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  Food for Thoughts 

U. Schmid 
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Communcation Failures 
• Link failure model: 

1. Distinguish send and receive link 
failures 

2. Distinguish omission and 
arbitrary link failures 

3. Indep. for every send/rec to/from 
all 

 
• Known results: 

– n > fl
r + fl

s necessary & 
sufficient for solving consensus 
with pure link omission failures 

– n > fl
r + fl

ra + fl
s + fl

sa necessary 
& sufficient for solving 
consensus with link omission 
and arbitrary failures 

fl
s ≥ fl

sa 

Send link failures 

fl
ra ≤ fl

r 

Rcv link failures 



U. Schmid RiSE Winter School 2012 4 

Exercises 

Required number of procs: 
• n ≥ S”fl

sa+R”fl
ra +3f + 1 

Link failure lower bound:  
• n ≥  fl

r + fl
ra + fl

s + fl
sa 

 if got (init,ps,ms)  from  ps 
        → send (echo,ps,ms) to all [once] 
 if got (echo,ps,ms) from Sfl

sa + Rfl
ra +f + 1        

        → send (echo,ps,ms) to all [once] 
 if got (echo,ps,ms) from S’fl

sa+R’fl
ra+2f + 1         

        → call accept(ps,ms) 

1. Find the smallest values for S,R,S‘,R‘,S“,R“ in the CB implem. 
below for arbitrary link failures (fl

r = fl
ra  and fl

s = fl
sa): 

 

 

 

 

 
2. Find an „easy impossibility proof“ that shows that n=4 processors 

are not enough for solving consensus with fl
r = fl

ra = fl
s = fl

sa = 1 
(and f =0) 
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  Solution 

U. Schmid 
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Consistent BC with Comm. Failures (I) 

Required number of procs: 
• n ≥ 2fl

sa+4fl
ra +3f + 1 (Thm. 2) 

Link failure lower bound:  
• n ≥  fl

r + fl
ra + fl

s + fl
sa  

 if got (init,ps,ms)  from  ps 
        → send (echo,ps,ms) to all [once] 
 if got (echo,ps,ms) from fl

sa + fl
ra +f + 1        

        → send (echo,ps,ms) to all [once] 
 if got (echo,ps,ms) from fl

sa+3fl
ra+2f + 1         

        → call accept(ps,ms) 

Ulrich Schmid and Christof Fetzer. Randomized asynchronous consensus with imperfect communications. 
Technical Report 183/1-120, Department of Automation, Technische Universität Wien, January 2002. 
(Appeared in Proc. SRDS‘02).  
http://wwwold.ecs.tuwien.ac.at/W2F/papers/SF02_byzTR.ps 

Fig. 2 
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Consistent BC with Comm. Failures (II) 
The following follows right from the failure model (Lemma 1): 
(1) Every correct processor pi may receive at most fl

ra + f faulty echo msgs 
(2) At most fl

sa (correct) processors can emit echo, due to send link failures of ps 
(3) At most 2fl

ra + f  messages received by a correct processor by time t may not 
have been received at any other correct processor by time t + ε  

Unforgeability: 
• For a contradiction, suppose pi calls accept by t+2d, so must have got 

fl
sa+3fl

ra+2f + 1 echo msgs 

• At most fl
sa + fl

ra + f of these could originate from (1) and (2)  at least one 
(in fact, more) correct pj must have emitted echo for good. This happens either 

– if pj properly received init – which cannot happen as ps did not call bcast by t  

– if pj received fl
sa + fl

ra +f + 1 echo msgs itself, in which case we can repeat the argument 
above for pj 
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Consistent BC with Comm. Failures (III) 

Relay: 
• By (3), at most 2fl

ra + f  of the echo 
messages available at pi by t could 
be missing at pj  by t + ε 

• fl
sa + fl

ra + f + 1 remain, so trigger 
emitting echo at pj  continue as in 
original Relay-proof 

 

