k)nc)?
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Final Thoughts

A backdoor set of variables tries to isolate the 
“difficult part” of a problem instance

Since instances in practice are often easy, 
this part is often small.

Many real-world instances have small backdoors w.r.t. 
modern SAT solver heuristics, and these solvers do 
exploit it

A significant question still remains…



Why are the backdoors there?

Are there deeper reasons why these small bottlenecks 
exist in practice, but not in random instances?

[Hemaspaandra-Williams ‘12] 
Does the compressibility of practical SAT instances 
relate to the sizes of backdoors?

The CNFs encountered in practice are the outputs of 
highly regular reductions -- and the reductions are 
given inputs which also highly regular. 

Do “compressible solutions” always arise from  
“compressible instances”?



Does structure imply suboptimality?

Small backdoors for hardware/software verification 
are typically seen as a very positive aspect

But their presence can also indicate inefficiencies in 
the designs of these systems. 

(Indeed, SAT solvers can also be used to quickly find 
security exploits as well!) [Brumley, Engler]

Theory would predict that we must be missing a wide 
range of efficient and more secure software 
designs, if everything we verify in practice has such 
extreme structure.

[W ‘10,’11,’13] Improved algorithms solving circuit SAT
 Circuit complexity lower bounds!



Thank you!


