

Distributed Algorithms

(Part 2)
RiSE Winter School 2012

Ulrich Schmid
Institute of Computer Engineering, TU Vienna
Embedded Computing Systems Group E182/2

s@ecs.tuwien.ac.at

RiSE Winter School 2012 2

 Food for Thoughts

U. Schmid

U. Schmid RiSE Winter School 2012 3

Communcation Failures
• Link failure model:

1. Distinguish send and receive link
failures

2. Distinguish omission and
arbitrary link failures

3. Indep. for every send/rec to/from
all

• Known results:

– n > fl
r + fl

s necessary &
sufficient for solving consensus
with pure link omission failures

– n > fl
r + fl

ra + fl
s + fl

sa necessary
& sufficient for solving
consensus with link omission
and arbitrary failures

fl
s ≥ fl

sa

Send link failures

fl
ra ≤ fl

r

Rcv link failures

U. Schmid RiSE Winter School 2012 4

Exercises

Required number of procs:
• n ≥ S”fl

sa+R”fl
ra +3f + 1

Link failure lower bound:
• n ≥ fl

r + fl
ra + fl

s + fl
sa

 if got (init,ps,ms) from ps
 → send (echo,ps,ms) to all [once]
 if got (echo,ps,ms) from Sfl

sa + Rfl
ra +f + 1

 → send (echo,ps,ms) to all [once]
 if got (echo,ps,ms) from S’fl

sa+R’fl
ra+2f + 1

 → call accept(ps,ms)

1. Find the smallest values for S,R,S‘,R‘,S“,R“ in the CB implem.
below for arbitrary link failures (fl

r = fl
ra and fl

s = fl
sa):

2. Find an „easy impossibility proof“ that shows that n=4 processors

are not enough for solving consensus with fl
r = fl

ra = fl
s = fl

sa = 1
(and f =0)

RiSE Winter School 2012 5

 Solution

U. Schmid

U. Schmid RiSE Winter School 2012 6

Consistent BC with Comm. Failures (I)

Required number of procs:
• n ≥ 2fl

sa+4fl
ra +3f + 1 (Thm. 2)

Link failure lower bound:
• n ≥ fl

r + fl
ra + fl

s + fl
sa

 if got (init,ps,ms) from ps
 → send (echo,ps,ms) to all [once]
 if got (echo,ps,ms) from fl

sa + fl
ra +f + 1

 → send (echo,ps,ms) to all [once]
 if got (echo,ps,ms) from fl

sa+3fl
ra+2f + 1

 → call accept(ps,ms)

Ulrich Schmid and Christof Fetzer. Randomized asynchronous consensus with imperfect communications.
Technical Report 183/1-120, Department of Automation, Technische Universität Wien, January 2002.
(Appeared in Proc. SRDS‘02).
http://wwwold.ecs.tuwien.ac.at/W2F/papers/SF02_byzTR.ps

Fig. 2

U. Schmid RiSE Winter School 2012 7

Consistent BC with Comm. Failures (II)
The following follows right from the failure model (Lemma 1):
(1) Every correct processor pi may receive at most fl

ra + f faulty echo msgs
(2) At most fl

sa (correct) processors can emit echo, due to send link failures of ps
(3) At most 2fl

ra + f messages received by a correct processor by time t may not
have been received at any other correct processor by time t + ε

Unforgeability:
• For a contradiction, suppose pi calls accept by t+2d, so must have got

fl
sa+3fl

ra+2f + 1 echo msgs

• At most fl
sa + fl

ra + f of these could originate from (1) and (2)  at least one
(in fact, more) correct pj must have emitted echo for good. This happens either

– if pj properly received init – which cannot happen as ps did not call bcast by t

– if pj received fl
sa + fl

ra +f + 1 echo msgs itself, in which case we can repeat the argument
above for pj

U. Schmid RiSE Winter School 2012 8

Consistent BC with Comm. Failures (III)

Relay:
• By (3), at most 2fl

ra + f of the echo
messages available at pi by t could
be missing at pj by t + ε

• fl
sa + fl

ra + f + 1 remain, so trigger
emitting echo at pj  continue as in
original Relay-proof

fl
sa + fl

ra + f + 1

 fl
sa + 3fl

ra + 2f + 1

pi at t pj at t+ε

Correctness:
• Since ps is correct, at least n – fl

sa – f ≥ fl
sa+4fl

ra +2f + 1 will get the init msg
and emit echo by time t+d+ε

• Since every receiver could miss at most fl
ra of these messages, at least fl

s+3fl
ra

+2f + 1 are received by time t+2(d+ε)  accept is triggered

Easy Impossibility Proof

• Suppose correct algorithm
A = (A,B,C,D) for
(p0,p1,p2,p3) existed

• Consider this cube:
– In View 0: Decision is 0 by

Validity
– In View 1: Decision is 1 by

Validity
– In View X: Violation of

Agreement

RiSE Winter School 2012 9 U. Schmid

Ulrich Schmid, Bettina Weiss, and Idit Keidar. Impossibility results and lower bounds for consensus under
link failures. SIAM Journal on Computing, 38(5):1912-1951, 2009.