 

fl
sa + fl

ra + f + 1 

 fl
sa + 3fl

ra + 2f + 1 

pi at t pj at t+ε 

Correctness: 
• Since ps is correct, at least n – fl

sa – f  ≥  fl
sa+4fl

ra +2f + 1 will get the init msg 
and emit echo by time t+d+ε 

• Since every receiver could miss at most fl
ra of these messages, at least  fl

s+3fl
ra 

+2f + 1 are received by time t+2(d+ε)   accept is triggered 

 



Easy Impossibility Proof 

• Suppose correct algorithm 
A = (A,B,C,D) for 
(p0,p1,p2,p3) existed 

• Consider this cube: 
– In View 0: Decision is 0 by 

Validity 
– In View 1: Decision is 1 by 

Validity 
– In View X: Violation of  

Agreement 
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Ulrich Schmid, Bettina Weiss, and Idit Keidar. Impossibility results and lower bounds for consensus under 
link failures. SIAM Journal on Computing, 38(5):1912-1951, 2009. 
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Content (Part 2) 
The Role of Synchrony Conditions: 
Failure Detectors 
Real-Time Clocks  

 Partially Synchronous Models 
Models supporting lock-step round simulations 
Weaker partially synchronous models 

Distributed Real-Time Systems 

 



The Role of Synchrony Conditions 
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Yes 
Yes No 

Yes ? 

No No 
Yes 

All meet 
None meet 

No 

? 
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Recall Distributed Agreement (Consensus) 



Consensus Impossibility (FLP) 

“There is no deterministic algorithm 
 for solving consensus in an  

asynchronous distributed system  
in the presence of a single crash failure.” 

Fischer, Lynch und Paterson [FLP85]: 

Key problem:  
Distinguish slow from dead! 
 U. Schmid 13 RiSE Winter School 2012 



Consensus Solvability in ParSync [DDS87] (I) 

• Processors synchronous / asynchronous 

• Communication synchronous / asynchronous 

• Message order synchronous (system-wide consistent) 
/ asynchronous (out-of-order) 

• Send steps broadcast / unicast 

• Computing steps atomic rec+send / separate rec, send 
RiSE Winter School 2012 14 U. Schmid 

Dolev, Dwork and Stockmeyer investigated consensus 
solvability in Partially Synchronous Systems (ParSync), 
varying 5 „synchrony handles“ : 
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async sync 

sync 

async 

Communication 

G
lo

ba
l m

es
sa

ge
 o

rd
er

 

Consensus Solvability in ParSync [DDS87] (II) 

ucast bcast 
s+r 

s/r 
Consensus impossible 

Wait-free consensus possible 

Consensus possible  
for f=1 



The Role of Synchrony Conditions 

Enforce event ordering  

• Distinguish „old“ from „new“ 

• Ruling out existence of stale 
(in-transit) information 

• Creating non-overlapping 
„phases of operation“ (rounds) 

 

Enable failure detection 

• Distinguish slow from dead 
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Failure Detectors 
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Failure Detectors [CT96]  (I) 

• Chandra & Toueg augmented purley asynchronous systems with 
(unreliable) failure detectors (FDs): 

 

 

 
 

• Every processor owns a local FD module (an „oracle“ – we do 
not care about how it is implemented!) 

• In every step [of a purely asynchronous algorithm], the  FD can be 
queried for a hint about failures of other procs  
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Proc p Proc q Network 
Valve 

Pressure 
Sensor 



Failure Detectors [CT96]  (II) 

•         make mistakes – the (time-free!) FD specification 
restricts the allowed mistakes of a FD 

• FD hierarchy: A stronger FD specification implies 
– less allowed mistakes 
– more difficult problems to be solved using this FD 
– But: FD implementation more demanding/difficult 

• Every problem Pr has a weakest FD W: 
– There is a purely asynchronous algorithm for solving Pr that 

uses W 
– Every FD that also allows to solve Pr can be transformed (via a 

purely asynchronous algorithm) to simulate W 
RiSE Winter School 2012 19 U. Schmid 



Example Failure Detectors (I) 

• Perfect failure detector P: Outputs suspect list 
– Strong completeness: Eventually, every process that crashes is 

permanently suspected by every correct process 
– Strong accuracy: No process is ever suspected bevor it crashes 

