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Exercise

1. Draw a state-transition graph that generates the 
Roman numerals

2. Define the property “there are no more than 3 
adjacent I” using

a. LTL

b. a specification automaton

c. a monitor automaton

3. Use one of the three specifications to model 
check the property (show all intermediate steps) 



Model checking, narrowly interpreted:

Decision procedures for checking if   
a given Kripke structure is a model a given Kripke structure is a model 
for a given formula of a modal logic.



Why is this of interest to us?

Because the dynamics of a discrete system can 
be captured by a Kripke structure. 

Because some dynamic properties of a discrete Because some dynamic properties of a discrete 
system can be stated in modal logics. 

⇓

Model checking = System verification



Model checking, generously interpreted:

Algorithms, rather than proof calculi, 
for system verification which operate on for system verification which operate on 
a system model (semantics), rather than 
a system description (syntax).



There are many different model-checking problems:

for different (classes of) system modelsfor different (classes of) system models

for different (classes of) system properties



A specific model-checking problem is defined by 

I |= S

“implementation” 
(system model)

“specification” 
(system property)

“satisfies”, “implements”, “refines” 
(satisfaction relation)



Characteristics of system models which favor model 
checking over other verification techniques:

ongoing input/output behavior
(not: single input, single result)(not: single input, single result)

concurrency
(not: single control flow)

control intensive
(not: lots of data manipulation)



Examples

-control logic of hardware designs-control logic of hardware designs

-communication protocols

-device drivers 



Paradigmatic example:

mutual-exclusion protocol

loop loop||

out: x1 := 1; last := 1

req: await  x2 = 0  or  last = 2

in: x1 := 0

end loop.

out: x2 := 1; last := 2

req: await  x1 = 0  or  last = 1

in: x2 := 0

end loop.

P1 P2



Model-checking problem

I |= S

system model system property

satisfaction relation



Important decisions when choosing a system model 

-variable-based vs. event-based

-interleaving vs. true concurrency-interleaving vs. true concurrency

-synchronous vs. asynchronous interaction

-clocked vs. speed-independent progress 

-etc.



Particular combinations of choices yield

CSP 

Petri nets

I/O automataI/O automata

Reactive modules

Verilog

C

etc.



While the choice of system model is important for 
the application,

the only thing that is important for model checking the only thing that is important for model checking 
is that the system model can be translated into a 
state-transition graph.



a

q1

a,b b

q3q2



State-transition graph

Q      set of states {q1,q2,q3}

A set of atomic observations {a,b}A set of atomic observations {a,b}

→ ⊆ Q × Q     transition relation          q1 → q2

[ ]: Q → 2A observation function       [q1] = {a}



Mutual-exclusion protocol

loop

out: x1 := 1; last := 1

req: await  x2 = 0  or  last = 2

loop

out: x2 := 1; last := 2

req: await  x1 = 0  or  last = 1

||

req: await  x2 = 0  or  last = 2

in: x1 := 0

end loop.

req: await  x1 = 0  or  last = 1

in: x2 := 0

end loop.

P1 P2
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ro101 or012
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pc1: {o,r,i} 
pc2: {o,r,i} 
x1: {0,1} 
x2: {0,1} 
last: {1,2}

3⋅3⋅2⋅2⋅2 = 72 states



The translation from a system description 
to a state-transition graph usually involves 
an exponential blow-up !!!

e.g.,  n boolean variables  ⇒ 2n states

This is called the “state-explosion problem.”



State-transition graphs are not necessarily finite-state, 
but they don’t handle well:

-recursion (need pushdown models)

-environment interaction (need game models)-environment interaction (need game models)

-process creation (need dynamic models)

-real time (need clock models) 

-probabilistic choice (need stochastic models)



Model-checking problem

I |= S

system model system property

satisfaction relation



Three important decisions when choosing system properties:

1 operational vs. declarative:
automata vs. logic

2 may vs. must:
branching vs. linear timebranching vs. linear time

3 prohibiting bad vs. desiring good behavior:     
safety vs. liveness



Three important decisions when choosing system properties:

1 operational vs. declarative:
automata vs. logic

2 may vs. must:
branching vs. linear timebranching vs. linear time

3 prohibiting bad vs. desiring good behavior:     
safety vs. liveness

The three decisions are orthogonal, and they lead to 
substantially different model-checking problems.



