
1

Branching Time Model

Checking and Abstraction

Helmut Veith

2

Branching Time Logic

3

Kripke Structures

Kripke structures

 K = (States, Transition Relation, Initial States, Labelling) = (S,R,I,L)

Specifications

 Temporal logic, e.g. CTL (branching time) and LTL (linear time)

Model Relation

K |= f Specification f holds true in model K

4

Branching Time Logic

„unwinding“

5

CTL - Computation Tree Logic

EF g “g will possibly become true”

6

CTL - Computation Tree Logic

AF g “g will necessarily become true”

7

CTL - Computation Tree Logic

AG g “g is an invariant”

8

CTL - Computation Tree Logic

EG g “g is a potential invariant”

9

Computation Tree Logic

Computation Tree Logic

 ACTL AX, AG, AF, AU

 ECTL EX, EG, EF, EU

 CTL ACTL & ECTL

 CTL* AXX, AGX, EXF, ...

Family of Temporal Logics

10

Simulation and Bisimulation

11

Simulation Game

Combinatorial two player game between
Spoiler and Duplicator.

Spoiler wins if Duplicator gets stuck.

Duplicator wins if game continues forever.

Example of a Combinatorial Game.
 Ehrenfeucht-Fraissee Games, Pebble Games, Parity Games etc.

12

I can be simulated by S step by step.

“S simulates I”: I  S

c c

I S

Simulation

a
a

13

The simulation preorder [Milner]

Given two models M1 = (S1,I1,R1,L1), M2 = (S2,I2,R2,L2)

H  S1 x S2 is a simulation iff

for every (s1, s2)  H :

• s1 and s2 satisfy the same propositions

• For every successor t1 of s1 there is a successor

t2 of s2 such that (t1,t2) H

Notation: s1  s2

14

The simulation preorder [Milner]

Given two models M1 = (S1,I1,R1,L1), M2 = (S2,I2,R2,L2)

H  S1 x S2 is a simulation iff

for every (s1, s2)  H :

• p AP: s2 |= p  s1 |= p
 s2 |= p  s1 |= p

• t1 [(s1,t1)  R1  t2 [(s2,t2)  R2  (t1,t2) H]]

Notation: s1  s2

15

Simulation preorder (cont.)

H  S1 x S2 is a simulation from M1 to M2 iff

H is a simulation and

for every s1  I1 there is s2  I2 s.t. (s1, s2)  H

Notation: M1  M2

16

Bisimulation relation [Park]

For models M1 and M2, H  S1 x S2 is a

bisimulation

iff for every (s1, s2)  H :

• p  AP : p L(s2)  p L(s1)

• t1 [(s1,t1)  R1  t2 [(s2,t2)  R2  (t1,t2) H]]

• t2 [(s2,t2)  R2  t1 [(s1,t1)  R1  (t1,t2) H]]

Notation: s1  s2

17

Bisimulation relation (cont.)

H  S1 x S2 is a Bisimulation between M1 and

M2

iff H is a bisimulation and

for every s1  I1 there is s2  I2 s.t. (s1, s2)  H

and

for every s2  I2 there is s1  I1 s.t. (s1, s2)  H

Notation: M1  M2

18

H={ (1,1’), (2,4’), (4,2’), (3,5’), (3,6’), (5,3’), (6,3’) }

a b a a
b

b

Bisimulation equivalence

M1  M2

a
b b

d d c

1
4

3 6

2

5

M1
a

b b

c c d

1’

2’

3’

4’

5’ 6’

M2

19

M1 M2

Simulation preorder

M1  M2

wait

coin coin

pepsi coke

wait

coin

coke pepsi

20

M1 M2

a

b

c d d d c

a

b b

M1  M2

21

M1 M2

a

b

c d d d c

a

b b

M1  M2 and M1  M2 but not M1 M2

22

(bi)simulation and logic

preservation

Theorem

If M1  M2 then for every CTL* formula ,

M1 |=   M2 |= 

If M2  M1 then for every ACTL* formula ,

M2 |=   M1 |= 

23

Simulation Relation

If M has partial behavior of N, we say that

“N simulates M”: M  N

a

b

c

b

d

a

b

c d

M N

Let f be an ACTL specification.

