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Quantitative Parity to Quantitative Reachability

� End-components: An end-component generalizes
both scc and closed recurrent set. A set U is an
end-component if the following properties hold:
� U is strongly connected.
� U is closed (no probabilistic edge out).
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� Note that player 1 edges may leave the end-
component.

� Why is end-component important: it allows us to
reason about infinite behaviors.



End Component Property
� End-component property: For an MDP and for all

strategies, with probability 1 the set of states visited
infinitely often is an end-component.

� Generalizes the scc for graphs and closed recurrent
set for Markov chains.
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set for Markov chains.

� Proof:
� Shape of the proof very similar to closed recurrent set.
� We need to show that if a set U is not an end-component,

then cannot be visited infinitely often with positive probability.
� Assume towards contradiction that there is such a set U.



End Component Property
� End-component property: For an MDP and for all strategies, with

probability 1 the set of states visited infinitely often is an end-
component.

� Proof:
� We need to show that if a set U is not an end-component, then cannot be

visited infinitely often with positive probability.

� Assume towards contradiction that there is such a set U.
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� Assume towards contradiction that there is such a set U.

� U must be strongly connected.

� Since U is not end-component, some probabilistic state s with an edge to t
going out of U with probability ®.

� Hence the probability that s is visited infinitely often, but the edge to t is taken
finitely often is 0.

� The result follows.



Winning End-component

� An end-component U is winning if the minimum
priority of U is even.

� From end-component property for any strategy
the probability to satisfy parity is the probability to
reach the winning end-components.
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reach the winning end-components.

� In winning end-components pure memoryless
almost-sure winning strategy exists.
� Proof: Choose successor to shorten distance to the

minimum even priority state.



Quantitative Parity to Quantitative Reachability

� The probability to satisfy is the probability to reach winning
end-components.

� In winning end-components pure memoryless almost-sure
strategy.

� Winning end-components are included in the almost-sure
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� Winning end-components are included in the almost-sure
winning set.

� Hence we need quantitative reachability to almost-sure
winning set.

� We now need the quantitative reachability to complete the
argument.



Quantitative Reachability

� An MDP G, and a target set T.
� Val(Reach(T))(s) = sup¾ Prs

¾(Reach(T)).

� v(s) for abbreviation.
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� Two properties: 
� Property 1: For s 2 SP we have v(s) = ∑t2S v(t)* δ(s)(t). 
� Property 2: For s 2 S1 we have v(s) = max { v(t) | t 2

E(s)}.



Proof of Property 2

� Inequality 1: v(s) ¸ max{ v(t) | t 2 E(s)}
� Fix ²>0.

� Let t* be the arg max.
� From s choose t*, and then an ² optimal strategy from

t* to ensure value at least v(t*)-².
� As ²>0 is arbitrary, the result follows.
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� As ²>0 is arbitrary, the result follows.

� Inequality 2. v(s) · max{ v(t) | t 2 E(s)}
� We have 

� v(s) · sup¹ ∑t2S v(t)* ¹(t) · max {v(t) | t 2 E(s)}, 
where ¹ 2 D(E(s)).  



A Simple Attempt

� For a state s choose a successor that achieves
the maximum.

� However this simple construction is not sufficient.
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� However this simple construction is not sufficient.



MDP: Simple Fails

1/3 1/3

1/3

1/2

1/2
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In all blue states the value is ½.

However the choice of red edge is bad.



Quantitative Reachability

TAU
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� Original MDP is connected.
� Compute simple reachability to T.
� From U, there is no path so value is 0.
� From A, the value is positive everywhere as there is a path. 



Quantitative Reachability

TAU

Krishnendu Chatterjee Winter School, Vienna, Feb, 2012 74

� From U, there is no path so value is 0.
� From A, the value is positive everywhere as there is a path.
� Retain only the edges that attains the max in A (remove all the other). 

Make U and T absorbing. 
� Easy to show that there is still path to T from A.
� Choose the edge that shortens distance to T. 



Quantitative Reachability

TAU
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� Retain only the edges that attains the max in A (remove all the other). Make 
U and T absorbing. 