Safety vs. liveness

Safety:    something “bad” will never happen

Liveness:  something “good” will happen Liveness:  something “good” will happen 
(but we don’t know when)



Safety vs. liveness for sequential programs

Safety:    the program will never produce a  Safety:    the program will never produce a  
wrong result (“partial correctness”)

Liveness:  the program will produce a result  
(“termination”)



Safety vs. liveness for sequential programs

Safety:    the program will never produce a  

induction on control flow

Safety:    the program will never produce a  
wrong result (“partial correctness”)

Liveness:  the program will produce a result  
(“termination”)

well-founded induction on data



Safety vs. liveness for state-transition graphs

Safety: those properties whose violation always 
has a finite witness

(“if something bad happens on an infinite 
run,   then it happens already on some finite run,   then it happens already on some finite 
prefix”)

Liveness: those properties whose violation never  
has a finite witness 

(“no matter what happens along a finite run, 
something good could still happen later”)



a

a,b b

q1

a,b b

q3q2

Run:      q1 → q3 → q1 → q3 → q1 → q2 → q2 →

Trace: a  → b  → a → b  → a  → a,b → a,b →



State-transition graph  S = ( Q, A, →, [] )

Finite runs: finRuns(S) ⊆ Q*

Infinite runs:         infRuns(S) ⊆ QωInfinite runs:         infRuns(S) ⊆ Qω

Finite traces: finTraces(S) ⊆ (2A)*

Infinite traces:      infTraces(S) ⊆ (2A)ω



Safety:   the properties that can be 
checked on finRuns

Liveness:   the properties that cannot be Liveness:   the properties that cannot be 
checked on finRuns



Safety:   the properties that can be 
checked on finRuns

Liveness:   the properties that cannot be 

This is much easier.

Liveness:   the properties that cannot be 
checked on finRuns

(they need to be checked on   
infRuns)



Example:  Mutual exclusion

It cannot happen that both processes are in 
their critical sections simultaneously.



Example:  Mutual exclusion

It cannot happen that both processes are in 
their critical sections simultaneously.

Safety



Example:  Bounded overtaking

Whenever process P1 wants to enter the critical 
section, then process P2 gets to enter at most 
once before process P1 gets to enter.once before process P1 gets to enter.



Example:  Bounded overtaking

Whenever process P1 wants to enter the critical 
section, then process P2 gets to enter at most 
once before process P1 gets to enter.once before process P1 gets to enter.

Safety



Example:  Starvation freedom

Whenever process P1 wants to enter the critical 
section, provided process P2 never stays in the 
critical section forever, P1 gets to enter eventually.critical section forever, P1 gets to enter eventually.



Example:  Starvation freedom

Whenever process P1 wants to enter the critical 
section, provided process P2 never stays in the 
critical section forever, P1 gets to enter eventually.critical section forever, P1 gets to enter eventually.

Liveness
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infRuns    ⇒ finRuns



a

a,b b

q1

a,b b

q3q2

infRuns    ⇒ finRuns

⇐*

closure    
*finite branching



For state-transition graphs,             
all properties are safety properties !all properties are safety properties !



Example:  Starvation freedom

Whenever process P1 wants to enter the critical 
section, provided process P2 never stays in the 
critical section forever, P1 gets to enter eventually.critical section forever, P1 gets to enter eventually.

Liveness
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a,b b
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Fairness constraint:

the green transition cannot be ignored forever



a

a,b b

q1

a,b b

q3q2

Without fairness:   infRuns = q1 (q3 q1)* q2
ω ∪ (q1 q3)ω

With fairness:        infRuns = q1 (q3 q1)* q2
ω



Two important types of fairness

1   Weak (Buchi) fairness: 
a specified set of transitions cannot be 
enabled forever without being taken enabled forever without being taken 

2  Strong (Streett) fairness:
a specified set of transitions cannot be 
enabled infinitely often without being taken 
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Strong fairness



a

a,b

q1

a,b

q2

Weak fairness



Weak fairness is sufficient for 
asynchronous models 
(“no process waits forever if it can move”). 

Strong fairness is necessary for modeling Strong fairness is necessary for modeling 
synchronous interaction (rendezvous).



Weak fairness is sufficient for 
asynchronous models 
(“no process waits forever if it can move”). 

Strong fairness is necessary for modeling Strong fairness is necessary for modeling 
synchronous interaction (rendezvous).

Strong fairness makes model checking 
more difficult.



Fairness changes only infRuns, not finRuns.

⇓⇓

Fairness can be ignored for checking safety properties.



The vast majority of properties to be 
verified are safety.

Two remarks

While nobody will ever observe the violation 
of a liveness property, fairness is a useful 
abstraction that turns complicated safety 
into simple liveness.



Three important decisions when choosing system properties:

1 operational vs. declarative:
automata vs. logic

2 may vs. must:
branching vs. linear timebranching vs. linear time

3 prohibiting bad vs. desiring good behavior:     
safety vs. liveness

The three decisions are orthogonal, and they lead to 
substantially different model-checking problems.