RiSE Winter School 2012 10 U. Schmid

Content (Part 2)
The Role of Synchrony Conditions:
Failure Detectors
Real-Time Clocks

 Partially Synchronous Models
Models supporting lock-step round simulations
Weaker partially synchronous models

Distributed Real-Time Systems

The Role of Synchrony Conditions

U. Schmid 11 RiSE Winter School 2012

Yes
Yes No

Yes ?

No No
Yes

All meet
None meet

No

?

U. Schmid 12 RiSE Winter School 2012

Recall Distributed Agreement (Consensus)

Consensus Impossibility (FLP)

“There is no deterministic algorithm
 for solving consensus in an

asynchronous distributed system
in the presence of a single crash failure.”

Fischer, Lynch und Paterson [FLP85]:

Key problem:
Distinguish slow from dead!
 U. Schmid 13 RiSE Winter School 2012

Consensus Solvability in ParSync [DDS87] (I)

• Processors synchronous / asynchronous

• Communication synchronous / asynchronous

• Message order synchronous (system-wide consistent)
/ asynchronous (out-of-order)

• Send steps broadcast / unicast

• Computing steps atomic rec+send / separate rec, send
RiSE Winter School 2012 14 U. Schmid

Dolev, Dwork and Stockmeyer investigated consensus
solvability in Partially Synchronous Systems (ParSync),
varying 5 „synchrony handles“ :

RiSE Winter School 2012 15 U. Schmid

async sync

sync

async

Communication

G
lo

ba
l m

es
sa

ge
 o

rd
er

Consensus Solvability in ParSync [DDS87] (II)

ucast bcast
s+r

s/r
Consensus impossible

Wait-free consensus possible

Consensus possible
for f=1

The Role of Synchrony Conditions

Enforce event ordering

• Distinguish „old“ from „new“

• Ruling out existence of stale
(in-transit) information

• Creating non-overlapping
„phases of operation“ (rounds)

Enable failure detection

• Distinguish slow from dead

RiSE Winter School 2012 16 U. Schmid

Failure Detectors

U. Schmid 17 RiSE Winter School 2012

Failure Detectors [CT96] (I)

• Chandra & Toueg augmented purley asynchronous systems with
(unreliable) failure detectors (FDs):

• Every processor owns a local FD module (an „oracle“ – we do
not care about how it is implemented!)

• In every step [of a purely asynchronous algorithm], the FD can be
queried for a hint about failures of other procs

RiSE Winter School 2012 18 U. Schmid

Proc p Proc q Network
Valve

Pressure
Sensor

Failure Detectors [CT96] (II)

• make mistakes – the (time-free!) FD specification
restricts the allowed mistakes of a FD

• FD hierarchy: A stronger FD specification implies
– less allowed mistakes
– more difficult problems to be solved using this FD
– But: FD implementation more demanding/difficult

• Every problem Pr has a weakest FD W:
– There is a purely asynchronous algorithm for solving Pr that

uses W
– Every FD that also allows to solve Pr can be transformed (via a

purely asynchronous algorithm) to simulate W
RiSE Winter School 2012 19 U. Schmid

Example Failure Detectors (I)

• Perfect failure detector P: Outputs suspect list
– Strong completeness: Eventually, every process that crashes is

permanently suspected by every correct process
– Strong accuracy: No process is ever suspected bevor it crashes

• Eventually perfect failure detector ◊P:
– Strong completeness
– Eventual strong accuracy: There is a time after which correct

processes are never suspected by correct processes

RiSE Winter School 2012 20 U. Schmid

Example Failure Detectors (II)

• Eventually strong failure detector ◊S:
– Strong completeness
– Eventual weak accuracy: There is a time after which some

correct process is never suspected by correct processes

• Leader oracle Ω: Outputs a single process ID
– There is a time after which every not yet crashed process

outputs the same correct process p (the „leader“)

• Both are weakest failure detectors for consensus (with
majority of correct processes)

RiSE Winter School 2012 21 U. Schmid

Consensus with ◊S: Rotating Coordinator

RiSE Winter School 2012 22 U. Schmid

RiSE Winter School 2012 23

Why Agreement? Intersecting Quorums

n=7

p decides v every q changes its estimate to v

f=3

v v v v ┴ ┴ ┴

U. Schmid

Intersecting Quorums:

Implementability of FDs

• If we can implement a FD like Ω or ◊S, we can also
implement consensus (for n > 2f)

• In a purely asynchronous system
– it is impossible to solve consensus (FLP result)
– it is hence also impossible to implement Ω or ◊S

• Back at key question: What needs to be added to an
asynchronous system to make Ω or ◊S implementable?
– Real-time constraints [ADFT04, …]
– Order constraints [MMR03, …]
– ???