� Easy to show that there is still path to T from A.
� Choose the edge that shortens distance to T.
� Markov chain where all closed recurrent states are U or T.
� The values v(s) satisfies the Markov chain equality. Hence the memoryless

strategy achieves v(s). 



Quantitative Reachability

� An MDP G, and a target set T.
� Val(Reach(T))(s) = sup¾ Prs

¾(Reach(T)).

� Existence of pure memoryless optimal strategies.
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� Algorithm: Linear programming. Variable xs for all 
states s.
� xs = 0                            s 2 U
� xs =1                             s 2 T
� xs = ∑t2S xt * δ(s)(t)        s 2 SP

� xs = maxt2E(s) xt s 2 S1.



Quantitative Reachability

� Algorithm: Linear programming. Variable xs for all 
states s.
� xs = 0                          s 2 U
� xs =1                           s 2 T
� xs = ∑t2S xt * δ(s)(t)      s 2 SP
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� xs = maxt2E(s) xt s 2 S1.

� The above optimization to linear program
� Objective function: min ∑t2S xt

� xs ¸ xt s 2 S1, t 2 E(s).



MDP Summary
Reachability Liveness Parity

Qualitative O(n m) O(n m) O(n m d)
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Quantitative Linear programming Linear programming Linear programming 



Stochastic Games

Deterministic Systems

Markov chainsGraphs

Prob.
Non-det.

Prob.
Non-det.

Alternation

Krishnendu Chatterjee Winter School, Vienna, Feb, 2012 79

Markov Decision 

Processes
Games

Stochastic Games

Non-det.
Alternation

AlternationProb.



Stochastic Games 

� Stochastic games
� Non-determinism: angelic vs. demonic non-

determinism (alternation).
� Probability.
� Generalizes non-deterministic systems and Markov

chains, alternating games, MDPs.
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chains, alternating games, MDPs.

� An MDP G= ((S,E), (S1, S2,SP), δ)
� δ : SP ! D(S).
� For s 2 SP, the edge (s,t) 2 E iff δ(s)(t)>0.
� E(s) out-going edges from s, and assume E(s) non-

empty for all s.



Stochastic Game 

Example of stochastic game.

Objective for player 1 is to visit green infinitely often
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1/32/31/2 1/2



Strategies

� Strategies are recipe how to move tokens or how
to extend plays. Formally, given a history of play
(or finite sequence of states), it chooses a
probability distribution over out-going edges.
� ¾: S* S1 → D(S).
� : S* S D(S).
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� ¼: S* S2 ! D(S).



Strategies
� Strategies are recipe how to move tokens or how to extend plays. Formally,

given a history of play (or finite sequence of states), it chooses a probability
distribution over out-going edges.
� ¾: S* S1 ! D(S).

� History dependent and randomized.

� History independent: depends only current state (memoryless or positional).
� ¾: S1 ! D(S)
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� Deterministic: no randomization (pure strategies).
� ¾: S* S1 ! S

� Deterministic and memoryless: no memory and no randomization (pure and
memoryless and is the simplest class).
� ¾: S1 ! S

� Same notations for player 2 strategies ¼.



Values in Stochastic Games

� Value at a state for an objective Ã
� Val(Ã)(s) = sup¾ inf¼ Prs

σ,π (Ã).

� Qualitative analysis
� Compute the set of almost-sure (prob 1) winning states

(i.e., set of states with value 1).
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(i.e., set of states with value 1).

� Quantitative analysis
� Compute the value for all states.

� Determinacy: the order of sup inf can be exchanged.



Non-Stochastic Games

� There are no probabilistic states.

� Non-stochastic games with parity objectives
� Values only 0 or 1.
� Pure memoryless winning strategies exist.
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� Pure memoryless winning strategies exist.
� Once a pure memoryless strategy is fixed all cycles

winning.