 

• Eventually perfect failure detector ◊P: 
– Strong completeness  
– Eventual strong accuracy: There is a time after which correct 

processes are never suspected by correct processes 
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Example Failure Detectors (II) 

• Eventually strong failure detector ◊S: 
– Strong completeness  
– Eventual weak accuracy: There is a time after which some 

correct process is never suspected by correct processes 
 

• Leader oracle Ω: Outputs a single process ID 
– There is a time after which every not yet crashed process 

outputs the same correct process p (the „leader“) 
 

• Both are weakest failure detectors for consensus (with 
majority of correct processes) 
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Consensus with ◊S: Rotating Coordinator 

RiSE Winter School 2012 22 U. Schmid 
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Why Agreement? Intersecting Quorums 

n=7 

p decides v every q changes its estimate to v 

f=3 
 

v v v v ┴ ┴ ┴ 

U. Schmid 

Intersecting Quorums: 



Implementability of FDs 

• If we can implement a FD like Ω or ◊S, we can also 
implement consensus (for n > 2f ) 

• In a purely asynchronous system 
– it is impossible to solve consensus (FLP result) 
– it is hence also impossible to implement Ω or ◊S 

• Back at key question: What needs to be added to an 
asynchronous system to make Ω or ◊S implementable? 
– Real-time constraints [ADFT04, …]  
– Order constraints [MMR03, …] 
– ??? 

RiSE Winter School 2012 24 U. Schmid 



Real-Time Clocks 
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Distributed Systems with RT Clocks 

• Equip every processor p with a local RT clock Cp(t) 

 

 

 

 
 

• Small clock drift ρ  local clocks progress 
approximately as real-time, with clock rate ∈ [1-ρ,1+ ρ] 

• End-to-end delay bounds [τ-, τ+], a priori known 
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Proc p Proc q Network 
Valve 

Pressure 
Sensor 

Cp(t) Cq(t) 

T 1+ ρ 

1− ρ 

t 



The Role of Real-Time 

• Real-time clocks enable both: 

 

 

 

 

 

 

• [Show later: Real-time clocks are not the only way …] 
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Event ordering 

Failure detection 



Failure Detection: Timeout using RT Clock 
 

status = do_roundtrip(q) 
{ send ping to q  
 TO := Cp(t) + 5 seconds   
 wait until Cp(t) = TO  
 if pong did not arrive then  
  return DEAD 
     else 
  return ALIVE  
} 
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p +1 +2 +3 +4 +5 

q 

5 seconds 

ping 

t 

   set timer 

TO before pong: 
DEAD 

• the end-to-end delays are at most τ+  = 2.5 seconds 
• τ+ is known a priori [at coding time] 

process ping 

pong 

process pong 

TO after pong: 
ALIVE 

p can reliably detect whether q has been alive recently, if 
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Event Ordering: Via Clock Synchronization 
Internal CS:  
• Precision |Cp(t) - Cq(t)| ≤ π 

• Progress like RT (small drift ρ) 

• CS-Alg must periodically 
resynchronize 

 T 

t 

Cp(t) 

Cq(t) 
≤ π 

External CS:  
• Accuracy |Cp(t) – t | ≤ α  

• CS-Alg needs access to RT  

• External CS  internal CS π = 2α  

 

 
T 

t 

T = t 

t - α 

t + α 

≥ Cp(t) ≥ 

α 

α 

RiSE Winter School 2012 
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FT Midpoint Internal CS-Alg [LWL88] 

p 

Cp 

q 

Cq 

Cp 

Cq 

π Before resync … 

π´≤ π/2 After resync … 

 A priori bounded [τ-, τ+] allows to estimate all remote clocks 
 Discard f largest and f smallest clock readings (could be faulty) 
 Set local clock to midpoint of remaining interval 
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Global Positioning System (GPS) 

• 4 satellites required to determine χ = (x, y, z) and Δ 
• 1 satellite sufficient for Δ if χ is already known 

 Satellite clocks 
synchronized to 
USNO atomic 
master clock 

 GPS-Receiver 
solves system of 
equations 

    ti+|χ-si|/c+Δ = Ti 

Rec. time: t1,  t2 (unknown) 

Local rec. time: T1, T2 
(known) 

Time: t1  (known) 
3D-pos: s1 (known) 
 

Time: t2 (known) 
3D-pos: s2 (known) 

Clk.offset Δ = T – t (unknown) 
3D-pos: χ (unknown) 

GPS  Rec. 