RiSE Winter School 2012 24 U. Schmid

Real-Time Clocks

U. Schmid 25 RiSE Winter School 2012

Distributed Systems with RT Clocks

• Equip every processor p with a local RT clock Cp(t)

• Small clock drift ρ  local clocks progress
approximately as real-time, with clock rate ∈ [1-ρ,1+ ρ]

• End-to-end delay bounds [τ-, τ+], a priori known

 RiSE Winter School 2012 26 U. Schmid

Proc p Proc q Network
Valve

Pressure
Sensor

Cp(t) Cq(t)

T 1+ ρ

1− ρ

t

The Role of Real-Time

• Real-time clocks enable both:

• [Show later: Real-time clocks are not the only way …]

RiSE Winter School 2012 27 U. Schmid

Event ordering

Failure detection

Failure Detection: Timeout using RT Clock

status = do_roundtrip(q)
{ send ping to q
 TO := Cp(t) + 5 seconds
 wait until Cp(t) = TO
 if pong did not arrive then
 return DEAD
 else
 return ALIVE
}

RiSE Winter School 2012 28 U. Schmid

p +1 +2 +3 +4 +5

q

5 seconds

ping

t

 set timer

TO before pong:
DEAD

• the end-to-end delays are at most τ+ = 2.5 seconds
• τ+ is known a priori [at coding time]

process ping

pong

process pong

TO after pong:
ALIVE

p can reliably detect whether q has been alive recently, if

U. Schmid 29

Event Ordering: Via Clock Synchronization
Internal CS:
• Precision |Cp(t) - Cq(t)| ≤ π

• Progress like RT (small drift ρ)

• CS-Alg must periodically
resynchronize

 T

t

Cp(t)

Cq(t)
≤ π

External CS:
• Accuracy |Cp(t) – t | ≤ α

• CS-Alg needs access to RT

• External CS  internal CS π = 2α

T

t

T = t

t - α

t + α

≥ Cp(t) ≥

α

α

RiSE Winter School 2012

U. Schmid RiSE Winter School 2012 30

FT Midpoint Internal CS-Alg [LWL88]

p

Cp

q

Cq

Cp

Cq

π Before resync …

π´≤ π/2 After resync …

 A priori bounded [τ-, τ+] allows to estimate all remote clocks
 Discard f largest and f smallest clock readings (could be faulty)
 Set local clock to midpoint of remaining interval

U. Schmid RiSE Winter School 2012 31

Global Positioning System (GPS)

• 4 satellites required to determine χ = (x, y, z) and Δ
• 1 satellite sufficient for Δ if χ is already known

 Satellite clocks
synchronized to
USNO atomic
master clock

 GPS-Receiver
solves system of
equations

 ti+|χ-si|/c+Δ = Ti

Rec. time: t1, t2 (unknown)

Local rec. time: T1, T2
(known)

Time: t1 (known)
3D-pos: s1 (known)

Time: t2 (known)
3D-pos: s2 (known)

Clk.offset Δ = T – t (unknown)
3D-pos: χ (unknown)

GPS Rec.

GPS satellites

U. Schmid RiSE Winter School 2012 32

Why are Synchronized Clocks Useful?

p
Cp(t1) = R Cp(t2) = 2R Cp(t3) = 3R

q
Cq(t1’) = R Cq(t2’) = 2R Cq(t3’) = 3R

≤ π

• Synchronized clocks allow to simulate communication-
closed lock-step rounds via clock time [NT93]:

• Only requirement: R ≥ τ+ + π holds!

• Lock-step rounds perfect failure detection at end of
rounds

t ≤ τ+

Perfect FD Lock-Step Round Simulation

• Attempt round simulation at p: Waiting for either
– arrival of round message from q, or
– p‘s instance of P suspects q

• Problem faced by q:
– msgk not received in round k, although p alive after round k
– q even receives msgk+1 in round k+1 in this example

RiSE Winter School 2012 33 U. Schmid

p

q

t

q suspects p

P crashes

msgk msgk+1

round k round k+1
[or q suspects p next]

q trusts p

RiSE Winter School 2012 34 U. Schmid

Using RT Clocks: Deficiencies
• Algorithms like do_roundtrip(.) have system-dependent

time values (unit „seconds“) in their code / variables 
not easily portable to e.g. faster hardware

• Fail-operational systems might tolerate occasional loss
of timeliness properties – but never of safety properties

• Unfortunately:
Safety properties like agreement typically rely on the reliable
operation of do_roundtrip(.) and similar primitives
End-to-end delay bounds τ+ that always hold are difficult to
determine in real systems

Try to relax timing assumptions in ParSync models …

RiSE Winter School 2012 35 U. Schmid

Partially Synchronous Models

RiSE Winter School 2012 36 U. Schmid

Recall: Synchronous Model
• „The“ classic model

– Transmission delay bound τ+
– Computing step time bound μ+
– Bounded-drift local clocks available

• Allows (Byzantine-tolerant) implementation of
– Internal clock synchronization
– Lock-step rounds
– etc.

RiSE Winter School 2012 37 U. Schmid

The Timed Asynchronous Model
• Cristian & Fetzer [CF99]:

– Alternating bad and good periods:
• Transmission delay bound τ+
• Computing step time bound μ+

– Bounded-drift local RT clocks available
– Local clocks allow to detect good/bad periods  TA algorithms

are always safe and live in good periods

• TA algorithms allow to implement (non-Byzantine) fail-
aware services, including eventual lock-step rounds

RiSE Winter School 2012 38 U. Schmid

Classic Partially Synchronous Models (I)
• „The“ classic ParSync models

Dolev, Dwork & Stockmeyer [DDS87]
Dwork, Lynch & Stockmeyer [DLS88]
Attiya, Dwork, Lynch & Stockmeyer [ADLS94]

• Semi-synchronous model by Ponzio & Strong [PS92]

