
+

Detecting and Exploiting
Subproblem Tractability

Christian Bessiere, Clement Carbonnel, Emmanuel
Hebrard, George Katsirelos, Toby Walsh
To appear in Proc. of IJCAI 2013, Beijing, China

+
Background

 Suppose you are all familiar with constraint satisfaction?
 Given: variables each with a (finite) domain of possible values

and a set of constraints (relations on allowed values for tuple of
vars)

 Question: does there exist assignment of values to variables so
that every constraint is satisfied?

+
Background

 Suppose you are all familiar with constraint satisfaction?
 Given: variables each with a (finite) domain of possible values

and a set of constraints (relations on allowed values for tuple of
vars)

 Question: does there exist assignment of values to variables so
that every constraint is satisfied?

 Graph colouring: vars=nodes, values=colours,
constraints=nodes connected by an edge have different colours

+
Background

 Suppose you are all familiar with constraint satisfaction?
 Given: variables each with a (finite) domain of possible values

and a set of constraints (relations on allowed values for tuple of
vars)

 Question: does there exist assignment of values to variables so
that every constraint is satisfied?

 Graph colouring: vars=nodes, values=colours,
constraints=nodes connected by an edge have different colours

 SAT: vars=Boolean, values=true/false, constraints=clauses

+
Background

 Suppose you are all familiar with constraint satisfaction?
 Given: variables each with a (finite) domain of possible values

and a set of constraints (relations on allowed values for tuple of
vars)

 Question: does there exist assignment of values to variables so
that every constraint is satisfied?

 Graph colouring: vars=nodes, values=colours,
constraints=nodes connected by an edge have different colours

 SAT: vars=Boolean, values=true/false, constraints=clauses

 Scheduling: vars=jobs, values=start times, constraints=start
times respect release times, start times+job lengths respect
due dates, etc.

+
Motivation

 Lots of research on tractable
constraint problems

 Restricted language (e.g.
2SAT)

 Restricted constraint
structure (e.g. tree)

 But solvers often perform
poorly on tractable problems

 [Petke & Jeavons 2009]

 Little research on detecting
when a (sub)problem is
tractable

+
Motivation

 Exploit (strong) backdoors
into tractable subproblems
 Identify some key variables

(backdoor) that make
problem intractable

 Branch on these to give a
tractable subproblem

 FPT algorithm in size of
backdoor

 Need to detect tractable
subproblems
 Not so much work on

computational question of
how to identify tractable
subproblems!

+
Motivation

 Preliminary work

 Our methods for identifying
tractable subproblems have
large polynomial cost

 E.g. O(d6) and O(d7) time

 May be able to offset this
over many instances

 Challenge will be to reduce
costs!

+
Outline

 Identify tractable classes  Exploit tractable classes

+
Outline

 Identify tractable classes

 Detecting set of relations
that admit majority
polymorphism

 Detecting set of relations
that admit conservative
Mal’tsev polymorphism

 Exploit tractable classes

+
Outline

 Identify tractable classes

 Detecting set of relations
that admit majority
polymorphism

 Detecting set of relations
that admit conservative
Mal’tsev polymorphism

 Exploit tractable classes

 FPT algorithm for
idempotent classes

 FPT algorithm for
conservative classes

 NP-hardness when we don’t
know backdoor and
tractable subset of language

 But FPT in d+k+r

+
Identifying tractable class

 Constraint problems are
tractable if their relations are
closed under majority
polymorphisms

[Jeavons et al 1997]

Language closed under majority
polymorphism =
generalization of 2-SAT and
0/1/all constraints

+
Identifying tractable class

 Constraint problems are
tractable if their relations are
closed under majority
polymorphisms

[Jeavons et al 1997]

 Constraint problems are
tractable if their relations are
closed under Mal’tsev
polymorphisms

[Bulatov & Dalmau 2006]

Language closed under majority
polymorphism =
generalization of 2-SAT and
0/1/all constraints

Language closed under Mal’tsev
polymorphism =
generalization of linear
equations over a field

+
Identifying tractable class

 Constraint problems are
tractable if their relations are
closed under majority
polymorphisms

[Jeavons et al 1997]

 Constraint problems are
tractable if their relations are
closed under Mal’tsev
polymorphisms

[Bulatov & Dalmau 2006]

 Thm: Can decide if language
is closed under majority
polymorphism in O(d7t4) time

 Proof: Build an indicator
problem, repeatedly apply
SAC until failure/solution.