GPS satellites 
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Why are Synchronized Clocks Useful? 

p 
Cp(t1) = R Cp(t2) = 2R Cp(t3) = 3R 

q 
Cq(t1’) = R Cq(t2’) = 2R Cq(t3’) = 3R 

≤ π 

• Synchronized clocks allow to simulate communication-
closed lock-step rounds via clock time [NT93]: 

 

 

 

 

• Only requirement: R ≥ τ+ + π holds! 

• Lock-step rounds         perfect failure detection at end of 
rounds 

t ≤ τ+   

 



Perfect FD       Lock-Step Round Simulation 

• Attempt round simulation at p: Waiting for either 
– arrival of round message from q, or 
– p‘s instance of P suspects q 

 
 
 
 

 

• Problem faced by q:  
– msgk not received in round k, although p alive after round k 
– q even receives msgk+1 in round k+1 in this example 
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p 

q 

t 

q suspects p 

P crashes 

msgk msgk+1  

round k round k+1 
[or q suspects p next] 

q trusts p  
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Using RT Clocks: Deficiencies 
• Algorithms like do_roundtrip(.) have system-dependent 

time values (unit „seconds“) in their code / variables   
not easily portable to e.g. faster hardware 

• Fail-operational systems might tolerate occasional loss 
of timeliness properties – but never of safety properties 

• Unfortunately:  
Safety properties like agreement typically rely on the reliable 
operation of do_roundtrip(.) and similar primitives 
End-to-end delay bounds τ+ that always hold are difficult to 
determine in real systems 

Try to relax timing assumptions in ParSync models … 
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Partially Synchronous Models 
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Recall: Synchronous Model 
• „The“ classic model 

– Transmission delay bound τ+ 
– Computing step time bound μ+ 
– Bounded-drift local clocks available 

• Allows (Byzantine-tolerant) implementation of  
– Internal clock synchronization  
– Lock-step rounds 
– etc. 
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The Timed Asynchronous Model 
• Cristian & Fetzer [CF99]: 

– Alternating bad and good periods: 
• Transmission delay bound τ+ 
• Computing step time bound μ+ 

– Bounded-drift local RT clocks available 
– Local clocks allow to detect good/bad periods  TA algorithms 

are always safe and live in good periods 

• TA algorithms allow to implement (non-Byzantine) fail-
aware services, including eventual lock-step rounds 
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Classic Partially Synchronous Models (I) 
• „The“ classic ParSync models                                     

Dolev, Dwork & Stockmeyer [DDS87]                                   
Dwork, Lynch & Stockmeyer [DLS88]               
Attiya, Dwork, Lynch & Stockmeyer [ADLS94]  

• Semi-synchronous model by Ponzio & Strong [PS92] 

• Common system parameters: 
– Bounded processor speed ratio Φ = μ+/μ- 

– Transmission delay bound Δ 

• Archimedean model by Vitanyi [Vit84] 
– Bounded speed ratio S = τ+/μ- 
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Classic Partially Synchronous Models (II) 

Processes can locally time-out messages: 
 

– The classic ParSync models [DDS87, DLS88] and 
[ADLS94] assume 

• Δ given in multiples of (unknown) minimal computing step 
time μ- [hence τ+ = Δ·μ- real-time seconds] 

• spin loop counting f(Φ,Δ) steps allows to time-out messages 
[implements local clock with real-time rate ∈ [1/Φ,1]] 

– Archimedean model [Vit84] also allows to time-out 
messages via spin-loop for S steps 

