Modern SAT Solvers
Part B
Vienna Winter School on Verification

9 February 2012
TU Vienna, Austria

Armin Biere
Institute for Formal Models and Verification
Johannes Kepler University, Linz, Austria

http://fmv.jku.at
Restarts

- for satisfiable instances the solver may get stuck in the unsatisfiable part
 - even if the search space contains a large satisfiable part

- often it is a good strategy to abandon the current search and restart
 - restart after the number of decisions reached a restart limit

- avoid to run into the same dead end
 - by randomization (either on the decision variable or its phase)
 - and/or just keep all the learned clauses

- for completeness dynamically increase restart limit
Inner/Outer Restart Intervals

378 restarts in 104408 conflicts
int inner = 100, outer = 100;
int restarts = 0, conflicts = 0;

for (;;)
{
 ... // run SAT core loop for 'inner' conflicts

 restarts++;
 conflicts += inner;

 if (inner >= outer)
 {
 outer *= 1.1;
 inner = 100;
 }
 else
 {
 inner *= 1.1;
 }
}
Luby’s Restart Intervals

70 restarts in 104448 conflicts
unsigned
luby (unsigned i)
{
 unsigned k;

 for (k = 1; k < 32; k++)
 if (i == (1 << k) - 1)
 return 1 << (k - 1);

 for (k = 1;; k++)
 if ((1 << (k - 1)) <= i && i < (1 << k) - 1)
 return luby (i - (1 << (k-1)) + 1);
}

limit = 512 * luby (++restarts);
... // run SAT core loop for 'limit' conflicts
Phase Saving and Rapid Restarts

- phase assignment:
 - assign decision variable to 0 or 1?
 - only thing that matters in *satisfiable* instances

- “phase saving” as in RSat:
 - pick phase of last assignment (if not forced to, do not toggle assignment)
 - initially use statically computed phase (typically LIS)
 - so can be seen to maintain a *global full assignment*

- rapid restarts: varying restart interval with bursts of restarts
 - not only theoretically avoids local minima
 - works nicely together with phase saving
If y has never been used to derive a conflict, then skip \overline{y} case.

Immediately *jump back* to the \overline{x} case – assuming x was used.
General Implication Graph as Hyper-Graph

\[\overline{a} \lor \overline{b} \lor \overline{c} \]

original assignments

\(a\)
\(b\)

reason

implied assignment

\(c\)
Optimized Implication Graph for Unit Resolution in DP

- Original assignments:
 - a
 - b

- Implying assignment: \overline{c}

- Reason associated to \overline{c}:
 - $\overline{a} \lor \overline{b} \lor \overline{c}$
CNF for following Examples

<table>
<thead>
<tr>
<th>Clause</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>-3 1 2 0</td>
<td>We use a version of the DIMACS format.</td>
</tr>
<tr>
<td>3 -1 0</td>
<td>Variables are represented as positive integers.</td>
</tr>
<tr>
<td>3 -2 0</td>
<td>Integers represent literals.</td>
</tr>
<tr>
<td>-4 -1 0</td>
<td>Subtraction means negation.</td>
</tr>
<tr>
<td>-4 -2 0</td>
<td>A clause is a zero terminated list of integers.</td>
</tr>
<tr>
<td>-3 4 0</td>
<td></td>
</tr>
<tr>
<td>3 -4 0</td>
<td></td>
</tr>
<tr>
<td>-3 5 6 0</td>
<td></td>
</tr>
<tr>
<td>3 -5 0</td>
<td></td>
</tr>
<tr>
<td>3 -6 0</td>
<td></td>
</tr>
<tr>
<td>4 5 6 0</td>
<td></td>
</tr>
</tbody>
</table>

CNF has a good cut made of variables 3 and 4 (but we are going to apply DP with learning to it)
DP with Learning Run 1 (3 as 1st decision)

\[l = 0 \quad \text{(no unit clause originally, so no implications)} \]

\[l = 1 \]

unit clause \(-3\) is generated as learned clause and we backtrack to \(l = 0 \)

since \(-3\) has a real unit clause as reason, an empty conflict clause is learned
\(l = 0 \) (no unit clause originally, so no implications)

\[\text{decision} \]

