

Detecting and Exploiting Subproblem Tractability

Christian Bessiere, Clement Carbonnel, Emmanuel Hebrard, George Katsirelos, **Toby Walsh To appear in Proc. of IJCAI 2013, Beijing, China**

- Suppose you are all *familiar* with constraint satisfaction?
 - Given: variables each with a (finite) domain of possible values and a set of constraints (relations on allowed values for tuple of vars)
 - Question: does there exist assignment of values to variables so that every constraint is satisfied?

- Suppose you are all familiar with constraint satisfaction?
 - Given: variables each with a (finite) domain of possible values and a set of constraints (relations on allowed values for tuple of vars)
 - Question: does there exist assignment of values to variables so that every constraint is satisfied?
 - Graph colouring: vars=nodes, values=colours, constraints=nodes connected by an edge have different colours

- Suppose you are all *familiar* with constraint satisfaction?
 - Given: variables each with a (finite) domain of possible values and a set of constraints (relations on allowed values for tuple of vars)
 - Question: does there exist assignment of values to variables so that every constraint is satisfied?
 - Graph colouring: vars=nodes, values=colours, constraints=nodes connected by an edge have different colours
 - SAT: vars=Boolean, values=true/false, constraints=clauses

- Suppose you are all *familiar* with constraint satisfaction?
 - Given: variables each with a (finite) domain of possible values and a set of constraints (relations on allowed values for tuple of vars)
 - Question: does there exist assignment of values to variables so that every constraint is satisfied?
 - Graph colouring: vars=nodes, values=colours, constraints=nodes connected by an edge have different colours
 - SAT: vars=Boolean, values=true/false, constraints=clauses
 - Scheduling: vars=jobs, values=start times, constraints=start times respect release times, start times+job lengths respect due dates, etc.

+ Motivation

- Lots of research on tractable constraint problems
 - Restricted language (e.g. 2SAT)
 - Restricted constraint structure (e.g. tree)
- But solvers often perform poorly on tractable problems
 - [Petke & Jeavons 2009]
 - Little research on detecting when a (sub)problem is tractable

+ Motivation

- Exploit (strong) backdoors into tractable subproblems
 - Identify some key variables (backdoor) that make problem intractable
 - Branch on these to give a tractable subproblem
 - FPT algorithm in size of backdoor
- Need to detect tractable subproblems
 - Not so much work on computational question of how to identify tractable subproblems!

+ Motivation

- Preliminary work
 - Our methods for identifying tractable subproblems have large polynomial cost
 - E.g. $O(d^6)$ and $O(d^7)$ time
 - May be able to offset this over many instances
 - Challenge will be to reduce costs!

Identify tractable classes

• Exploit tractable classes

- Identify tractable classes
 - Detecting set of relations that admit majority polymorphism
 - Detecting set of relations that admit conservative Mal'tsev polymorphism

Exploit tractable classes

+ Outline

- Identify tractable classes
 - Detecting set of relations that admit majority polymorphism
 - Detecting set of relations that admit conservative Mal'tsev polymorphism

- Exploit tractable classes
 - FPT algorithm for idempotent classes
 - FPT algorithm for conservative classes
 - NP-hardness when we don't know backdoor and tractable subset of language
 - But FPT in d+k+r

 Constraint problems are tractable if their relations are closed under majority polymorphisms

[Jeavons et al 1997]

Language closed under majority polymorphism = generalization of 2-SAT and 0/1/all constraints

- Constraint problems are tractable if their relations are closed under majority polymorphisms
 [Jeavons et al 1997]
- Constraint problems are tractable if their relations are closed under Mal'tsev polymorphisms
 [Bulatov & Dalmau 2006]

Language closed under majority polymorphism = generalization of 2-SAT and 0/1/all constraints

Language closed under Mal'tsev polymorphism = generalization of linear equations over a field

- Constraint problems are tractable if their relations are closed under majority polymorphisms
 [Jeavons et al 1997]
- Constraint problems are tractable if their relations are closed under Mal'tsev polymorphisms

[Bulatov & Dalmau 2006]

- Thm: Can decide if language is closed under majority polymorphism in O(d⁷t⁴) time
 - Proof: Build an indicator problem, repeatedly apply SAC until failure/solution.