Branching vs. linear time

Branching time:   something may (or may not) happen
(e.g., every req may be followed by grant) 

Linear time:         something must (or must not) happenLinear time:         something must (or must not) happen
(e.g., every req must be followed by grant) 



Branching vs. linear time

Branching time:   something may (or may not) happen
(e.g., every req may be followed by grant) 

Linear time:         something must (or must not) happenLinear time:         something must (or must not) happen
(e.g., every req must be followed by grant) 

holds for all traces



Linear time:   the properties that can be 
checked on infTraces

Branching time:   the properties that cannot  
be checked on infTraces

may refer to states



a

aaa

a
q0

q0

q2q1 q1

b bc c

Same traces {aab, aac}
Different runs  (trees)   {q0 q1 q3, q0 q2 q4},  {q0 q1 q3, q0 q1 q4}

q4 q4q3q3



Observation  a may occur.



Observation  a may occur.

||

It is not the case that  a must not occur. It is not the case that  a must not occur. 

Linear



We may reach an  a from which we 
must not reach a  b .



We may reach an  a from which we 
must not reach a  b .

Branching



One is rarely interested in may properties,

but certain may properties are easier to 
model check, and they imply interesting  model check, and they imply interesting  
must properties.

(This is because when checking must 
properties, we sometimes have to “guess” 
states.)



Linear Branching

Safety         finTraces finRunsSafety         finTraces finRuns

Liveness infTraces infRuns



Three important decisions when choosing system properties:

1 operational vs. declarative:
automata vs. logic

2 may vs. must:
branching vs. linear timebranching vs. linear time

3 prohibiting bad vs. desiring good behavior:     
safety vs. liveness

The three decisions are orthogonal, and they lead to 
substantially different model-checking problems.



Branching time Linear time

CTL LTL  
(Computation Tree Logic)

Logics

(Computation Tree Logic)



Defining a logic

1. Syntax:  

What are the formulas?

2.  Semantics:

What are the models?

Does model M satisfy formula ϕ ? M |= ϕ



CTL Syntax

ϕ ::=   a  |  ϕ ∧ ϕ |  ¬ ϕ |  ∃ ϕ |  ϕ ∃U ϕ | ∃�ϕ

EX EGEU

boolean variable 
(atomic observation)

boolean operators

modal operators



CTL Model

( K, q )

fair state-transition graph state of K



CTL Semantics

(K,q)  |=  ∃� ϕ iff    exist  q0, q1, ...  s.t.(K,q)  |=  ∃� ϕ iff    exist  q0, q1, ...  s.t.

1.  q = q0 → q1 → ...  is an infinite fair run

2.  for all i ≥ 0,  (K,qi) |= ϕ



9� ϕ =  true 9U ϕ EF exists eventually

Defined modalities

9� ϕ =  true 9U ϕ EF exists eventually

8� ϕ =  ¬ 9� ¬ϕ AG forall always



Example:  mutex protocol

Mutual exclusion                                                                             
∀� ¬ (pc1=in ∧ pc2=in)

Bounded overtaking                                                                                     
∀� ( pc1=req   ⇒ (pc2≠in) ∀W (pc2=in) ∀W (pc2≠in) ∀W (pc1=in))

Starvation freedom
∀� (pc1=req  ⇒ ∀� (pc1=in))



If only universial properties are of interest,

why not omit the path quantifiers?why not omit the path quantifiers?



LTL Syntax

ϕ ::=   a  |  ϕ ∧ ϕ |  ¬ ϕ |   ϕ |  ϕ U ϕ



LTL Model

infinite trace  t = t0 t1 t2 ... 
(sequence of observations)

0 1 2

(sequence of observations)



Language of deadlock-free state-transition graph K 
at state q :

L(K,q)  ...  set of infinite traces of K starting at q

(K,q) |=∀ ϕ iff     for all  t ∈ L(K,q),  t |= ϕ

(K,q) |=∃ ϕ iff     exists  t ∈ L(K,q),  t |= ϕ



LTL Semantics

t  |=  a iff     a ∈ t0

t  |=  ϕ ∧ ψ iff     t |= ϕ and  t |= ψ

t  |=  ¬ϕ iff     not  t |= ϕt  |=  ¬ϕ iff     not  t |= ϕ

t  |=  ϕ iff     t1 t2 ... |= ϕ

t  |=  ϕ U ψ iff    exists  n ≥ 0  s.t.
1.  for all 0 ≤ i < n,  ti ti+1 ... |= ϕ
2.  tn tn+1 ... |= ψ



 X next

U U until

Defined modalities

U U until

� ϕ =  true U ϕ F eventually

� ϕ =  ¬ � ¬ϕ G   always

ϕ Wψ =  (ϕ U ψ) ∨ �ϕ W waiting-for



Important properties

Invariance � a safety

� ¬ (pc1=in ∧ pc2=in)

Sequencing            a W b W c W d safetySequencing            a W b W c W d safety

� (pc1=req   ⇒

(pc2≠in) W (pc2=in) W (pc2≠in) W (pc1=in))

Response � (a  ⇒ � b) liveness

� (pc1=req  ⇒ � (pc1=in))



Composed modalities

�� a infinitely often  a�� a infinitely often  a

�� a almost always  a



Where did fairness go ?