– Semi-synchonous model [PS92] assumes  
• Δ = τ+ given in real-time seconds  
• bounded-drift local RT clocks available for timing-out 

messages 
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Classic Partially Synchronous Models (III) 
    Variants of ParSync models: System parameters (Δ, Φ)  

1. known and hold                                                                          
from the beginning 

       

2. known and hold from unknown global stabilization time (GST) on 
 

 
3. unknown and hold from the beginning / from GST on:           

Learn (Δ, Φ), by continuously increasing estimate values 
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Time-Free Message-Timeout in ParSync ? 
• Implementation of do_roundtrip(p) in the ParSync models 

of [DLS88] or [Vit85]: 
  
 
 
 
 
 

• But: No obvious correlation between processor step 
times and message delays  not really time-free … 

{  send ping to p  
    for i=1 to x do no-op  /* x=f(Δ, Φ) resp. x=f(s) is  
          dimensionless! */ 
    if pong did not arrive then  
     return DEAD 
    else 
     return ALIVE  
} 



The Θ/ABC-Model 

In classic ParSync models: 

• Timing assumptions are primarily used for ordering 
events 

• Is it possible to define a time-free ParSync model based 
on event ordering in the first place?  

 

For example: Assume that 
• only less than Θ roundtrips can occur during any single 

round-trip 
• Actual duration (D) irrelevant 
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status = do_roundtrip(q) 
{ send ping to q  
 for i=1 to Θ do       

begin 
        send delay_ping(i) to r 
        wait for delay_pong(i) from r 
     end 
 if pong did not arrive then  
  return DEAD 
     else 
  return ALIVE  
} 

 

D 

p 

r 

1 2 3 4 5 

Θ = 5 

q ping pong 
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The Θ-Model: Bounded E-t-E Delay Ratio 

• End-to-end delays of all 
messages in transit at t 
– minimum τ−(t)  
– maximum τ+(t) 

• τ+(t) and τ−(t) may vary 
arbitrarily with time, but:  

• Ratio τ+(t)/τ−(t)  bounded by 
[known or even unknown] 
system parameter Θ 

 

LeLann & Schmid [LS03], Widder & Schmid [WS09] 
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Byzantine FT Clock Sync in the Θ-Model  
For n ≥ 3f + 1 with up to f  Byz. failures: 
• Suppose p sends tick(C+1) at time t 
• Then, q also sends tick(C+1) by time   

t + 2τ+ - τ− 

+ Fastest tick-frequency of any p: 1/τ− 
⇒ Clock ticks occur approximately 

synchronously, with precision π(Θ) 

 On init 
        → send tick(0) to all; C := 0;  
 If got tick(l)  from f +1 nodes and l > C       
        → send tick(C+1),…, tick(l) to all;  
             C := l;  
 If got tick(C) from 2f +1 nodes        
        → send tick(C+1) to all;  
             C := C+1; 

f + 1 

 2f + 1 

p at t any q’ at t+τ+- τ−  any q at t+2τ+- τ−  

≤ τ+- τ−  ≤ τ+ 
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Correlation → Coverage Expansion 
• Given some bound τ+ and τ− assumed during system design 

(as used in synchronous systems), compute Θ = τ+ / τ−  
• Unanticipated overload: τ+(t) > τ+ 

t 

end-to-
end 

delays 

τ− 

δ 

τ+ 

Synchronous system out of spec 

—  if τ+(t) ≤ Θτ−(t), however, 

 

       Θ-system still OK 

            

            

 
 

Note:  
• τ+(t) = τ+ + α(t)  

• τ −(t) = τ− + α(t)/Θ 
sufficient for Θ to hold! 
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Shortcomings Θ-Model  

• Correlation between slow and fast messages need not 
exist for all messages 
– Some very fast messages [even τ− = 0] may be in transit 

somewhere in the system during a slow message 
– Correlation and hence coverage expansion does not exist in 

such cases 
• Need a more relaxed definition of the relation between 

slow and fast messages  
– All that is actually needed is to constrain the number of fast 

messages during a slow one 
– No need for a correlation of unrelated messages, and at every 

point in time t 
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The Asynchronous Bounded Cycle Model 
 

 