- Constraint problems are tractable if their relations are closed under majority polymorphisms
 [Jeavons et al 1997]
- Constraint problems are tractable if their relations are closed under Mal'tsev polymorphisms

[Bulatov & Dalmau 2006]

- Thm: Can decide if language is closed under majority polymorphism in O(d⁷t⁴) time
 - Proof: Build an indicator problem, repeatedly apply SAC until failure/solution.
- Thm: Can decide if language is closed under a conservative Mal'tsev polymorphism in O(d⁶) time
 - Proof: Build a special indicator problem, repeatedly enforce AC, merge equals, remove redundant/universal constraints until failure/sol.

- Inspired by cycle cutset method [Dechter & Pearl 1987]
 - Instantiate variables to cut cycles
 - Then decide backtrack free with Directional AC
- Tractable subproblem based on structure of network
 - We now do much the same with a tractable language

- Idempotent class
 - I.e. fixing variables, we remain within the class

- Conservative class
 - Closed under all unary constraints
 - Stronger condition, smaller
 FPT algorithm

- Idempotent class
 - Let constraint relations C = C₁ + C₂
 - Where C₂ closed under the idempotent polymorphism
 - Instantiate all m vars in C₁
 - Leaves tractable subproblem made from C₂ and instantiations
 - FPT in d+m

Conservative class

- Idempotent class
 - Let constraint relations C = C₁ + C₂
 - Where C₂ closed under the idempotent polymorphism
 - Instantiate all m vars in C₁
 - Leaves tractable subproblem made from C₂ and instantiations
 - FPT in d+m

- Conservative class
 - Similar algorithm
 - FPT in strictly smaller parameter, d+k
 - Where k is minimum vertex cover of primal graph of C₁

- Assumed so far that we know which relations make up the tractable subproblem
- What if we need to search simultaneously for a backdoor and the tractable relations?

- Assumed so far that we know which relations make up the tractable subproblem
- What if we need to search simultaneously for a backdoor and the tractable relations?
 - Thm: NP-hard to decide if C partitions into C₁+C₂ such that C₂ admits a conservative majority polymorphism and C₁ has a vertex cover of at most k
 - In fact, W[2]-hard in k

- Assumed so far that we know which relations make up the tractable subproblem
- What if we need to search simultaneously for a backdoor and the tractable relations?
 - Thm: FPT in d+k+r to decide if C partitions into C₁+C₂ such that C₂ admits a conservative majority polymorphism and C₁ has a vertex cover of at most k

+ Empirical results

- Tested instances of 4th
 Constraint Solver Competition
 - Limited to those without globals
 - All instances put in extensional form
 - 191 series of instances
 - Tested for existence of subproblem closed under conservative majority polymorphism

+ Empirical results

- Tested instances of 4th
 Constraint Solver Competition
 - Limited to those without globals
 - All instances put in extensional form
 - 191 series of instances
 - Tested for existence of subproblem closed under conservative majority polymorphism

- Results
 - 135 series: exhausted 8Gb of memory
 - 40 series: large backdoor
 - But a few promising series
 - E.g. 5 *prime* series
 - ¹/₄ had small backdoor (0 to 6 vars out of 100)

+ Conclusions

- We can exploit constraint problems that are *nearly* tractable
- Branch on backdoor into a tractable language
- For such methods to be useful, we need methods to identify tractable (sub)languages
 - Propose here two polynomial methods to identify language closed under a majority polymorphism, and under a conservative Mal'tsev polymorphism
- Computing a backdoor into a language closed under a conservative majority polymorphism is W[2]-hard in k, but FPT in d+k+r

- PS we're recruiting PhD students and a PostDoc
- Good student = guaranteed funding
- Shortly after graduating -> Australian citizen