\(l = 1 \) \(-1\) (no implications on this decision level either)

\[\text{decision} \]

\(l = 2 \)

(using the FIRST clause)

since FIRST clause was used to derive 2, conflict clause is \((1 \ - 3) \)

backtrack to \(l = 1 \) (smallest level for which conflict clause is a unit clause)
DP with Learning Run 2 Fig. 2 (-1, 3 as decision order)

\[l = 0 \]
(no unit clause originally, so no implications)

\[l = 1 \]

\[\rightarrow -1 \rightarrow -3 \rightarrow -5 \rightarrow 4 \ 5 \ 6 \]

1st conflict clause

empty clause (conflict)

learned conflict clause is the unit clause 1

backtrack to decision level \(l = 0 \)
since the learned clause is the empty clause, conclude unsatisfiability
DP with Learning Run 3 Fig. 1 (-6, 3 as decision order)

-6

3

\[l = 0 \quad \text{(no unit clause originally, so no implications)} \]

\[l = 1 \quad -6 \quad \text{(no implications on this decision level either)} \]

\[l = 2 \quad \text{decision} \]

\[3 \rightarrow 4 \]

\(-1\)

\(-2\)

\[\neg 3 \ 1 \ 2 \]

empty clause (conflict)

learn the unit clause \(-3\) and BACKJUMP to decision level \(l = 0 \)
finally the empty clause is derived which proves unsatisfiability
int sat (Solver solver)
{
 Clause conflict;

 for (;;)
 {
 if (bcp_queue_is_empty (solver) && time_to_simplify (solver))
 simplify (solver);
 if (bcp_queue_is_empty (solver)) {
 if (all_variables_assigned (solver)) return SATISFIABLE;
 if (should_restart (solver)) restart ();
 decide (solver);
 }
 conflict = bcp (solver);
 if (conflict && !backtrack (solver, conflict)) return UNSATISFIABLE;
 }
}
```c
int backtrack (Solver solver, Clause conflict)
{
  Clause learned_clause; Assignment assignment; int new_level;

  if (decision_level(solver) == 0)
    return 0;

  analyze (solver, conflict);
  learned_clause = add (solver);

  assignment = drive (solver, learned_clause);
  enqueue_bcp_queue (solver, assignment);

  new_level = jump (solver, learned_clause);
  undo (solver, new_level);

  return 1;
}
```
a simple cut always exists: set of roots (decisions) contributing to the conflict
UIP = *articulation point* in graph decomposition into biconnected components
(simply a node which, if removed, would disconnect two parts of the graph)
Detection of UIPs

• can be found by graph traversal in the order of made assignments

• *trail* respects this order

• traverse reasons of variables on trail starting with conflict

• count “open paths”
 (initially size of clause with only false literals)

• if all paths converged at one node, then UIP is found

• decision of current decision level is a UIP and thus a *sentinel*
Backjumping and UIPs

1st UIP learned clause increases chance of backjumping
(“pulls in” as few decision levels as possible)
• intuitively is is important to localize the search (cf cutwidth heuristics)

• cuts for learned clauses may only include UIPs of current decision level

• on lower decision levels an arbitrary cut can be chosen

• multiple alternatives
 – include all the roots contributing to the conflict
 – find minimal cut (heuristically)
 – cut off at first literal of lower decision level (works best)
Antecedents / Reasons

\[d \land g \land s \rightarrow t \equiv (\overline{d} \lor \overline{g} \lor \overline{s} \lor t) \]
Conflicting Clauses

\[d = 1 \land e = 1 \land b = 1 \land a = 1 \land = 1 \land f \land g = 1 \land i = 1 \land l = 1 \land c = 1 \land k = 1 \land r = 1 \land s = 1 \land t = 1 \land x = 1 \land y = 1 \land z = 1 \land \kappa \]

\[\neg (y \land z) \equiv (\overline{y} \lor \overline{z}) \]
Resolving Antecedents 1st Time

