
Model Checking

Tom HenzingerTom Henzinger

IST Austria

Exercise

1. Draw a state-transition graph that generates the
Roman numerals

2. Define the property “there are no more than 3
adjacent I” using

a. LTL

b. a specification automaton

c. a monitor automaton

3. Use one of the three specifications to model
check the property (show all intermediate steps)

Model checking, narrowly interpreted:

Decision procedures for checking if
a given Kripke structure is a model a given Kripke structure is a model
for a given formula of a modal logic.

Why is this of interest to us?

Because the dynamics of a discrete system can
be captured by a Kripke structure.

Because some dynamic properties of a discrete Because some dynamic properties of a discrete
system can be stated in modal logics.

⇓

Model checking = System verification

Model checking, generously interpreted:

Algorithms, rather than proof calculi,
for system verification which operate on for system verification which operate on
a system model (semantics), rather than
a system description (syntax).

There are many different model-checking problems:

for different (classes of) system modelsfor different (classes of) system models

for different (classes of) system properties

A specific model-checking problem is defined by

I |= S

“implementation”
(system model)

“specification”
(system property)

“satisfies”, “implements”, “refines”
(satisfaction relation)

Characteristics of system models which favor model
checking over other verification techniques:

ongoing input/output behavior
(not: single input, single result)(not: single input, single result)

concurrency
(not: single control flow)

control intensive
(not: lots of data manipulation)

Examples

-control logic of hardware designs-control logic of hardware designs

-communication protocols

-device drivers

Paradigmatic example:

mutual-exclusion protocol

loop loop||

out: x1 := 1; last := 1

req: await x2 = 0 or last = 2

in: x1 := 0

end loop.

out: x2 := 1; last := 2

req: await x1 = 0 or last = 1

in: x2 := 0

end loop.

P1 P2

Model-checking problem

I |= S

system model system property

satisfaction relation

Important decisions when choosing a system model

-variable-based vs. event-based

-interleaving vs. true concurrency-interleaving vs. true concurrency

-synchronous vs. asynchronous interaction

-clocked vs. speed-independent progress

-etc.

Particular combinations of choices yield

CSP

Petri nets

I/O automataI/O automata

Reactive modules

Verilog

C

etc.

While the choice of system model is important for
the application,

the only thing that is important for model checking the only thing that is important for model checking
is that the system model can be translated into a
state-transition graph.

a

q1

a,b b

q3q2

State-transition graph

Q set of states {q1,q2,q3}

A set of atomic observations {a,b}A set of atomic observations {a,b}

→ ⊆ Q × Q transition relation q1 → q2

[]: Q → 2A observation function [q1] = {a}

Mutual-exclusion protocol

loop

out: x1 := 1; last := 1

req: await x2 = 0 or last = 2

loop

out: x2 := 1; last := 2

req: await x1 = 0 or last = 1

||

req: await x2 = 0 or last = 2

in: x1 := 0

end loop.

req: await x1 = 0 or last = 1

in: x2 := 0

end loop.

P1 P2

oo001

rr112

ro101 or012

io101 rr112

ir112

io101

pc1: {o,r,i}
pc2: {o,r,i}
x1: {0,1}
x2: {0,1}
last: {1,2}

3⋅3⋅2⋅2⋅2 = 72 states

The translation from a system description
to a state-transition graph usually involves
an exponential blow-up !!!

e.g., n boolean variables ⇒ 2n states

This is called the “state-explosion problem.”

State-transition graphs are not necessarily finite-state,
but they don’t handle well:

-recursion (need pushdown models)

-environment interaction (need game models)-environment interaction (need game models)

-process creation (need dynamic models)

-real time (need clock models)

-probabilistic choice (need stochastic models)

Model-checking problem

I |= S

system model system property

satisfaction relation

Three important decisions when choosing system properties:

1 operational vs. declarative:
automata vs. logic

2 may vs. must:
branching vs. linear timebranching vs. linear time

3 prohibiting bad vs. desiring good behavior:
safety vs. liveness

Three important decisions when choosing system properties:

1 operational vs. declarative:
automata vs. logic

2 may vs. must:
branching vs. linear timebranching vs. linear time

3 prohibiting bad vs. desiring good behavior:
safety vs. liveness

The three decisions are orthogonal, and they lead to
substantially different model-checking problems.