• Common system parameters:
– Bounded processor speed ratio Φ = μ+/μ-

– Transmission delay bound Δ

• Archimedean model by Vitanyi [Vit84]
– Bounded speed ratio S = τ+/μ-

RiSE Winter School 2012 39 U. Schmid

Classic Partially Synchronous Models (II)

Processes can locally time-out messages:

– The classic ParSync models [DDS87, DLS88] and
[ADLS94] assume

• Δ given in multiples of (unknown) minimal computing step
time μ- [hence τ+ = Δ·μ- real-time seconds]

• spin loop counting f(Φ,Δ) steps allows to time-out messages
[implements local clock with real-time rate ∈ [1/Φ,1]]

– Archimedean model [Vit84] also allows to time-out
messages via spin-loop for S steps

– Semi-synchonous model [PS92] assumes
• Δ = τ+ given in real-time seconds
• bounded-drift local RT clocks available for timing-out

messages

RiSE Winter School 2012 40 U. Schmid

Classic Partially Synchronous Models (III)
 Variants of ParSync models: System parameters (Δ, Φ)

1. known and hold
from the beginning

2. known and hold from unknown global stabilization time (GST) on

3. unknown and hold from the beginning / from GST on:

Learn (Δ, Φ), by continuously increasing estimate values

RiSE Winter School 2012 41 U. Schmid

Time-Free Message-Timeout in ParSync ?
• Implementation of do_roundtrip(p) in the ParSync models

of [DLS88] or [Vit85]:

• But: No obvious correlation between processor step
times and message delays  not really time-free …

{ send ping to p
 for i=1 to x do no-op /* x=f(Δ, Φ) resp. x=f(s) is
 dimensionless! */
 if pong did not arrive then
 return DEAD
 else
 return ALIVE
}

The Θ/ABC-Model

In classic ParSync models:

• Timing assumptions are primarily used for ordering
events

• Is it possible to define a time-free ParSync model based
on event ordering in the first place?

For example: Assume that
• only less than Θ roundtrips can occur during any single

round-trip
• Actual duration (D) irrelevant

RiSE Winter School 2012 42 U. Schmid

status = do_roundtrip(q)
{ send ping to q
 for i=1 to Θ do

begin
 send delay_ping(i) to r
 wait for delay_pong(i) from r
 end
 if pong did not arrive then
 return DEAD
 else
 return ALIVE
}

D

p

r

1 2 3 4 5

Θ = 5

q ping pong

RiSE Winter School 2012 43 U. Schmid

The Θ-Model: Bounded E-t-E Delay Ratio

• End-to-end delays of all
messages in transit at t
– minimum τ−(t)
– maximum τ+(t)

• τ+(t) and τ−(t) may vary
arbitrarily with time, but:

• Ratio τ+(t)/τ−(t) bounded by
[known or even unknown]
system parameter Θ

LeLann & Schmid [LS03], Widder & Schmid [WS09]

RiSE Winter School 2012 44 U. Schmid

Byzantine FT Clock Sync in the Θ-Model
For n ≥ 3f + 1 with up to f Byz. failures:
• Suppose p sends tick(C+1) at time t
• Then, q also sends tick(C+1) by time

t + 2τ+ - τ−

+ Fastest tick-frequency of any p: 1/τ−
⇒ Clock ticks occur approximately

synchronously, with precision π(Θ)

 On init
 → send tick(0) to all; C := 0;
 If got tick(l) from f +1 nodes and l > C
 → send tick(C+1),…, tick(l) to all;
 C := l;
 If got tick(C) from 2f +1 nodes
 → send tick(C+1) to all;
 C := C+1;

f + 1

 2f + 1

p at t any q’ at t+τ+- τ− any q at t+2τ+- τ−

≤ τ+- τ− ≤ τ+

RiSE Winter School 2012 45 U. Schmid

Correlation → Coverage Expansion
• Given some bound τ+ and τ− assumed during system design

(as used in synchronous systems), compute Θ = τ+ / τ−
• Unanticipated overload: τ+(t) > τ+

t

end-to-
end

delays

τ−

δ

τ+

Synchronous system out of spec

— if τ+(t) ≤ Θτ−(t), however,

 Θ-system still OK

Note:
• τ+(t) = τ+ + α(t)

• τ −(t) = τ− + α(t)/Θ
sufficient for Θ to hold!

RiSE Winter School 2012 46 U. Schmid

Shortcomings Θ-Model

• Correlation between slow and fast messages need not
exist for all messages
– Some very fast messages [even τ− = 0] may be in transit

somewhere in the system during a slow message
– Correlation and hence coverage expansion does not exist in

such cases
• Need a more relaxed definition of the relation between

slow and fast messages
– All that is actually needed is to constrain the number of fast

messages during a slow one
– No need for a correlation of unrelated messages, and at every

point in time t

RiSE Winter School 2012 47 U. Schmid

The Asynchronous Bounded Cycle Model

 Example: Θ = 4.5
 2 consecutive „slow“

messages
 Cycle with 9 enclosed

„fast“ messages
 No larger cycles allowed

Robinson & Schmid [RS08]
• The ABC Model just bounds the ratio of the number of

forward and backward-oriented messages in cycles

• No implicit or explicit reference to real-time
 Messages with τ−(t) = 0 allowed
 No need to relate independent messages in the system
 We proved: Any Θ-algorithm works correctly in the ABC model

RiSE Winter School 2012 48 U. Schmid

FLP

Θu

Θ

DLSu

Partial Order of ParSync Models

• DLS … [DLS88] with
known Δ, Φ

• Θ … ABC/Θ-Model
with known Θ

• DLSu … [DLS88] with
unknown Δ, Φ

• Θu … ABC/Θ-Model
with unknown Θ

• FLP … FLP-Model

DLS

Even Weaker ParSync Models?

