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Background 

 Suppose you are all familiar with constraint satisfaction? 
 Given: variables each with a (finite) domain of possible values 

and a set of constraints (relations on allowed values for tuple of 
vars) 

 Question: does there exist assignment of values to variables so 
that every constraint is satisfied? 
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 Suppose you are all familiar with constraint satisfaction? 
 Given: variables each with a (finite) domain of possible values 

and a set of constraints (relations on allowed values for tuple of 
vars) 

 Question: does there exist assignment of values to variables so 
that every constraint is satisfied? 

 Graph colouring: vars=nodes, values=colours, 
constraints=nodes connected by an edge have different colours 

 SAT: vars=Boolean, values=true/false, constraints=clauses 

 Scheduling: vars=jobs, values=start times, constraints=start 
times respect release times, start times+job lengths respect 
due dates, etc. 

 



+ 
Motivation 

 Lots of research on tractable 
constraint problems 

 Restricted language (e.g. 
2SAT) 

 Restricted constraint 
structure (e.g. tree)  

 But solvers often perform 
poorly on tractable problems 

 [Petke & Jeavons 2009] 

 Little research on detecting 
when a (sub)problem is 
tractable 

 

 

 



+ 
Motivation 

 Exploit (strong) backdoors 
into tractable subproblems 
 Identify some key variables 

(backdoor) that make 
problem intractable 

 Branch on these to give a 
tractable subproblem  

 FPT algorithm in size of 
backdoor 

 Need to detect tractable 
subproblems 
 Not so much work on 

computational question of 
how to identify tractable 
subproblems!  

 
 

 

 



+ 
Motivation 

 Preliminary work 

 Our methods for identifying 
tractable subproblems have 
large polynomial cost 

 E.g. O(d6) and O(d7)  time 

 May be able to offset this 
over many instances 

 Challenge will be to reduce 
costs! 
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 Identify tractable classes 

 Detecting set of relations 
that admit majority 
polymorphism 

 Detecting set of relations 
that admit conservative 
Mal’tsev polymorphism 

 

 Exploit tractable classes 

 FPT algorithm for 
idempotent classes 

 FPT algorithm for 
conservative classes 

 NP-hardness when we don’t 
know backdoor and 
tractable subset of language 

 But FPT in d+k+r 



+ 
Identifying tractable class 

 Constraint problems are 
tractable if their relations are 
closed under majority 
polymorphisms 

[Jeavons et al 1997] 

 

Language closed under majority 
polymorphism = 
generalization of 2-SAT and 
0/1/all constraints  
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Language closed under majority 
polymorphism = 
generalization of 2-SAT and 
0/1/all constraints 

 

Language closed under Mal’tsev 
polymorphism = 
generalization of linear 
equations over a field 
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 Constraint problems are 
tractable if their relations are 
closed under Mal’tsev 
polymorphisms 

[Bulatov & Dalmau 2006] 

 

 Thm: Can decide if language 
is closed under majority 
polymorphism in O(d7t4) time 
 Proof: Build an indicator 

problem, repeatedly apply 
SAC until failure/solution. 

 Thm: Can decide if language 
is closed under a conservative 
Mal’tsev polymorphism in       
O(d6) time 
 Proof: Build a special 

indicator problem, 
repeatedly enforce AC, 
merge equals, remove 
redundant/universal 
constraints until failure/sol. 



+ 
Exploiting tractable class 

 Inspired by cycle cutset 
method [Dechter & Pearl 1987] 

 Instantiate variables to cut 
cycles 

 Then decide backtrack free 
with Directional AC 

 Tractable subproblem based 
on structure of network 

 We now do much the 
same with a tractable 
language 

 



+ 
Exploiting tractable class 

 Idempotent class 

 I.e. fixing variables, we 
remain within the class 

 Conservative class 

 Closed under all unary 
constraints 

 Stronger condition, smaller 
FPT algorithm 
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 Idempotent class 

 Let constraint relations C = 
C1 + C2 

 Where C2 closed under 
the idempotent 
polymorphism 

 Instantiate all m vars in C1 

 Leaves tractable 
subproblem made from C2 
and instantiations 

 FPT in d+m 

 Conservative class 
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Exploiting tractable class 

 Idempotent class 

 Let constraint relations C = 
C1 + C2 

 Where C2 closed under 
the idempotent 
polymorphism 

 Instantiate all m vars in C1 

 Leaves tractable 
subproblem made from C2 
and instantiations 

 FPT in d+m 

 Conservative class 

 Similar algorithm 

 FPT in strictly smaller 
parameter, d+k 

 Where k is minimum 
vertex cover of primal 
graph of C1  
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 Thm: NP-hard to decide if C 
partitions into C1+C2 such 
that C2 admits a 
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vertex cover of at most k 

 In fact, W[2]-hard in k 
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Exploiting tractable class 

 Assumed so far that we know 
which relations make up the 
tractable subproblem 

 What if we need to search 
simultaneously for a backdoor 
and the tractable relations? 

 Thm:  FPT in d+k+r to 
decide if C partitions into 
C1+C2 such that C2 admits a 
conservative majority 
polymorphism and C1 has a 
vertex cover of at most k 



+ 
Empirical results 

 Tested instances of 4th 
Constraint Solver Competition 

 Limited to those without 
globals 

 All instances put in 
extensional form 

 191 series of instances 

 Tested for existence of 
subproblem closed under 
conservative majority 
polymorphism 
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 Tested instances of 4th 
Constraint Solver Competition 

 Limited to those without 
globals 

 All instances put in 
extensional form 

 191 series of instances 

 Tested for existence of 
subproblem closed under 
conservative majority 
polymorphism 

 Results 

 135 series: exhausted 8Gb 
of memory 

 40 series: large backdoor 

 But a few promising series 

 E.g. 5 prime series  

 ¼ had small backdoor (0 
to 6 vars out of 100) 



+ 
Conclusions 

 We can exploit constraint problems that are nearly tractable 

 Branch on backdoor into a tractable language 

 For such methods to be useful, we need methods to identify 
tractable (sub)languages 
 Propose here two polynomial methods to identify language 

closed under a majority polymorphism, and under a conservative 
Mal’tsev polymorphism 

 Computing a backdoor into a language closed under a 
conservative majority polymorphism is W[2]-hard in k, but 
FPT in d+k+r 



+ 
Questions? 

 

 PS we’re recruiting PhD students and a PostDoc 

 Good student = guaranteed funding 

 Shortly after graduating -> Australian citizen 
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