Win2 9 ¼ 8 ¾ Win1 9 ¾ 8 ¼

EvenOdd



Qualitative and Quantitative Analysis

� Qualitative analysis
� Reduction to games without probability.
� Use existence of pure memoryless strategies in

games with probability for parity objectives.
� Show it for Liveness and can be extended to parity.
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� Quantitative analysis
� Combine notion of qualitative and local optimality for

quantitative optimality.



Qualitative Analysis

� Reduction
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Stochastic Game                 Non stochastic game

Almost Win2 Win1



Reduction

� Replace every probabilistic state by two-player 
gadget. Illustrate it for Liveness.

E(s) E(s)
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E(s) E(s)

E(s)

E(s) E(s)



Qualitative Analysis

� Reduction: the end-components are winning.
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Stochastic Game                 Non stochastic game

Almost Win2 Win1



Qualitative Analysis

� Reduction: the end-components are winning.
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Stochastic Game                 Non stochastic game

Almost Win2 Win1

Bad end-component to bad cycle



Reduction

� Choice in the gadget

E(s) E(s)
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E(s) E(s)

E(s)

E(s) E(s)



Qualitative Analysis

� Reduction: the end-components are winning.
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Stochastic Game                 Non stochastic game

Almost Win2 Win1

Good end-component to good cycle



Reduction

� Choice in the gadget

E(s) E(s)
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E(s) E(s)

E(s)

E(s) E(s)

Shorten distance to green



Qualitative Analysis

� Reduction: the end-components are winning.
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Stochastic Game                 Non stochastic game

Almost Win2 Win1



Qualitative Analysis

� Reduction: the end-components are winning.

Krishnendu Chatterjee Winter School, Vienna, Feb, 2012 95

Stochastic Game                 Non stochastic game

Almost Win2 Win1



Reduction

� Gadget based reduction can be extended to
parity.

� Qualitative analysis
� Pure memoryless almost-sure strategies exists.
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� Pure memoryless almost-sure strategies exists.
� Linear time reduction to non-stochastic games.
� Same complexity: NP Å coNP.

� All algorithms can be used.



Quantitative Analysis

� Unlike MDPs, we cannot do the following:

� Compute almost-sure winning states.

� Compute quantitative reachability to almost-sure
winning states.
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winning states.

� We illustrate with an example.



Stochastic Game 

Example of stochastic game.

Objective for player 1 is to visit green infinitely often

Cannot ensure to reach green absorbing with prob 2/3.
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1/32/31/2 1/2



Quantitative Analysis

� Quantitative optimality

� Local optimality

� Qualitative optimality
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� Value class: the set of states with same value.
V(r) is the set of states with value r.



Value Class Property
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V(1) V(0)

Higher value class                                  Lower value class



Value Class: Boundary Probabilistic States
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V(1) V(0)

Higher value class                                  Lower value class



Value Class Reduction

� Remove edges going out to lower value class
(local optimality).

� Change boundary probabilistic states to winning
states for player 1.
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states for player 1.

� Claim: In this sub-game player 1 wins almost-
surely everywhere.



Sub-game Qualitative Optimality
� Claim: Player 1 wins almost-surely.

� Proof: Suppose not. 

� Then player 2 wins with positive probability
somewhere.
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� Player 2 wins almost-surely somewhere.

� Player 1 if stays in the value class loses with
probability 1 or else jumps to a lower value class.

� Contradiction.



Value Class: Boundary Probabilistic States
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V(1) V(0)

Higher value class                                  Lower value class



Value Class: Boundary Probabilistic States
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V(1) V(0)

Higher value class                                  Lower value class



Value Class Property

� In value classes if we assume boundary
probabilistic vertices winning for player 1 then
player 1 wins almost surely.

� Conditional almost-sure winning strategies.
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� Conditional almost-sure winning strategies.

� Stitching lemma: Compose them to get a optimal
strategy.



Stitching Lemma

� Proof idea:

� If the game stays in some value class player 1 wins 
with probability 1.

� Else it leaves the value class through the boundary 
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� Else it leaves the value class through the boundary 
probabilistic vertex or goes to a higher value class.

� Invoke sub-martingale Theorem or use results from 
MDPs.