Safety vs. liveness

Safety: something “bad” will never happen

Liveness: something “good” will happen Liveness: something “good” will happen
(but we don’t know when)

Safety vs. liveness for sequential programs

Safety: the program will never produce a Safety: the program will never produce a
wrong result (“partial correctness”)

Liveness: the program will produce a result
(“termination”)

Safety vs. liveness for sequential programs

Safety: the program will never produce a

induction on control flow

Safety: the program will never produce a
wrong result (“partial correctness”)

Liveness: the program will produce a result
(“termination”)

well-founded induction on data

Safety vs. liveness for state-transition graphs

Safety: those properties whose violation always
has a finite witness

(“if something bad happens on an infinite
run, then it happens already on some finite run, then it happens already on some finite
prefix”)

Liveness: those properties whose violation never
has a finite witness

(“no matter what happens along a finite run,
something good could still happen later”)

a

a,b b

q1

a,b b

q3q2

Run: q1 → q3 → q1 → q3 → q1 → q2 → q2 →

Trace: a → b → a → b → a → a,b → a,b →

State-transition graph S = (Q, A, →, [])

Finite runs: finRuns(S) ⊆ Q*

Infinite runs: infRuns(S) ⊆ QωInfinite runs: infRuns(S) ⊆ Qω

Finite traces: finTraces(S) ⊆ (2A)*

Infinite traces: infTraces(S) ⊆ (2A)ω

Safety: the properties that can be
checked on finRuns

Liveness: the properties that cannot be Liveness: the properties that cannot be
checked on finRuns

Safety: the properties that can be
checked on finRuns

Liveness: the properties that cannot be

This is much easier.

Liveness: the properties that cannot be
checked on finRuns

(they need to be checked on
infRuns)

Example: Mutual exclusion

It cannot happen that both processes are in
their critical sections simultaneously.

Example: Mutual exclusion

It cannot happen that both processes are in
their critical sections simultaneously.

Safety

Example: Bounded overtaking

Whenever process P1 wants to enter the critical
section, then process P2 gets to enter at most
once before process P1 gets to enter.once before process P1 gets to enter.

Example: Bounded overtaking

Whenever process P1 wants to enter the critical
section, then process P2 gets to enter at most
once before process P1 gets to enter.once before process P1 gets to enter.

Safety

Example: Starvation freedom

Whenever process P1 wants to enter the critical
section, provided process P2 never stays in the
critical section forever, P1 gets to enter eventually.critical section forever, P1 gets to enter eventually.

Example: Starvation freedom

Whenever process P1 wants to enter the critical
section, provided process P2 never stays in the
critical section forever, P1 gets to enter eventually.critical section forever, P1 gets to enter eventually.

Liveness

a

a,b b

q1

a,b b

q3q2

infRuns ⇒ finRuns

a

a,b b

q1

a,b b

q3q2

infRuns ⇒ finRuns

⇐*

closure
*finite branching

For state-transition graphs,
all properties are safety properties !all properties are safety properties !

Example: Starvation freedom

Whenever process P1 wants to enter the critical
section, provided process P2 never stays in the
critical section forever, P1 gets to enter eventually.critical section forever, P1 gets to enter eventually.

Liveness

a

a,b b

q1

a,b b

q3q2

Fairness constraint:

the green transition cannot be ignored forever

a

a,b b

q1

a,b b

q3q2

Without fairness: infRuns = q1 (q3 q1)* q2
ω ∪ (q1 q3)ω

With fairness: infRuns = q1 (q3 q1)* q2
ω

Two important types of fairness

1 Weak (Buchi) fairness:
a specified set of transitions cannot be
enabled forever without being taken enabled forever without being taken

2 Strong (Streett) fairness:
a specified set of transitions cannot be
enabled infinitely often without being taken

a

a,b b

q1

a,b b

q3q2

Strong fairness

a

a,b

q1

a,b

q2

Weak fairness

Weak fairness is sufficient for
asynchronous models
(“no process waits forever if it can move”).

Strong fairness is necessary for modeling Strong fairness is necessary for modeling
synchronous interaction (rendezvous).

Weak fairness is sufficient for
asynchronous models
(“no process waits forever if it can move”).

Strong fairness is necessary for modeling Strong fairness is necessary for modeling
synchronous interaction (rendezvous).

Strong fairness makes model checking
more difficult.

Fairness changes only infRuns, not finRuns.

⇓⇓

Fairness can be ignored for checking safety properties.

The vast majority of properties to be
verified are safety.

Two remarks

While nobody will ever observe the violation
of a liveness property, fairness is a useful
abstraction that turns complicated safety
into simple liveness.

Three important decisions when choosing system properties:

1 operational vs. declarative:
automata vs. logic

2 may vs. must:
branching vs. linear timebranching vs. linear time

3 prohibiting bad vs. desiring good behavior:
safety vs. liveness

The three decisions are orthogonal, and they lead to
substantially different model-checking problems.

