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Branching Time Model 

Checking and Abstraction 

 

Helmut Veith 
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Branching Time Logic 
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Kripke Structures 

 

 

   

 

Kripke structures 

 K = (States, Transition Relation, Initial States, Labelling) = (S,R,I,L) 
 

Specifications 

 Temporal logic, e.g. CTL (branching time) and LTL (linear time) 

 

Model Relation  

K |= f  Specification f holds true in model K 
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Branching Time Logic 

„unwinding“ 
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CTL - Computation Tree Logic 

 

EF g  “g will possibly become true” 
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CTL - Computation Tree Logic 

 

AF g  “g will necessarily become true” 
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CTL - Computation Tree Logic 

 

AG g  “g is an invariant” 
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CTL - Computation Tree Logic 

 

EG g  “g is a potential invariant” 
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Computation Tree Logic 

Computation Tree Logic 

 ACTL  AX, AG, AF, AU 

 ECTL  EX, EG, EF, EU 

 CTL   ACTL  &  ECTL 

 

 CTL*   AXX, AGX, EXF, ... 

Family of Temporal Logics 
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Simulation and Bisimulation 
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Simulation Game 
 

Combinatorial two player game between  
Spoiler and Duplicator. 

 

Spoiler wins if Duplicator gets stuck. 

Duplicator wins if game continues forever. 

 

 

Example of a Combinatorial Game. 
 Ehrenfeucht-Fraissee Games, Pebble Games, Parity Games etc. 
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I can be simulated by S step by step.  

“S simulates I”: I  S  

c c 

I S 

Simulation 

a 
a 
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The simulation preorder [Milner] 

Given two models M1 = (S1,I1,R1,L1),   M2 = (S2,I2,R2,L2) 

 

H  S1 x S2  is a simulation iff 

for every (s1, s2 )  H :  

• s1 and s2 satisfy the same propositions 

• For every successor t1 of s1 there is a successor 

t2 of s2 such that (t1,t2) H  

 

Notation:    s1  s2 
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The simulation preorder [Milner] 

Given two models M1 = (S1,I1,R1,L1),   M2 = (S2,I2,R2,L2) 

 

H  S1 x S2  is a simulation iff 

for every (s1, s2 )  H :  

• p AP:  s2 |= p   s1 |= p 
                 s2 |= p   s1 |= p  
 

• t1 [ (s1,t1)  R1   t2 [ (s2,t2)  R2  (t1,t2) H ] ] 

 

Notation:    s1  s2 
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Simulation preorder (cont.) 

 

H  S1 x S2  is a simulation from M1 to M2  iff   

H is a simulation and  

for every s1  I1 there is s2  I2 s.t. (s1, s2)  H 

 

Notation:   M1  M2 
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Bisimulation relation [Park] 

For models M1 and M2, H  S1 x S2  is a 

bisimulation  

iff  for every (s1, s2 )  H : 

  

• p  AP :  p L(s2)  p L(s1) 

• t1 [ (s1,t1)  R1   t2 [ (s2,t2)  R2  (t1,t2) H ] ] 

 

• t2 [ (s2,t2)  R2   t1 [ (s1,t1)  R1  (t1,t2) H ] ] 

 

Notation:    s1  s2 
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Bisimulation relation (cont.) 

 

H  S1 x S2  is a Bisimulation between  M1 and 

M2   

iff  H is a bisimulation and  

for every s1  I1 there is s2  I2 s.t. (s1, s2 )  H    

and 

for every s2  I2 there is s1  I1 s.t. (s1, s2 )  H 

 

Notation:   M1  M2 
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H={ (1,1’), (2,4’), (4,2’), (3,5’), (3,6’), (5,3’), (6,3’) } 

a b a a 
b 

b 

Bisimulation equivalence 

M1  M2 

a 
b b 

d d c 

1 
4 

3 6 

2 

5 

M1 
a 

b b 

c c d 

1’ 

2’ 

3’ 

4’ 

5’ 6’ 

M2 
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M1 M2 

Simulation preorder 

M1  M2 

wait 

coin coin 

pepsi coke 

wait 

coin 

coke pepsi 
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M1 M2 

a 

b 

c d d d c 

a 

b b 

M1  M2 
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M1 M2 

a 

b 

c d d d c 

a 

b b 

M1  M2 and M1  M2 but not M1 M2 
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(bi)simulation and logic 

preservation 

Theorem 

If M1  M2 then for every CTL* formula , 

M1 |=     M2 |=  

 

If M2   M1 then for every ACTL* formula ,  

M2 |=     M1 |=  
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Simulation Relation 

 

 

 

 

 

If M has partial behavior of N, we say that 

“N simulates M”: M  N  

a 

b 

c 

b 

d 

a 

b 

c d 

M N 

Let f  be an ACTL specification. 