If M  N and N |= f then M |= f.

24

Simulation and Abstraction

If M has partial behavior of N, we say that

“N simulates M”: M  N

a

b

c

b

d

a

b

c d

M N

N |= f M |= f

25

Abstraction

 Abstraction

Memory

State

Abstract

Memory

State

Memory

State
Memory

State
Memory

State
Memory

State
Memory

State
Memory

State
Memory

State

Abstraction

Abstract

Memory

State

27

Data Abstraction

Given a program P with variables x1,...xn ,

each over domain D,

the concrete model of P is defined over states
(d1,...,dn)  D...D

Choosing

• abstract domain A

• Abstraction mapping (surjection) h: D  A

we get an abstract model over abstract states
(a1,...,an)  A...A

28

Example
Given a program P with variable x over the

integers

Abstraction 1:

A1 = { a–, a0, a+ }

 a+ if d>0

h1(d) = a0 if d=0

 a– if d<0

Abstraction 2:

A2 = { aeven, aodd }

h2(d) = if even(d) then aeven else aodd

31

Reduced abstract model
Existential abstraction

Given M, A, h : D  A

the reduced model Mr = (Sr, Ir, Rr, Lr) is

Sr = A  ...  A

sr  Ir   s  I : h(s) = sr

(sr,tr)  Rr 

  s,t [h(s) = sr  h(t) = tr  (s,t)R]

For sr = (a1,...,an), Lr(sr) = { (xi
A = ai) | i = 1, ..., n }

32

h h h

Existential Abstraction

M

Mr

M < Mr

33

Preservation

Theorem:

Mr  M by the simulation preorder

Corollary:

For every ACTL* formula :

If Mr |=  then M |= 

34

Traffic Light Example

red

yellow

green

M

 Property:

  =AG AF ¬ (state=red)

Abstraction function h

maps green, yellow to go.

red

go

Mh

Mh |=  M |=  

35

Traffic Light Example (Cont)

If the abstract model invalidates a specification, the

actual model may still satisfy the specification.

 Property:

  =AG AF (state=red)

 M |=  but Mh |= 

red

yellow

green

red

go

M Mh
 Spurious Counterexample:

 red,go,go, ...

36

CEGAR Methodology

Th is not spurious
check spurious

counterexample

Th

stop

Mh |= 

generate

counterexample Th

Mh |= 

model check

Mh

generate initial
abstraction

M and 

refinement

Th
is spurious

M
System

Mh Initial Abstraction Function

Counterexample-Guided Abstraction Refinement

Clarke, Grumberg, Jha, Lu, Veith’00

CEGAR (Counterexample-Guided Abstraction Refinement)
Adaptive Strategy

M
System

Mh Initial Abstraction Function

SPURIOUS

Abstract Counterexample

Refinement required.

Counterexample-Guided Abstraction Refinement

Clarke, Grumberg, Jha, Lu, Veith’00

CEGAR (Counterexample-Guided Abstraction Refinement)
Adaptive Strategy

M
System

Refined Abstraction

Refined Abstraction

Mh Initial Abstraction Function Spurious

Spurious

Counterexample

Validation or

Counterexample Correct !

Counterexample-Guided Abstraction Refinement

Clarke, Grumberg, Jha, Lu, Veith’00

CEGAR (Counterexample-Guided Abstraction Refinement)
Adaptive Strategy

 Software Model Checking

Spec

Abstract

Counterexample

Yes / No

CEGAR + Predicate Abstraction

Integration of Theorem Proving / Decision Procedures / SMT

SIGSOFT Distinguished Paper Award (ICSE 2003)

Model Checker

Program

Analysis

Abstract

Model

Counterexample

Analysis

Counterexample

C Code

spurious

good

SMT

SAT

