Tractable Scheduling Problems

Geoffrey Chu, Serge Gaspers, Nina Narodytska, Andreas Schutt, Toby Walsh

To appear in Proc. of IJCAI 2013, Beijing, China
Motivation

- Scheduling an important but computationally challenging problem
- Given: number of machines, set of jobs, each with a release time and due date, duration, resources required
- Question: can we find start times and machines for each job to satisfy release time, due date, and resource usage constraints?
Motivation

- Scheduling an important but computationally challenging problem
- NP-hard in general
- Can we identify structural restrictions under which it becomes fixed parameter tractable?
Motivation

- Scheduling an important but computationally challenging problem
- NP-hard in general
- Can we identify structural restrictions under which it becomes fixed parameter tractable?
 - Number of processors
 - Number of start times
 - Structure of release and due dates
- ...

[Fellows, Gaspers & Rosamond, Parameterizing by the number of numbers]
Parameterizing by the Number of Numbers [Fellows, Gaspers, Rosamond 2010]

- Number problems
 - Subset sum
 - Partition
 - 3-Partition
 - 3-D Matching
 - ...

- Input
 - Bag of numbers
 - Interesting parameter: number of numbers
Parameterizing by the Number of Numbers

[Fellows, Gaspers, Rosamond 2010]

- Number problems
 - Subset sum
 - Partition
 - 3-Partition
 - 3-D Matching
 - ...

- Often FPT
 - Often use an ILP encoding with polynomial number of vars
 - E.g. Subset sum is FPT in number of numbers being partitioned

- Input
 - Bag of numbers
 - Interesting parameter: number of numbers
Parameterizing by the Number of Numbers

[Fellows, Gaspers, Rosamond 2010]

- Number problems
 - Subset sum
 - Partition
 - 3-Partition
 - 3-D Matching
 - ...

- Often FPT
 - Often use an ILP encoding with polynomial number of vars
 - E.g. Subset sum is FPT in number of numbers being partitioned

- Inspired perhaps a little by [Bessiere et al AAAI 2008]?
 - Propagating global constraint like NVALUE is NP-hard but FPT in number of numbers in domains

- Input
 - Bag of numbers
 - Interesting parameter: number of numbers
Outline of this talk

- 4 case studies
 - 3 positive (FPT algorithms)
 - 1 negative (NP-hard even under strong structural restrictions)

- Previous work limited
 - [Marx 2011] observed limited work on FPT algorithms for scheduling
 - One exception where parameter is tree width of precedence graph and (#late tasks or #tasks on time)
Global constraints in scheduling

- CUMMULATIVE
- INTER DISTANCE
Global constraints in scheduling

- **CUMMULATIVE**
 - Introduced in CHIP
 - Each task has release time, length, due date and resource usage
 - Can we schedule tasks so tasks execute or after release time, finish before due dates without exceeding resource capacity?
 - NP-hard to enforce domain consistency

- **INTER DISTANCE**
Global constraints in scheduling

- **CUMMULATIVE**
 - Introduced in CHIP [1993]
 - Each task has release time, length, due date and resource usage
 - Can we schedule tasks so tasks execute or or after release time, finish before due dates without exceeding resource capacity?
 - NP-hard to enforce domain consistency

- **INTER DISTANCE**
 - Introduced in [Regin 1997]
 - Scheduling equal length tasks on a single machine
 - Each task has a set of possible start times
 - Generalizes AllDifferent
 - $|S_i - S_j| \geq 1$
 - $|S_i - S_j| \geq m$
Bounded task types, single machine

- Suppose tasks divide into a small number of types
 - Within each type, same release times, due dates, length, and precedences

- THM: Checking consistency of CUMMULATIVE is FPT in number of task types
 - Proof: Divide problem into blocks (periods with no release times or due dates). Within each block, we can put all tasks of the same type together into a “run”. Then construct ILP with polynomial number of vars
 - $S_{ij} =$ start time in the ith block of the run of task type j
 - $X_{ij} =$ number of repetitions of task type j in ith block
Bounded task types, multiple machines

- Suppose tasks divide into a small number of types
 - Within each type, same release times, due dates, length, and precedences
 - Each task requires a single machine

- THM: Checking consistency of CUMMULATIVE is FPT in number of task types + number of processors
 - Proof: Similar ILP constructed but now with another index for machine
Nested task types, single machine

■ Suppose tasks are nested
 ■ Think Russian doll
 ■ $r_1 < r_2 < \ldots < r_m < d_m < \ldots < d_2 < d_1$
 ■ E.g. take item apart then put it back together

■ THM: Checking consistency of CUMMULATIVE is FPT in number of task types
 ■ Proof: Can push all tasks to left, build ILP with polynomial number of vars encoding such solutions
 ■ Corrects [Braind et al 2006] who claim this is NP-hard
Pairwise overlapping start intervals

- Start interval of task = $[s_i, d_i-l_i]$

- For any time point, t let $S[t]$ be number of tasks whose start interval contains t

- Let $k = \max$ value of $S[t]$ across all time points
 - Related to well known disjunctive ratio [Baptiste & Pappe 2000]
Pairwise overlapping start intervals

- Start interval of task = \([s_i, d_i - l_i]\)

- For any time point, \(t\) let \(S[t]\) be number of tasks whose start interval contains \(t\)

- Let \(k = \text{max value of } S[t] \text{ across all time points}\)

- THM: Checking consistency of CUMMULATIVE is FPT in \(k\)
 - Proof: Dynamic program over all possible subsets of tasks. Only polynomial number need be examined due to problem constraints.
InterDistance constraint

- Interesting special case of CUMMULATIVE
 - Single machine
 - All tasks of same length

- Polynomial cases
 - Start times are intervals [Artiouchine & Baptiste 2007]
 - Task length = 1 [Regin 1994]
InterDistance constraint

- Interesting special case of CUMMULATIVE
 - Single machine
 - All tasks of same length

- Polynomial cases
 - Start times are intervals [Artiouchine & Baptiste 2007]
 - Task length = 1 [Regin 1994]

- THM: Checking consistency of InterDistance is NP-hard even if task lengths = 2 and start times contain at most two intervals
InterDistance constraint

- Interesting special case of InterDistance
 - Start times are all of form \(\{s_i, s_i+h, s_i+2h, \ldots, s_i+k_ih\} \)
 - E.g. aircraft landing times!

- THM: Checking consistency of InterDistance is NP-hard even if \(k_i \) in \(\{1, k\} \)
InterDistance constraint

- Interesting special case of InterDistance
 - Start times are all of form \{s_i, s_i+h, s_i+2h, \ldots, s_i+k_i h\}
 - E.g. aircraft landing times!

- THM: Checking consistency of InterDistance is NP-hard even if \(k_i \) in \{1, k\}
 - But linear when \(k_i = k \)
Conclusions

- We can exploit structural properties of scheduling to identify tractable cases
 - E.g. CUMMULATIVE with bounded task types
 - E.g. CUMMULATIVE with bounded number of nested task types
 - E.g. CUMMULATIVE with bounded number of pairwise overlapping start intervals

- But some scheduling problems resist such analysis
 - InterDistance constraint with start times of form \(s_i + j \cdot h \)

- Open question
 - What other common structural parameters give tractability?
Questions?

PS I’m running a summer school on optimisation/constraint solving

http://www.cse.unsw.edu.au/~tw/school/

PPS are you looking for an open access publisher

http://www.AiAccess.org/