• All the ParSync Models seen so far allow to build
– lock-step rounds, or at least
– eventual lock-step rounds

• Solving consensus is easy here.

• We know that lock-step rounds are stronger than failure
detectors that are sufficient for solving consensus:
– Perfect failure detector P
– Leader oracle Ω

• Are there weaker ParSync models where only such FDs
can be implemented?

 RiSE Winter School 2012 49 U. Schmid

RiSE Winter School 2012 50 U. Schmid

Weaker Partially Synchronous Models

Finite Average Roundtrip-Time Model (I)

Fetzer, Schmid and Süsskraut [FSS04]
– Asynchronous system with crash failures
– Unknown lower bound μ- for computing step time
– Unknown average round-trip time bounds

– RTT(k) and hence τ+ unbounded, yet
– Average after n „Epochs“ is

RiSE Winter School 2012 51 U. Schmid

∞<∑
=∞→

n

kn
kRTT

n 1
)(1

lim

1 2 1 1 3 1 1 1 4 1 RTT:

∞<
+
+

⋅=
−−+

+
nn
nn

nnnn
nn

3
2

2/)1()1(
)1(

2

2

Epoch 1 Epoch 2 Epoch 3

Finite Average Roundtrip-Time Model (II)

• The FAR model assumptions
– do not allow to implement lock-step rounds
– do allow to implement the eventually perfect FD P
– can solve consensus if n > 2f

• Key ideas for P implementation:
– Implement weak local clock [via spin-loop] for timing-out

messages
– Time-out roundtrips using adaptive timeout value TV

• If fast RT occurs [before TO]: Increase TV, to prepare for future slow
RTs

• If slow RT occurs [after TO]: (Could) decrease TV, since fast RTs
must eventually follow due to finite average RTT

RiSE Winter School 2012 52 U. Schmid

U. Schmid RiSE Winter School 2012 53

Weak Timely Link Models (I)

• Partially synchronous processors (Φ) with crash failures
• Almost all communication asynchronous, except:
• At least one process p must be an ◊f-source:

– After some (unknown) time, p has timely links to at least f neighbors
[No message sent at time t is processed after t+τ+ (unknown)]

– Note: A link to a crashed process is timely per definition!

• Allows to implement Ω, and hence solving consensus for n > 2f
• An ◊f-1-source is provably not sufficient
• Currently weakest WTL model [HMSZ09]: A moving ◊f-

source, where the f timely links can change with time

Aguilera, Delporte, Fauconnier, Toueg [ADFT04],
Hutle, Malkhi, Schmid, Zhou [HMSZ09]:

U. Schmid RiSE Winter School 2012 54

Weak Timely Link Models (II)

• periodically broadcasts heartbeat
message (HB)

• times-out HBs of all neighbors
– using weak local clock [implemented via

step counting in spin-loop]
– timeout value increased on every TO

[= no HB received before expiration]

• broadcasts accusation message
acmsg(q) on every TO for q’s HB

• if n-f acmsg(q) are received, then
increment acc_count[q]

• Ω-output: q with min. acc_count[q]

Ω implementation: Every process

r

◊5-source
p

q

s

t
u

 All processes accuse crashed r 

acc_count[r] continuously grows
 5+1 processes never accuse p 

incrementing acc_count[p] stops

Even Weaker ParSync Models?

• Investigate models for weaker problems, like k-set
consensus [Cha93]
– Biely, Robinson & Schmid [BRS09]: Weak ParSync models
– Gafni & Kouznetsov [GK09]: Weakest FD

• Open major challenge:

RiSE Winter School 2012 55 U. Schmid

How to quantify and compare the
assumption coverage of ParSync models

in real systems?

Distributed Real-Time Systems

U. Schmid 56 RiSE Winter School 2012

Recall Classic DC Modeling and Analysis
• Processors/processes modeled as interacting state machines

• Zero-time atomic computing steps, usually time-triggered
– Message Passing (MP): [receive] + compute + [send]
– Shared Memory (SHM): [accessSHM] + compute

• System timing parameters:
– Operation durations modeled via inter-step times [μ-,μ+] (often μ- = 0)
– Message delays modeled as end-to-end delays [τ-, τ+] (often τ- = 0)

• DC research established a wealth of results:
– Correctness proofs of distributed algorithms
– Impossibility & lower bound results

 RiSE Winter School 2012 57 U. Schmid

[μ-,μ+]

[τ-,τ+]

t
Process p

Process q

Real-Time Properties ?

RiSE Winter School 2012 58 U. Schmid

Scheduling Queueing

Reality:
• [μ-,μ+], [τ-,τ+] depend on

algorithms + scheduling policies

• Non-preemptible operations 
steps not independent:

• Time complexity analysis
involves real-time analysis

 Moser & Schmid [MS06,MS08]

• [μ-,μ+], [τ-,τ+] are a priori given
system parameters (alg-indep.)