\[
\begin{align*}
\text{top-level} & \quad \text{unit} \quad a = 1 @ 0 \quad \text{unit} \quad b = 1 @ 0 \\
\text{decision} \quad c = 1 @ 1 & \quad d = 1 @ 1 \quad e = 1 @ 1 \\
\text{decision} \quad f = 1 @ 2 & \quad g = 1 @ 2 \quad h = 1 @ 2 \quad i = 1 @ 2 \\
\text{decision} \quad k = 1 @ 3 & \quad l = 1 @ 3 \\
\text{decision} \quad r = 1 @ 4 & \quad s = 1 @ 4 \quad t = 1 @ 4 \quad y = 1 @ 4 \\
x = 1 @ 4 & \quad z = 1 @ 4 \quad \kappa \quad \text{conflict}
\end{align*}
\]

\[
\begin{align*}
(\overline{h} \lor \overline{i} \lor \overline{t} \lor y) & \quad (\overline{y} \lor \overline{z})
\end{align*}
\]
Resolving Antecedents 1st Time

\[
\begin{align*}
\text{top-level} & \quad \text{unit} \quad a = 1 \@ 0 \quad \text{unit} \quad b = 1 \@ 0 \\
\text{decision} \quad c = 1 \@ 1 & \quad d = 1 \@ 1 & \quad e = 1 \@ 1 \\
\text{decision} \quad f = 1 \@ 2 & \quad g = 1 \@ 2 & \quad h = 1 \@ 2 & \quad i = 1 \@ 2 \\
\text{decision} \quad k = 1 \@ 3 & \quad l = 1 \@ 3 & \quad t = 1 \@ 4 & \quad y = 1 \@ 4 \\
\text{decision} \quad r = 1 \@ 4 & \quad s = 1 \@ 4 & \quad x = 1 \@ 4 & \quad z = 1 \@ 4 \\
& \quad \kappa \quad \text{conflict}
\end{align*}
\]

\[
\begin{align*}
(\bar{h} \lor \bar{i} \lor \bar{i} \lor y) & \quad (\overline{y} \lor \bar{z}) \\
(\bar{h} \lor \bar{i} \lor \bar{i} \lor \bar{z})
\end{align*}
\]

Modern SAT Solvers (Part b) — Vienna Winter School on Verification — February 2012 — Armin Biere — JKU Linz
Resolvents = Cuts = Potential Learned Clauses

\(h = 1 @ 2 \) \(i = 1 @ 2 \)

\((\overline{h} \lor \overline{i} \lor \overline{t} \lor y) \) \((\overline{y} \lor \overline{z}) \)

\((\overline{h} \lor \overline{i} \lor \overline{t} \lor z) \)

Modern SAT Solvers (Part b) — Vienna Winter School on Verification — February 2012 — Armin Biere — JKU Linz
Potential Learned Clause After 1 Resolution

\[(\overline{h} \lor \overline{i} \lor \overline{t} \lor \overline{z}) \]
Resolving Antecedents 2nd Time

(top-level) \hspace{1cm} unit \hspace{1cm} a = 1 \hspace{1cm} unit \hspace{1cm} b = 1

decision \hspace{1cm} c = 1 \hspace{1cm} d = 1 \hspace{1cm} e = 1

decision \hspace{1cm} f = 1 \hspace{1cm} g = 1 \hspace{1cm} h = 1 \hspace{1cm} i = 1

decision \hspace{1cm} k = 1 \hspace{1cm} l = 1

decision \hspace{1cm} r = 1 \hspace{1cm} s = 1 \hspace{1cm} t = 1 \hspace{1cm} y = 1 \hspace{1cm} \kappa = 1

\begin{align*}
(d \lor \overline{g} \lor \overline{s} \lor t) & \quad (h \lor \overline{i} \lor \overline{t} \lor \overline{z}) \\
(d \lor \overline{g} \lor \overline{s} \lor \overline{h} \lor i \lor \overline{z}) &
\end{align*}
Resolving Antecedents 3rd Time

\[
(x \lor z) \quad (\overline{d} \lor \overline{g} \lor \overline{s} \lor \overline{h} \lor \overline{i} \lor \overline{z})
\]
Resolving Antecedents 4th Time