If  M  N  and  N |= f  then  M |= f. 
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Simulation  and Abstraction 

 

 

 

 

 

If M has partial behavior of N, we say that 

“N simulates M”: M  N  

a 

b 

c 

b 

d 

a 

b 

c d 

M N 

N |= f M |= f 
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Abstraction 



 Abstraction 

  

Memory 

State 

Abstract 

Memory 

State 

Memory 

State 
Memory 

State 
Memory 

State 
Memory 

State 
Memory 

State 
Memory 

State 
Memory 

State 

Abstraction 

Abstract 

Memory 

State 
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Data Abstraction 

Given a program P with variables x1,...xn ,  

each over domain D, 

the concrete model of P is defined over states 
(d1,...,dn)  D...D 

  

Choosing 

• abstract domain A 

• Abstraction mapping (surjection)  h: D  A 

we get an abstract model over abstract states 
(a1,...,an)  A...A 
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Example 
Given a program P with variable x over the 

integers 

Abstraction 1: 

A1 = { a–, a0, a+ } 

                  a+   if  d>0 

h1(d) =       a0   if  d=0 

                  a–    if d<0 

Abstraction 2: 

A2 = { aeven, aodd } 

h2(d) =  if even( d ) then aeven else aodd 
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Reduced abstract model 
Existential abstraction 

Given M,  A,  h : D  A 

the reduced model Mr = ( Sr, Ir, Rr, Lr ) is 

 

Sr = A  ...  A 

sr  Ir   s  I : h(s) = sr 

(sr,tr)  Rr   

             s,t [h(s) = sr  h(t) = tr   (s,t)R] 

 

For sr = (a1,...,an),  Lr(sr) = { (xi
A = ai) | i = 1, ..., n }
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h h h 

Existential Abstraction 

M 

Mr 

M < Mr 
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Preservation 

Theorem: 

Mr  M by the simulation preorder 

 

Corollary: 

For every ACTL* formula : 

If  Mr |=    then  M |=   
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Traffic  Light  Example 

red 

yellow 

green 

M 

 Property: 

       =AG AF ¬ (state=red) 

 

Abstraction function h 

maps green, yellow to go. 

red 

go 

Mh 

Mh |=  M |=   
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Traffic Light Example (Cont) 

If the abstract model invalidates a specification, the 

actual model may still satisfy the specification. 

 Property: 

       =AG AF (state=red)  

 M |=   but Mh |=  

 

red 

yellow 

green 

red 

go 

M Mh 
 Spurious Counterexample: 

             red,go,go, ... 

 



36 

CEGAR Methodology 

Th is not spurious 
check spurious 

counterexample 

Th 

stop 

Mh |=  

generate 

counterexample Th 

Mh |=  

model check 

Mh 

generate initial 
abstraction 

M and   

refinement 

Th 
is spurious 



  

M 
System 

Mh Initial Abstraction Function 

Counterexample-Guided Abstraction Refinement 

Clarke, Grumberg, Jha, Lu, Veith’00 

 

CEGAR (Counterexample-Guided Abstraction Refinement) 
Adaptive Strategy 



M 
System 

Mh Initial Abstraction Function 

SPURIOUS 

Abstract Counterexample 

Refinement required. 

Counterexample-Guided Abstraction Refinement 

Clarke, Grumberg, Jha, Lu, Veith’00 

 

CEGAR (Counterexample-Guided Abstraction Refinement) 
Adaptive Strategy 



M 
System 

Refined Abstraction 

Refined Abstraction 

Mh Initial Abstraction Function Spurious 

Spurious 

Counterexample 

Validation or 

Counterexample Correct ! 

  

Counterexample-Guided Abstraction Refinement 

Clarke, Grumberg, Jha, Lu, Veith’00 

 

CEGAR (Counterexample-Guided Abstraction Refinement) 
Adaptive Strategy 



 Software Model Checking 

 

 

Spec 

Abstract 

Counterexample 

Yes / No 

 

CEGAR + Predicate Abstraction  

Integration of Theorem Proving / Decision Procedures / SMT 

SIGSOFT Distinguished Paper Award (ICSE 2003) 

Model Checker 

Program 

Analysis 

Abstract 

Model 

Counterexample 

Analysis 

Counterexample 

C Code 

spurious 

good 

SMT 

SAT 