• Analysis considers occurrence
times of steps independently of
each other:

• No queueing & scheduling in

the picture
• Too optimistic time complexity

t

Classic modeling:

Fixed Step Times in SHM Systems ?

RiSE Winter School 2012 59 U. Schmid

Access R Access R

SHM

queueing, scheduling

Process r

[μ-,μ+]

Process q

Process p t
Access R

Access R

[μ-,μ+] depends on contention!

Fixed End-to-End Delays in MP Systems ?

RiSE Winter School 2012 60 U. Schmid

Process p

Process q

t comp + send msg

process msg

queueing, scheduling

msg
arrival

Op time
[μ-,μ+]

Transm. delay
[δ-,δ+]

E-t-e delay [τ-, τ+] depends on receiver load!

process msg

next op

RiSE Winter School 2012 61 U. Schmid

Real-Time Distributed Computing Model

• RT model core features [Moser & Schmid, OPODIS’06]

• Investigate relation classic vs. RT model
– Carry over classic failure models ?
– Carry over classic correctness proofs ?
– Carry over classic time complexity results ?
– Carry over classic impossibility & lower bound results ?

• Conduct real-time analysis for e-t-e delays τ+

t

Zero-time state transitions

Scheduling

Non-zero-time jobs

Queueing

τ+
[μ-,μ+] [δ-,δ+]

State-Transition Problems

Classic execution Real-time execution

State-transition trace

one many

State-transition problem = a set of state-transition traces

RiSE Winter School 2012 62 U. Schmid

s1 s2 s3

r1 r2 r3 r4

Can be defined for both models in the same way:

Example: Problem Definition

Deterministic Drift-Free Clock Synchronization

 is_finalstate(g) :⇔ ∀g′ ≻ g : ∀p : sp(g) = sp(g′)

 Termination: All processors eventually terminate.

 ∃g : is_finalstate(g)

 Agreement: After all processors have terminated, all processors have adjusted
clocks within γ of each other.

 ∀g : is_finalstate(g) ⇒ (∀p, q : |ACp(g) − ACq(g)| ≤ γ)

RiSE Winter School 2012 63 U. Schmid

First try:
Direct transformation
(conduct real-time analysis)

Result: Poor performance

• sub-optimal worst-case precision
• O(n) time

Example: Drift-Free Clock Sync

Classic Model: Real-time Model:

RiSE Winter School 2012 64 U. Schmid

?

Result:
• Optimal worst-case precision
• Optimal running time O(1)

Result:
• Optimal worst-case precision
• Achievable only in time O(n)
• O(1) time algorithm with sub-

optimal precision also exists

RiSE Winter School 2012 65 U. Schmid

© 2007, WDR

The End
(Part 2)

References
• [ADFT03] Marcos K. Aguilera, Carole Delporte-Gallet, Hugues Fauconnier, and Sam Toueg. On implementing Omega with weak

reliability and synchrony assumptions. In Proceeding of the 22nd Annual ACM Symposium on Principles of Distributed
Computing (PODC’03), pages 306–314, New York, NY, USA, 2003. ACM Press.

• [ADFT04] Marcos Kawazoe Aguilera, Carole Delporte-Gallet, Hugues Fauconnier, and Sam Toueg. Communication-efficient
leader election and consensus with limited link synchrony. In Proceedings of the 23th ACM Symposium on Principles of
Distributed Computing (PODC’04), pages 328–337, St. John’s, Newfoundland, Canada, 2004. ACM Press.

• [ADLS94] Hagit Attiya, Cynthia Dwork, Nancy Lynch, and Larry Stockmeyer. Bounds on the time to reach agreement in the
presence of timing uncertainty. Journal of the ACM (JACM), 41(1):122–152, 1994.

• [BRS09] M. Biely, P. Robinson, and U. Schmid, Weak synchrony models and failure detectors for message passing k-set
agreement,”in Proceedings of the International Conference on Principles of Distributed Systems (OPODIS’09), ser. LNCS. Nimes,
France: Springer Verlag, Dec 2009.

• [Cha93] S. Chaudhuri, “More choices allow more faults: set consensus problems in totally asynchronous systems,” Inf. Comput.,
vol. 105, no. 1, pp. 132–158, 1993.

• [CT96] Tushar Deepak Chandra and Sam Toueg. Unreliable failure detectors for reliable distributed systems. Journal of the ACM,
43(2):225–267, March 1996.

• [CF99] Flaviu Cristian and Christof Fetzer. The timed asynchronous distributed system model. IEEE Transactions on Parallel and
Distributed Systems, 10(6):642–657, 1999.

• [DDS87] Danny Dolev, Cynthia Dwork, and Larry Stockmeyer. On the minimal synchronism needed for distributed consensus.
Journal of the ACM, 34(1):77–97, January 1987.

• [DHS86] Danny Dolev, Joseph Y. Halpern and H. Raymond Strong. On the Possibility and Impossibility of Achieving Clock
Synchronization 32:230-250, 1986.

• [DLS88] Cynthia Dwork, Nancy Lynch, and Larry Stockmeyer. Consensus in the presence of partial synchrony. Journal of the
ACM, 35(2):288–323, April 1988.