<table>
<thead>
<tr>
<th>Decision</th>
<th>Unit</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>c = 1 @ 1</td>
<td>a = 1 @ 0</td>
<td>b = 1 @ 0</td>
</tr>
<tr>
<td>d = 1 @ 1</td>
<td>e = 1 @ 1</td>
<td></td>
</tr>
<tr>
<td>f = 1 @ 2</td>
<td>g = 1 @ 2</td>
<td>h = 1 @ 2</td>
</tr>
<tr>
<td>k = 1 @ 3</td>
<td>l = 1 @ 3</td>
<td></td>
</tr>
<tr>
<td>r = 1 @ 4</td>
<td>s = 1 @ 4</td>
<td>t = 1 @ 4</td>
</tr>
<tr>
<td>x = 1 @ 4</td>
<td>z = 1 @ 4</td>
<td>κ conflict</td>
</tr>
</tbody>
</table>

\[(\overline{s} \lor x) \quad (\overline{x} \lor \overline{d} \lor \overline{g} \lor \overline{s} \lor \overline{h} \lor \overline{i}) \quad (\overline{d} \lor \overline{g} \lor \overline{s} \lor \overline{h} \lor \overline{i})\]

self subsuming resolution
Modern SAT Solvers (Part b) — Vienna Winter School on Verification — February 2012 — Armin Biere — JKU Linz

1st UIP Clause after 4 Resolutions

\[\left(\bar{d} \lor \bar{g} \lor \bar{s} \lor \bar{h} \lor \bar{i} \right) \]
Resolving Antecedents 5th Time

\[(\bar{l} \lor \bar{r} \lor s) (\bar{d} \lor \bar{g} \lor \bar{s} \lor \bar{h} \lor \bar{i}) (\bar{l} \lor \bar{r} \lor \bar{d} \lor \bar{g})\]

Modern SAT Solvers (Part b) — Vienna Winter School on Verification — February 2012 — Armin Biere — JKU Linz
Modern SAT Solvers (Part b) — Vienna Winter School on Verification — February 2012 — Armin Biere — JKU Linz

\[(d \lor \overline{g} \lor \overline{l} \lor \overline{r} \lor \overline{h} \lor \overline{i})\]
1st UIP Clause after 4 Resolutions

\[(\overline{d} \lor \overline{g} \lor \overline{s} \lor \overline{h} \lor \overline{i})\]
Locally Minimizing 1st UIP Clause

\[
\begin{align*}
\text{top-level} & \quad \text{unit} \quad a = 1 @ 0 \quad \text{unit} \quad b = 1 @ 0 \\
\text{decision} & \quad c = 1 @ 1 \quad d = 1 @ 1 \quad e = 1 @ 1 \\
\text{decision} & \quad f = 1 @ 2 \quad g = 1 @ 2 \quad h = 1 @ 2 \quad i = 1 @ 2 \\
\text{decision} & \quad k = 1 @ 3 \quad l = 1 @ 3 \\
\text{decision} & \quad r = 1 @ 4 \quad s = 1 @ 4 \quad t = 1 @ 4 \quad y = 1 @ 4 \\
\quad & \quad x = 1 @ 4 \quad z = 1 @ 4 \quad \kappa \quad \text{conflict} \\
\end{align*}
\]

\[
\begin{align*}
(\overline{h} \lor i) & \quad (\overline{d} \lor \overline{g} \lor \overline{s} \lor \overline{h} \lor \overline{i}) \\
(\overline{d} \lor \overline{g} \lor \overline{s} \lor \overline{h}) & \quad \text{self subsuming resolution}
\end{align*}
\]
Locally Minimized Learned Clause

\[(\overline{d} \lor \overline{g} \lor \overline{s} \lor \overline{h})\]
Local Minimization Algorithm

Two step algorithm:

1. mark all variables in 1st UIP clause

2. remove literals with all antecedent literals also marked

Correctness:

- removal of literals in step 2 are self subsuming resolution steps.

- implication graph is acyclic.