+
Identifying tractable class

 Constraint problems are
tractable if their relations are
closed under majority
polymorphisms

[Jeavons et al 1997]

 Constraint problems are
tractable if their relations are
closed under Mal’tsev
polymorphisms

[Bulatov & Dalmau 2006]

 Thm: Can decide if language
is closed under majority
polymorphism in O(d7t4) time
 Proof: Build an indicator

problem, repeatedly apply
SAC until failure/solution.

 Thm: Can decide if language
is closed under a conservative
Mal’tsev polymorphism in
O(d6) time
 Proof: Build a special

indicator problem,
repeatedly enforce AC,
merge equals, remove
redundant/universal
constraints until failure/sol.

+
Exploiting tractable class

 Inspired by cycle cutset
method [Dechter & Pearl 1987]

 Instantiate variables to cut
cycles

 Then decide backtrack free
with Directional AC

 Tractable subproblem based
on structure of network

 We now do much the
same with a tractable
language

+
Exploiting tractable class

 Idempotent class

 I.e. fixing variables, we
remain within the class

 Conservative class

 Closed under all unary
constraints

 Stronger condition, smaller
FPT algorithm

+
Exploiting tractable class

 Idempotent class

 Let constraint relations C =
C1 + C2

 Where C2 closed under
the idempotent
polymorphism

 Instantiate all m vars in C1

 Leaves tractable
subproblem made from C2
and instantiations

 FPT in d+m

 Conservative class

+
Exploiting tractable class

 Idempotent class

 Let constraint relations C =
C1 + C2

 Where C2 closed under
the idempotent
polymorphism

 Instantiate all m vars in C1

 Leaves tractable
subproblem made from C2
and instantiations

 FPT in d+m

 Conservative class

 Similar algorithm

 FPT in strictly smaller
parameter, d+k

 Where k is minimum
vertex cover of primal
graph of C1

+
Exploiting tractable class

 Assumed so far that we know
which relations make up the
tractable subproblem

 What if we need to search
simultaneously for a backdoor
and the tractable relations?

+
Exploiting tractable class

 Assumed so far that we know
which relations make up the
tractable subproblem

 What if we need to search
simultaneously for a backdoor
and the tractable relations?

 Thm: NP-hard to decide if C
partitions into C1+C2 such
that C2 admits a
conservative majority
polymorphism and C1 has a
vertex cover of at most k

 In fact, W[2]-hard in k

+
Exploiting tractable class

 Assumed so far that we know
which relations make up the
tractable subproblem

 What if we need to search
simultaneously for a backdoor
and the tractable relations?

 Thm: FPT in d+k+r to
decide if C partitions into
C1+C2 such that C2 admits a
conservative majority
polymorphism and C1 has a
vertex cover of at most k

+
Empirical results

 Tested instances of 4th
Constraint Solver Competition

 Limited to those without
globals

 All instances put in
extensional form

 191 series of instances

 Tested for existence of
subproblem closed under
conservative majority
polymorphism

+
Empirical results

 Tested instances of 4th
Constraint Solver Competition

 Limited to those without
globals

 All instances put in
extensional form

 191 series of instances

 Tested for existence of
subproblem closed under
conservative majority
polymorphism

 Results

 135 series: exhausted 8Gb
of memory

 40 series: large backdoor

 But a few promising series

 E.g. 5 prime series

 ¼ had small backdoor (0
to 6 vars out of 100)

+
Conclusions

 We can exploit constraint problems that are nearly tractable

 Branch on backdoor into a tractable language

 For such methods to be useful, we need methods to identify
tractable (sub)languages
 Propose here two polynomial methods to identify language

closed under a majority polymorphism, and under a conservative
Mal’tsev polymorphism

 Computing a backdoor into a language closed under a
conservative majority polymorphism is W[2]-hard in k, but
FPT in d+k+r

+
Questions?

 PS we’re recruiting PhD students and a PostDoc

 Good student = guaranteed funding

 Shortly after graduating -> Australian citizen

	Detecting and Exploiting Subproblem Tractability
	Background
	Background
	Background
	Background
	Motivation
	Motivation
	Motivation
	Outline
	Outline
	Outline
	Identifying tractable class
	Identifying tractable class
	Identifying tractable class
	Identifying tractable class
	Exploiting tractable class
	Exploiting tractable class
	Exploiting tractable class
	Exploiting tractable class
	Exploiting tractable class
	Exploiting tractable class
	Exploiting tractable class
	Empirical results
	Empirical results
	Conclusions
	Questions?