RiSE Winter School 2012 66 U. Schmid

References
• [FC97b] Christof Fetzer and Flaviu Cristian. Integrating external and internal clock synchronization. J. Real-Time Systems,

12(2):123--172, March 1997.

• [FSS05] Christof Fetzer, Ulrich Schmid, and Martin Süßkraut. On the possibility of consensus in asynchronous systems with finite
average response times. In Proceedings of the 25th International Conference on Distributed Computing Systems (ICDCS’05),
pages 271–280, Washington, DC, USA, June 2005. IEEE Computer Society.

• [FML86]] Michael J. Fischer, Nancy A. Lynch, and Michael Merritt. Easy Impossibility Proofs for Distributed Consensus
Problems, Distributed Computing 1(1), 1986, p. 26—39.

• [FLP85] Michael J. Fischer, Nancy A. Lynch, and M. S. Paterson. Impossibility of distributed consensus with one faulty process.
Journal of the ACM, 32(2):374–382, April 1985.

• [FSFK06] Matthias Fuegger, Ulrich Schmid, Gottfried Fuchs, and Gerald Kempf. Fault-Tolerant Distributed Clock Generation in
VLSI Systems-on-Chip. In Proceedings of the Sixth European Dependable Computing Conference (EDCC-6), pages 87–96. IEEE
Computer Society Press, October 2006.

• [Gaf98] Eli Gafni. Round-by-round fault detectors (extended abstract): unifying synchrony and asynchrony. In Proceedings of the
Seventeenth Annual ACM Symposium on Principles of Distributed Computing, pages 143–152, Puerto Vallarta, Mexico, 1998.
ACM Press.

• [GK09] E. Gafni and P. Kuznetsov, “The weakest failure detector for solving ksetagreement,” in 28th ACM SIGACT-SIGOPS
Symposium on Principles of Distributed Computing (PODC 2009), 2009.

• [HL02] Jean-Francois Hermant and Gerard Le Lann. Fast asynchronous uniform consensus in real-time distributed systems. IEEE
Transactions on Computers, 51(8):931–944, August 2002.

• [HW05] Jean-Francois Hermant and Josef Widder. Implementing reliable distributed real-time systems with the Θ-model. In
Proceedings of the 9th International Conference on Principles of Distributed Systems (OPODIS 2005), volume 3974 of LNCS,
pages 334–350, Pisa, Italy, December 2005. Springer Verlag.

• [HMSZ09] Martin Hutle, Dahlia Malkhi, Ulrich Schmid, and Lidong Zhou. Chasing the weakest system model for implementing
Omega and consensus. IEEE Transactions on Dependable and Secure Computing 6(4), 2009

RiSE Winter School 2012 67 U. Schmid

References
• [HS97] Dieter Hoechtl and Ulrich Schmid. Long-term evaluation of GPS timing receiver failures. In Proceedings of the 29th IEEE

Precise Time and Time Interval Systems and Application Meeting (PTTI'97), pages 165--180, Long Beach, California,
December 1997.

• [Lam84] Leslie Lamport. Using Time Instead of Timeout for Fault-Tolerant Distributed Systems. ACM Transactions on
Programming Languages and Systems 6(2), April 1984, p. 254-280

• [LSP82] Leslie Lamport, Robert Shostak, and Marshall Pease. The Byzantine generals problem. ACM Transactions on
Programming Languages and Systems, 4(3):382–401, July 1982.

• [LS03] Gerard LeLann and Ulrich Schmid. How to implement a timer-free perfect failure detector in partially synchronous
systems. Technical Report 183/1-127, Department of Automation, Technische Universit¨at Wien, January 2003. (Replaced by
Research Report 28/2005, Institut f¨ur Technische Informatik, TU Wien, 2005.).

• [LWL88] Jennifer Lundelius-Welch and Nancy A. Lynch. A new fault-tolerant algorithm for clock synchronization. Information
and Computation, 77(1):1--36, 1988.

• [Mil95] David L. Mills. Improved algorithms for synchronizing computer network clocks. IEEE Transactions on Networks, pages
245--254, June 1995.

• [MMR03] Achour Mostefaoui, Eric Mourgaya, and Michel Raynal. Asynchronous implementation of failure detectors. In
Proceedings of the International Conference on Dependable Systems and Networks (DSN’03), San Francisco, CA, June 22–25,
2003.

• [Mos09] Heinrich Moser, Towards a real-time distributed computing model, Theoretical Computer Science, vol. 410, no. 6–7, pp.
629–659, Feb 2009.

• [MS06] Heinrich Moser and U. Schmid, Optimal clock synchronization revisited: Upper and lower bounds in real-time systems,
in Proceedings of the International Conference on Principles of Distributed Systems (OPODIS), ser. LNCS 4305. Bordeaux &
Saint-Emilion, France: Springer Verlag, Dec 2006, pp. 95–109.

• [MS08] Heinrich Moser and Ulrich Schmid. Optimal deterministic remote clock estimation in real-time systems. In Proceedings
of the International Conference on Principles of Distributed Systems (OPODIS), pages 363–387, Luxor, Egypt, December 2008.

• [NT93] Gil Neiger and Sam Toueg. Simulating Synchronized Clocks and Common Knowledge in Distributed Systems. JACM
40(3), April 1993, p. 334-367.