Branching vs. linear time

Branching time: something may (or may not) happen
(e.g., every req may be followed by grant)

Linear time: something must (or must not) happenLinear time: something must (or must not) happen
(e.g., every req must be followed by grant)

Branching vs. linear time

Branching time: something may (or may not) happen
(e.g., every req may be followed by grant)

Linear time: something must (or must not) happenLinear time: something must (or must not) happen
(e.g., every req must be followed by grant)

holds for all traces

Linear time: the properties that can be
checked on infTraces

Branching time: the properties that cannot
be checked on infTraces

may refer to states

a

aaa

a
q0

q0

q2q1 q1

b bc c

Same traces {aab, aac}
Different runs (trees) {q0 q1 q3, q0 q2 q4}, {q0 q1 q3, q0 q1 q4}

q4 q4q3q3

Observation a may occur.

Observation a may occur.

||

It is not the case that a must not occur. It is not the case that a must not occur.

Linear

We may reach an a from which we
must not reach a b .

We may reach an a from which we
must not reach a b .

Branching

One is rarely interested in may properties,

but certain may properties are easier to
model check, and they imply interesting model check, and they imply interesting
must properties.

(This is because when checking must
properties, we sometimes have to “guess”
states.)

Linear Branching

Safety finTraces finRunsSafety finTraces finRuns

Liveness infTraces infRuns

Three important decisions when choosing system properties:

1 operational vs. declarative:
automata vs. logic

2 may vs. must:
branching vs. linear timebranching vs. linear time

3 prohibiting bad vs. desiring good behavior:
safety vs. liveness

The three decisions are orthogonal, and they lead to
substantially different model-checking problems.

Branching time Linear time

CTL LTL
(Computation Tree Logic)

Logics

(Computation Tree Logic)

Defining a logic

1. Syntax:

What are the formulas?

2. Semantics:

What are the models?

Does model M satisfy formula ϕ ? M |= ϕ

CTL Syntax

ϕ ::= a | ϕ ∧ ϕ | ¬ ϕ | ∃ ϕ | ϕ ∃U ϕ | ∃�ϕ

EX EGEU

boolean variable
(atomic observation)

boolean operators

modal operators

CTL Model

(K, q)

fair state-transition graph state of K

CTL Semantics

(K,q) |= ∃� ϕ iff exist q0, q1, ... s.t.(K,q) |= ∃� ϕ iff exist q0, q1, ... s.t.

1. q = q0 → q1 → ... is an infinite fair run

2. for all i ≥ 0, (K,qi) |= ϕ

9� ϕ = true 9U ϕ EF exists eventually

Defined modalities

9� ϕ = true 9U ϕ EF exists eventually

8� ϕ = ¬ 9� ¬ϕ AG forall always

Example: mutex protocol

Mutual exclusion
∀� ¬ (pc1=in ∧ pc2=in)

Bounded overtaking
∀� (pc1=req ⇒ (pc2≠in) ∀W (pc2=in) ∀W (pc2≠in) ∀W (pc1=in))

Starvation freedom
∀� (pc1=req ⇒ ∀� (pc1=in))

If only universial properties are of interest,

why not omit the path quantifiers?why not omit the path quantifiers?

LTL Syntax

ϕ ::= a | ϕ ∧ ϕ | ¬ ϕ |  ϕ | ϕ U ϕ

LTL Model

infinite trace t = t0 t1 t2 ...
(sequence of observations)

0 1 2

(sequence of observations)

Language of deadlock-free state-transition graph K
at state q :

L(K,q) ... set of infinite traces of K starting at q

(K,q) |=∀ ϕ iff for all t ∈ L(K,q), t |= ϕ

(K,q) |=∃ ϕ iff exists t ∈ L(K,q), t |= ϕ

LTL Semantics

t |= a iff a ∈ t0

t |= ϕ ∧ ψ iff t |= ϕ and t |= ψ

t |= ¬ϕ iff not t |= ϕt |= ¬ϕ iff not t |= ϕ

t |=  ϕ iff t1 t2 ... |= ϕ

t |= ϕ U ψ iff exists n ≥ 0 s.t.
1. for all 0 ≤ i < n, ti ti+1 ... |= ϕ
2. tn tn+1 ... |= ψ

 X next

U U until

Defined modalities

U U until

� ϕ = true U ϕ F eventually

� ϕ = ¬ � ¬ϕ G always

ϕ Wψ = (ϕ U ψ) ∨ �ϕ W waiting-for

Important properties

Invariance � a safety

� ¬ (pc1=in ∧ pc2=in)

Sequencing a W b W c W d safetySequencing a W b W c W d safety

� (pc1=req ⇒

(pc2≠in) W (pc2=in) W (pc2≠in) W (pc1=in))

Response � (a ⇒ � b) liveness

� (pc1=req ⇒ � (pc1=in))

Composed modalities

�� a infinitely often a�� a infinitely often a

�� a almost always a

Where did fairness go ?