Quantitative Analysis

� Pure memoryless optimal strategies exist.

� Complexity bound
� NP Å coNP.
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� Algorithms: Strategy improvement algorithms,
uses qualitative algorithms and local optimality.



Stochastic Games Summary
Reachability Liveness Parity

Qualitative O(n m) O(n m) NP Å coNP

Linear reduction to 

non-stochastic 

parity
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parity

Quantitative NP Å coNP NP Å coNP NP Å coNP



Summary and Messages
� Markov chains

� Qualitative: Linear time algorithm through closed recurrent states
(bottom scc’s).

� Quantitative analysis: Linear equalities, Gaussian elimination.

� MDPs
� Qualitative: Iterative algorithm.
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� Qualitative: Iterative algorithm.
� Quantitative: Reduction to quantitative reachability using end-

components.
� Quantitative reachability: Linear programming.

� Stochastic games
� Qualitative: Reduction to non-stochastic games.
� Quantitative: qualitative and local optimality.



Extensions

� Perfect-information turn-based finite state
stochastic games

� Infinite state games: pushdown games, timed games.
� Concurrent games: simultaneous interaction.
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� Imperfect-information games.



CONCURRENT GAMES
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CONCURRENT GAMES



Games on Graphs

Games on graphs: 

1. Turn-based: 

• Chess.

• Tic-tac-toe.
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2. Concurrent: 

• Penalty Shoot-out.

• Rock-paper-scissor.



Concurrent Game Graphs

A concurrent game graph is a tuple G =(S,M,¡1,¡2,±)

• S is a finite set of states.

• M is a finite set of moves or actions.

• ¡i: S ! 2M n ; is an action assignment function that assigns the non-empty 
set ¡i(s) of actions to player i at s, where i 2 {1,2}.

• : S M M Dist(S), is a probabilistic transition function that given a 
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• ±: S £ M £ M ! Dist(S), is a probabilistic transition function that given a 
state and actions of both players gives a probability distribution of the next 
state.



An Example (Deterministic Transition)

s R

run, wait

hide, throw

hide, wait

run, throw
[Everett 57]

Hide
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Run

Throw Wait



Concurrent reachability games 

s R

run, wait

hide, throw

hide, wait

run, throw

Hide

[Everett 57]
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Run

Throw Wait

Move Probability

run q

hide 1-q (q>0)

Win at s with probability

1-q, for all q > 0.



Concurrent reachability games 

s R

run, wait

hide, throw

hide, wait

run, throw

Hide

[Everett 57]
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Run

Throw Wait

Move Probability

run q

hide 1-q (q>0)

Win at s with probability

1-q, for all q > 0.

Player 1 cannot achieve v(s) = 1, only v(s) = 1-q for all q > 0.



Concurrent Games
� Strategies

� Require randomization.
� May not be optimal.
� Only ²-optimal, for ²>0.
� For liveness requires infinite memory.
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� Values can be irrational for concurrent deterministic
reachability games.

� Qualitative and quantitative analysis still decidable
� Qualitative analysis is NP Å coNP.
� Quantitative analysis is PSPACE.



PARTIAL-INFORMATION  GAMES
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PARTIAL-INFORMATION  GAMES



Partial-information Games

a

a

a

a

b

a

b

b

In starting play a.

In yellow play a and b at random.

In purple: 

• if last was yellow then a

• if last was starting, then b.
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a

b

a

b

a

• if last was starting, then b.

Requires both randomization and 

memory



Partial-information Games
� Strategies

� Require randomization.
� May not be optimal.
� Only ²-optimal, for ²>0.
� For liveness requires infinite memory.
� More complicated than concurrent games.
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� Quantitative analysis
� Undecidable.

� Qualitative analysis 
� Reachability, Liveness: EXPTIME-complete.
� Parity: Undecidable.



Conclusion

� Perfect-information stochastic games
� Applications: verification and synthesis of stochastic

reactive systems.
� Markov chains, MDPs and stochastic games with

parity objectives.
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� Glimpses of the world of games beyond.
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Thank you !

The end
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Questions ?