Unlike in CTL, fairness can be expressed in LTL !

So there is no need for fairness in the model.

Weak (Buchi) fairness :

¬ (enabled ∧ ¬ taken )  =¬ �� (enabled ∧ ¬ taken )  =

�� (enabled  ⇒ taken)

Strong (Streett) fairness :

( �� enabled )  ⇒ ( �� taken )



Starvation freedom

�� (pc2=in  ⇒  (pc2=out)) ⇒

(pc1=req  (pc1=in))� (pc1=req  ⇒ � (pc1=in))



CTL cannot express fairness

∃�� b ≠ ∃� ∃� b

ba a
q0

q1 q2



LTL cannot express branching

Possibility ∀� (a  ⇒ ∃� b)

So,  LTL  and  CTL  are incomparable.

(There are branching logics that can express fairness, 
e.g., CTL* = CTL + LTL, but they lose the computational 
attractiveness of CTL.) 



-safety (finite runs) vs. liveness (infinite runs) 

System property:   2x2x2 choices

-safety (finite runs) vs. liveness (infinite runs) 

-linear time (traces) vs. branching time (runs)

-logic (declarative) vs. automata (operational)



Automata

Safety: finite automata

Liveness: omega automataLiveness: omega automata

Linear: language containment 

Branching: simulation



Specification Automata

Syntax, given a set A of atomic observations:

S finite set of states

S0 ⊆ S set of initial states

→ ⊆ S × S     transition relation

φ: S → PL(A)  where the formulas of PL are

ϕ ::=   a  |  ϕ ∧ ϕ |  ¬ ϕ

for  a ∈ A



Language L(M) of specification automaton 

M = (S, S0, →, φ ) :

finite trace  t , ..., t ∈ L(M)  finite trace  t0, ..., tn ∈ L(M)  

iff

there exists a finite run  s0 → s1 → ... → sn of M

such that 

for all  0 ≤ i ≤ n,   ti |= φ(si)



Linear semantics of specification automata:

language containment

(K,q)  |=S M        iff      L(K,q) ⊆ L(M)

state-transition 
graph

state 
of K

specification 
automaton 

finite traces



Invariance specification automaton

pc1 ≠ in pc1 ≠ in 
∨

pc2 ≠ in



One-bounded overtaking specification automaton

pc1=req       
∧

pc2≠in
pc1=req

pc1=out
pc1=req

∧
pc2=in

pc1=in
pc1=req

∧
pc2≠in



Automata are more expressive than logic, 
because temporal logic cannot count :

a true

This cannot be expressed in LTL.

(How about  a ∧ � (a ⇒ a) ?)

a true



Checking language containment between 
finite automata is PSPACE-complete !

L(K,q) ⊆ L(M) L(K,q) ⊆ L(M) 

iff

L(K,q) ∩ complement( L(M) ) = ∅

involves determinization 
(subset construction)



In practice:

1.  require deterministic specification automata

2.  use monitor automata 2.  use monitor automata 

3.  use branching semantics



Monitor Automata

Syntax:

same as specification automata, 
except also set  E ⊆ S  of error statesexcept also set  E ⊆ S  of error states

Semantics:

define  L(M)  s.t. runs must end in error states

(K,q)  |=M M        iff     L(K,q) ∩ L(M) = ∅



Invariance monitor automaton

pc1 ≠ in pc1 = in pc1 ≠ in 
∨

pc2 ≠ in 

pc1 = in 
∧

pc2 = in

ERROR



One-bounded overtaking monitor automaton

pc1=req
∧

pc2≠in
pc1=req

pc1=out
pc1=req

∧
pc2=in

pc1=in pc1=req
∧

pc2≠in

pc1=req
∧

pc2=in

ERROR



Specification automaton Monitor automaton

M                                complement(M)

-describe correct traces -describe error traces-describe correct traces -describe error traces

-check language containment -check emptiness (linear):    
(exponential) reachability of error states 

“All safety verification is 
reachability checking.”



Exercise

1. Draw a state-transition graph that generates the 
Roman numerals

2. Define the property “there are no more than 3 
adjacent I” using

a. LTL

b. a specification automaton

c. a monitor automaton

3. Use one of the three specifications to model 
check the property (show all intermediate steps) 