Confluence: produces a unique result.
Minimizing Locally Minimized Learned Clause Further?

\[(\overline{d} \lor \overline{g} \lor \overline{s} \lor \overline{h})\]
Recursively Minimizing Learned Clause

\[
\begin{align*}
\text{top-level} & \quad \text{unit} & a = 1 \oplus 0 & \quad \text{unit} & b = 1 \oplus 0 \\
\text{decision} & c = 1 \oplus 1 & d = 1 \oplus 1 & e = 1 \oplus 1 \\
\text{decision} & f = 1 \oplus 2 & g = 1 \oplus 2 & h = 1 \oplus 2 \\
\text{decision} & k = 1 \oplus 3 & l = 1 \oplus 3 \\
\text{decision} & r = 1 \oplus 4 & s = 1 \oplus 4 & t = 1 \oplus 4 & y = 1 \oplus 4 \\
\quad x = 1 \oplus 4 & z = 1 \oplus 4 & \kappa \text{ conflict}
\end{align*}
\]

\[
\begin{align*}
& (\overline{b} \lor \overline{d} \lor \overline{g} \lor \overline{s}) \\
& (\overline{d} \lor \overline{b} \lor \overline{e}) \\
& (e \lor \overline{g} \lor h) \\
& (\overline{d} \lor \overline{g} \lor s \lor \overline{h})
\end{align*}
\]
Recursively Minimized Learned Clause

\[(\overline{d} \lor \overline{g} \lor \overline{s})\]
Recursive Minimization Algorithm

[MiniSAT 1.13]

Four step algorithm:

1. mark all variables in 1st UIP clause

2. for each candidate literal: search implication graph

3. start at antecedents of candidate literals

4. if search always terminates at marked literals remove candidate

Correctness and Confluence as in local version!!!

Optimization: terminate early with failure if new decision level is “pulled in”
ZChaff Occurrence Stacks

Literals

<table>
<thead>
<tr>
<th></th>
<th>start</th>
<th>top</th>
<th>end</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>-2</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>-3</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Stack

<table>
<thead>
<tr>
<th></th>
<th>start</th>
<th>top</th>
<th>end</th>
</tr>
</thead>
<tbody>
<tr>
<td>-2</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Clauses

<table>
<thead>
<tr>
<th></th>
<th>-2</th>
<th>7</th>
<th>-8</th>
</tr>
</thead>
<tbody>
<tr>
<td>-2</td>
<td>3</td>
<td>-5</td>
<td></td>
</tr>
<tr>
<td></td>
<td>1</td>
<td>3</td>
<td></td>
</tr>
</tbody>
</table>
Percentage Visited Clauses With Other Watched Literal True
invariant: first two literals are watched
Average Number Literals Traversed Per Visited Clause

Modern SAT Solvers (Part b) — Vienna Winter School on Verification — February 2012 — Armin Biere — JKU Linz
MChaff / PicoSAT Occurrence Lists

head

\[-2\]

\[-8\]

\[-2\]

\[7\]

\[1\]

\[1\]

\[1\]

\[-2\]

\[-2\]

\[3\]

\[-5\]

invariant: first two literals are watched
Additional Binary Clause Watcher Stack
Caching Potential Satisfied Literals (Blocked Literals)

observation: often the other watched literal satisfies the clause

so cache this literals in watch list to avoid pointer dereference

for binary clause no need to store clause at all

can easily be adjusted for ternary clauses (with full occurrence lists)

LINGELING uses more compact pointer-less variant
Failed Literal Probing

we are still working on tracking down the origin before [Freeman’95] [LeBerre’01]

- key technique in look-ahead solvers such as Satz, OKSolver, March
 - failed literal probing at all search nodes
 - used to find the best decision variable and phase

- simple algorithm

 1. assume literal \(l \), propagate (BCP), if this results in conflict, add unit clause \(\neg l \)

 2. continue with all literals \(l \) until saturation (nothing changes)

- quadratic to cubic complexity

 - BCP linear in the size of the formula 1st linear factor

 - each variable needs to be tried 2nd linear factor

 - and tried again if some unit has been derived 3rd linear factor
Extensions

• lifting
 – complete case split: literals implied in all cases become units
 – similar to Stålmark’s method and Recursive Learning [PradhamKunz’94]