 Example: Θ = 4.5 
 2 consecutive „slow“ 

messages  
 Cycle with 9 enclosed 

„fast“ messages 
 No larger cycles allowed 

 
 

 
 

 
 

Robinson & Schmid [RS08] 
• The ABC Model just bounds the ratio of the number of 

forward and backward-oriented messages in cycles 
 
 
 
 
 
 

• No implicit or explicit reference to real-time 
 Messages with τ−(t) = 0 allowed 
 No need to relate independent messages in the system 
 We proved: Any Θ-algorithm works correctly in the ABC model 
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FLP 

Θu 

Θ 

DLSu 

Partial Order of ParSync Models 

• DLS … [DLS88] with   
known Δ, Φ 

• Θ … ABC/Θ-Model 
with known Θ 

• DLSu … [DLS88] with 
unknown Δ, Φ  

• Θu … ABC/Θ-Model 
with unknown Θ 

• FLP … FLP-Model 

 

 

DLS 



Even Weaker ParSync Models? 

• All the ParSync Models seen so far allow to build 
– lock-step rounds, or at least 
– eventual lock-step rounds 

• Solving consensus is easy here. 

• We know that lock-step rounds are stronger than failure 
detectors that are sufficient for solving consensus: 
– Perfect failure detector P 
– Leader oracle Ω 

• Are there weaker ParSync models where only such FDs 
can be implemented? 

 RiSE Winter School 2012 49 U. Schmid 
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Weaker Partially Synchronous Models 



Finite Average Roundtrip-Time Model  (I) 

Fetzer, Schmid and Süsskraut [FSS04] 
– Asynchronous system with crash failures 
– Unknown lower bound μ- for computing step time 
– Unknown average round-trip time bounds 

 
 
 
 
 

– RTT(k) and hence τ+ unbounded, yet 
– Average after n „Epochs“ is 
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Finite Average Roundtrip-Time Model  (II) 

• The FAR model assumptions  
– do not allow to implement lock-step rounds 
– do allow to implement the eventually perfect FD P 
– can solve consensus if n > 2f  

•  Key ideas for P implementation: 
– Implement weak local clock [via spin-loop] for timing-out 

messages 
– Time-out roundtrips using adaptive timeout value TV 

• If fast RT occurs [before TO]: Increase TV, to prepare for future slow 
RTs 

• If slow RT occurs [after TO]: (Could) decrease TV, since fast RTs 
must eventually follow due to finite average RTT 
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Weak Timely Link Models (I) 

• Partially synchronous processors (Φ) with crash failures 
• Almost all communication asynchronous, except: 
• At least one process p must be an ◊f-source: 

– After some (unknown) time, p has timely links to at least f  neighbors                        
[No message sent at time t is  processed after t+τ+ (unknown)] 

– Note: A link to a crashed process is timely per definition! 

• Allows to implement Ω, and hence solving consensus for n > 2f  
• An ◊f-1-source is provably not sufficient 
• Currently weakest WTL model [HMSZ09]: A moving ◊f-

source, where the f  timely links can change with time 
 

Aguilera, Delporte, Fauconnier, Toueg [ADFT04], 
Hutle, Malkhi, Schmid, Zhou [HMSZ09]: 
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Weak Timely Link Models (II) 

• periodically broadcasts heartbeat 
message (HB) 

• times-out HBs of all neighbors 
– using weak local clock [implemented via 

step counting in spin-loop] 
– timeout value increased on every TO    

[= no HB received before expiration] 

• broadcasts accusation message 
acmsg(q) on every TO for q’s HB 

• if n-f  acmsg(q)  are received, then 
increment acc_count[q] 

• Ω-output: q with min. acc_count[q] 

Ω implementation:  Every process 

r 

◊5-source  
p 

q 

s 

t 
u 

 
 All processes accuse crashed r  

acc_count[r] continuously grows 
 5+1 processes never accuse p  

incrementing acc_count[p] stops 



Even Weaker ParSync Models? 