RiSE Winter School 2012 68 U. Schmid

References
• [PS92] Stephen Ponzio and Ray Strong. Semisynchrony and real time. In Proceedings of the 6th International Workshop on

Distributed Algorithms (WDAG’92), pages 120–135, Haifa, Israel, November 1992.
• [RS08] Peter Robinson and Ulrich Schmid. The Aynchronous Bounded Cycle Model. Proceedings of the 10th Internlation

Symposium on Stailization, Safety and Security of Distribted Systems (SSS‘08), Detroit, USA. Springer LNCS 5340, p. 246-262.
• [SAACBBBCLM04] L. Sha, T. Abdelzaher, K.-E. Arzen, A. Cervin, T. Baker, A. Burns, G. Buttazzo, M. Caccamo, J. Lehoczky,

and A. K. Mok, “Real time scheduling theory: A historical perspective,” Real-Time Systems Journal, vol. 28, no. 2/3, pp. 101–155,
2004.

• [Sch86] Fred B. Schneider. A paradigm for reliable clock synchronization. In Proceedings Advanced Seminar of Local Area
Networks, pages 85--104, Bandol, France, April 1986.

• [SKMNCK99] Ulrich Schmid, Johann Klasek, Thomas Mandl, Herbert Nachtnebel, Gerhard R. Cadek, and Nikolaus Keroe. A
Network Time Interface M-Module for distributing GPS-time over LANs. J. Real-Time Systems, 18(1), 2000, p. 24-57.

• [SS97] Ulrich Schmid and Klaus Schossmaier. Interval-based clock synchronization. J. Real-Time Systems, 12(2):173--228,
March 1997.

• [SS99] Ulrich Schmid and Klaus Schossmaier. How to reconcile fault-tolerant interval intersection with the Lipschitz condition.
Distributed Computing 14(2):101-111. 2001.

• [ST87] T. K. Srikanth and Sam Toueg. Optimal clock synchronization. Journal of the ACM, 34(3):626--645, July 1987.

• [Vit84] Paul M.B. Vitányi. Distributed elections in an Archimedean ring of processors. In proceedings of the sixteenth annual
ACM symposium on theory of computing, pages 542-547. ACM Press, 1984.

• [WLS95] Josef Widder, Gerard Le Lann, and Ulrich Schmid. Failure detection with booting in partially synchronous systems. In
Proceedings of the 5th European Dependable Computing Conference (EDCC-5), volume 3463 of LNCS, pages 20–37, Budapest,
Hungary, April 2005. Springer Verlag.

• [WS09] Josef Widder and Ulrich Schmid. The Theta-Model: Achieving Synchrony without Clocks. Distributed Computing 22(19;
2009, p. 29-47

RiSE Winter School 2012 69 U. Schmid

	�Distributed Algorithms �(Part 2)�RiSE Winter School 2012�
	 Food for Thoughts
	Communcation Failures
	Exercises
	 Solution
	Consistent BC with Comm. Failures (I)
	Consistent BC with Comm. Failures (II)
	Consistent BC with Comm. Failures (III)
	Easy Impossibility Proof
	Content (Part 2)
	The Role of Synchrony Conditions
	Recall Distributed Agreement (Consensus)
	Consensus Impossibility (FLP)
	Consensus Solvability in ParSync [DDS87] (I)
	Slide Number 15
	The Role of Synchrony Conditions
	Failure Detectors
	Failure Detectors [CT96] (I)
	Failure Detectors [CT96] (II)
	Example Failure Detectors (I)
	Example Failure Detectors (II)
	Consensus with ◊S: Rotating Coordinator
	Why Agreement? Intersecting Quorums
	Implementability of FDs
	Real-Time Clocks
	Distributed Systems with RT Clocks
	The Role of Real-Time
	Failure Detection: Timeout using RT Clock
	Event Ordering: Via Clock Synchronization
	FT Midpoint Internal CS-Alg [LWL88]
	Global Positioning System (GPS)
	Why are Synchronized Clocks Useful?
	Perfect FD Lock-Step Round Simulation
	Using RT Clocks: Deficiencies
	Partially Synchronous Models
	Recall: Synchronous Model
	The Timed Asynchronous Model
	Classic Partially Synchronous Models (I)
	Classic Partially Synchronous Models (II)
	Classic Partially Synchronous Models (III)
	Time-Free Message-Timeout in ParSync ?
	The Θ/ABC-Model
	The Θ-Model: Bounded E-t-E Delay Ratio
	Byzantine FT Clock Sync in the Θ-Model
	Correlation  Coverage Expansion
	Shortcomings Θ-Model
	The Asynchronous Bounded Cycle Model
	Partial Order of ParSync Models
	Even Weaker ParSync Models?
	Weaker Partially Synchronous Models
	Finite Average Roundtrip-Time Model (I)
	Finite Average Roundtrip-Time Model (II)
	Weak Timely Link Models (I)
	Weak Timely Link Models (II)
	Even Weaker ParSync Models?
	Distributed Real-Time Systems
	Recall Classic DC Modeling and Analysis
	Real-Time Properties ?
	Fixed Step Times in SHM Systems ?
	Fixed End-to-End Delays in MP Systems ?
	Real-Time Distributed Computing Model
	State-Transition Problems
	Example: Problem Definition
	Example: Drift-Free Clock Sync
	Slide Number 65
	References
	References
	References
	References