Unlike in CTL, fairness can be expressed in LTL !

So there is no need for fairness in the model.

Weak (Buchi) fairness :

¬ (enabled ∧ ¬ taken) =¬ �� (enabled ∧ ¬ taken) =

�� (enabled ⇒ taken)

Strong (Streett) fairness :

(�� enabled) ⇒ (�� taken)

Starvation freedom

�� (pc2=in ⇒  (pc2=out)) ⇒

(pc1=req (pc1=in))� (pc1=req ⇒ � (pc1=in))

CTL cannot express fairness

∃�� b ≠ ∃� ∃� b

ba a
q0

q1 q2

LTL cannot express branching

Possibility ∀� (a ⇒ ∃� b)

So, LTL and CTL are incomparable.

(There are branching logics that can express fairness,
e.g., CTL* = CTL + LTL, but they lose the computational
attractiveness of CTL.)

-safety (finite runs) vs. liveness (infinite runs)

System property: 2x2x2 choices

-safety (finite runs) vs. liveness (infinite runs)

-linear time (traces) vs. branching time (runs)

-logic (declarative) vs. automata (operational)

Automata

Safety: finite automata

Liveness: omega automataLiveness: omega automata

Linear: language containment

Branching: simulation

Specification Automata

Syntax, given a set A of atomic observations:

S finite set of states

S0 ⊆ S set of initial states

→ ⊆ S × S transition relation

φ: S → PL(A) where the formulas of PL are

ϕ ::= a | ϕ ∧ ϕ | ¬ ϕ

for a ∈ A

Language L(M) of specification automaton

M = (S, S0, →, φ) :

finite trace t , ..., t ∈ L(M) finite trace t0, ..., tn ∈ L(M)

iff

there exists a finite run s0 → s1 → ... → sn of M

such that

for all 0 ≤ i ≤ n, ti |= φ(si)

Linear semantics of specification automata:

language containment

(K,q) |=S M iff L(K,q) ⊆ L(M)

state-transition
graph

state
of K

specification
automaton

finite traces

Invariance specification automaton

pc1 ≠ in pc1 ≠ in
∨

pc2 ≠ in

One-bounded overtaking specification automaton

pc1=req
∧

pc2≠in
pc1=req

pc1=out
pc1=req

∧
pc2=in

pc1=in
pc1=req

∧
pc2≠in

Automata are more expressive than logic,
because temporal logic cannot count :

a true

This cannot be expressed in LTL.

(How about a ∧ � (a ⇒ a) ?)

a true

Checking language containment between
finite automata is PSPACE-complete !

L(K,q) ⊆ L(M) L(K,q) ⊆ L(M)

iff

L(K,q) ∩ complement(L(M)) = ∅

involves determinization
(subset construction)

In practice:

1. require deterministic specification automata

2. use monitor automata 2. use monitor automata

3. use branching semantics

Monitor Automata

Syntax:

same as specification automata,
except also set E ⊆ S of error statesexcept also set E ⊆ S of error states

Semantics:

define L(M) s.t. runs must end in error states

(K,q) |=M M iff L(K,q) ∩ L(M) = ∅

Invariance monitor automaton

pc1 ≠ in pc1 = in pc1 ≠ in
∨

pc2 ≠ in

pc1 = in
∧

pc2 = in

ERROR

One-bounded overtaking monitor automaton

pc1=req
∧

pc2≠in
pc1=req

pc1=out
pc1=req

∧
pc2=in

pc1=in pc1=req
∧

pc2≠in

pc1=req
∧

pc2=in

ERROR

Specification automaton Monitor automaton

M complement(M)

-describe correct traces -describe error traces-describe correct traces -describe error traces

-check language containment -check emptiness (linear):
(exponential) reachability of error states

“All safety verification is
reachability checking.”

Exercise

1. Draw a state-transition graph that generates the
Roman numerals

2. Define the property “there are no more than 3
adjacent I” using

a. LTL

b. a specification automaton

c. a monitor automaton

3. Use one of the three specifications to model
check the property (show all intermediate steps)