• Investigate models for weaker problems, like k-set 
consensus [Cha93] 
– Biely, Robinson & Schmid [BRS09]: Weak ParSync models 
– Gafni & Kouznetsov [GK09]: Weakest FD 

• Open major challenge: 
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How to quantify and compare the 
assumption coverage of ParSync models 

in real systems? 



Distributed Real-Time Systems 
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Recall Classic DC Modeling and Analysis 
• Processors/processes modeled as interacting state machines 

• Zero-time atomic computing steps, usually time-triggered 
– Message Passing (MP): [receive] + compute + [send] 
– Shared Memory (SHM): [accessSHM] + compute 

 
 

• System timing parameters: 
– Operation durations modeled via inter-step times [μ-,μ+]      (often μ-  = 0)  
– Message delays modeled as end-to-end delays [τ-, τ+]           (often τ-  = 0) 

• DC research established a wealth of results: 
– Correctness proofs of distributed algorithms 
– Impossibility & lower bound results 
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[μ-,μ+] 

[τ-,τ+] 

t 
Process p  

Process q  



Real-Time Properties ? 

RiSE Winter School 2012 58 U. Schmid 

Scheduling Queueing 

Reality: 
• [μ-,μ+], [τ-,τ+] depend on 

algorithms + scheduling policies  

• Non-preemptible operations   
steps not independent: 

 

 

 

• Time complexity analysis 
involves real-time analysis  

 Moser & Schmid [MS06,MS08] 

 

• [μ-,μ+], [τ-,τ+] are a priori given 
system parameters (alg-indep.) 

• Analysis considers occurrence 
times of  steps independently of 
each other:  

 

 
• No queueing & scheduling in 

the picture 
• Too optimistic time complexity  

t 

Classic modeling:  



Fixed Step Times in SHM Systems ? 
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Access R Access R 

SHM 

queueing, scheduling 

Process r 

[μ-,μ+] 

Process q 

Process p t 
Access R 

Access R 

[μ-,μ+] depends on contention! 



Fixed End-to-End Delays in MP Systems ? 
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Process p 

Process q 

t comp + send msg 

process msg 

queueing, scheduling 

msg 
arrival 

Op time 
[μ-,μ+] 

Transm. delay 
[δ-,δ+]  

E-t-e delay [τ-, τ+] depends on receiver load! 

process msg 

next op 
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Real-Time Distributed Computing Model 

• RT model core features [Moser & Schmid, OPODIS’06] 
 

 
 
 

• Investigate relation classic vs. RT model 
– Carry over classic failure models ? 
– Carry over classic correctness proofs ? 
– Carry over classic time complexity results ? 
– Carry over classic impossibility & lower bound results ? 

• Conduct real-time analysis for e-t-e delays τ+  

t 

Zero-time state transitions  

Scheduling 

Non-zero-time jobs 

Queueing 

τ+ 
[μ-,μ+] [δ-,δ+] 



State-Transition Problems 

Classic execution Real-time execution 

State-transition trace 

one many 

State-transition problem = a set of state-transition traces 
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s1 s2 s3 

r1 r2 r3 r4 

Can be defined for both models in the same way: 



Example: Problem Definition 

Deterministic Drift-Free Clock Synchronization 

 
 is_finalstate(g) :⇔ ∀g′ ≻ g : ∀p : sp(g) = sp(g′) 

 

 Termination: All processors eventually terminate. 

 ∃g : is_finalstate(g) 

 

 Agreement: After all processors have terminated, all processors have adjusted 
clocks within γ of each other. 

 ∀g : is_finalstate(g) ⇒ (∀p, q : |ACp(g) − ACq(g)| ≤ γ) 
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First try: 
Direct transformation 
(conduct real-time analysis) 
 
Result: Poor performance 

• sub-optimal worst-case precision 
• O(n) time 

Example: Drift-Free Clock Sync 

Classic Model: Real-time Model: 
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? 

Result:  
• Optimal worst-case precision 
• Optimal running time O(1) 

Result:  
• Optimal worst-case precision 
• Achievable only in time O(n) 
• O(1) time algorithm with sub-

optimal precision also exists 
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© 2007, WDR  

The End  
(Part 2) 
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