• asymmetric branching
 – assume all but one literal of a clause to be false
 – if BCP leads to conflict remove originally remaining unassigned literal
 – implemented for a long time in MiniSAT but switched off by default

• generalizations:
 – vivification [PietteHamadiSais ECAI’08]
 – distillation [JinSomenzi’05][HanSomenzi DAC’07] probably most general (+ tries)
Other Types of Learning

- similar to look-ahead heuristics: polynomially bounded search
 - may be recursively applied (however, is often too expensive)

- Stålmarck’s Method
 - works on triplets (intermediate form of the Tseitin transformation):
 \[x = (a \land b), \ y = (c \lor d), \ z = (e \oplus f) \text{ etc.} \]
 - generalization of BCP to (in)equalities between variables
 - test rule splits on the two values of a variable

- Recursive Learning (Kunz & Pradhan)
 - (originally) works on circuit structure (derives implications)
 - splits on different ways to justify a certain variable value
Stålmarck’s Method

1. BCP over (in)equalities: \[
\begin{align*}
x = y & \quad z = (x \oplus y) \\
z = 0 & \quad x = 0 \\
z = y & \quad z = (x \lor y)
\end{align*}
\]
etc.

2. structural rules: \[
\begin{align*}
x = (a \lor b) & \quad y = (a \lor b) \\
x = y & \quad x = y
\end{align*}
\]
etc.

3. test rule: \[
\begin{align*}
\{x = 0\} \cup E & \quad \{x = 1\} \cup E \\
\Downarrow & \quad \Downarrow \\
E_0 \cup E & \quad E_1 \cup E \\
(E_0 \cap E_1) \cup E
\end{align*}
\]

Assume \(x = 0\), BCP and derive (in)equalities \(E_0\).

Then assume \(x = 1\), BCP and derive (in)equalities \(E_1\).

The intersection of \(E_0\) and \(E_1\) contains the (in)equalities valid in any case.
Stålmarck’s Method Recursively

\[
\begin{array}{c}
x = 0 \\
\downarrow \\
y = 0 \quad y = 1 \\
\downarrow \quad \downarrow \\
E_{00} \quad E_{01}
\end{array}
\quad
\begin{array}{c}
x = 1 \\
\downarrow \\
y = 0 \quad y = 1 \\
\downarrow \quad \downarrow \\
E_{10} \quad E_{11}
\end{array}
\]

\[
E_0
\quad
\quad
E_1
\]

(we do not show the (in)equalities that do not change)
• recursive application
 - depth of recursion bounded by number of variables
 - complete procedures (determines satisfiability or unsatisfiability)
 - for a fixed (constant) recursion depth k polynomial!

• k-saturation:
 - apply split rule on recursively up to depth k on all variables
 - 0-saturation: apply all rules accept test rule (just BCP: linear)
 - 1-saturation: apply test rule (not recursively) for all variables (until no new (in)equalities can be derived)
• circuits

output 0 implies middle input 0 \textit{indirectly}

• CNF

 - for each clause c in the CNF

 * for each literal l in the clause c

 - assume l and propagate

 - collect set of all implied literals (direct/indirect “implications” of l)

 * intersect these sets of implied literals over all l in c

 * literals in the intersection are implied without any assumption
(Bounded) Variable Elimination (VE)

[DavisPutnam60][Biere SAT’04] [SubbarayanPradhan SAT’04] [EénBiere SAT’05]

- use DP to existentially quantify out variables as in [DavisPutnam60]

- only remove a variable if this does not add (too many) clauses
 - do not count tautological resolvents
 - detect units on-the-fly

- schedule removal attempts with a priority queue [Biere SAT’04] [EénBiere SAT’05]
 - variables ordered by the number of occurrences

- strengthen and remove subsumed clauses (on-the-fly)
 (SATeLite [EénBiere SAT’05] and Quantor [Biere SAT’04])
Fast (Self) Subsumption

- for each (new or strengthened) clause
 - traverse list of clauses of the least occurring literal in the clause
 - check whether traversed clauses are subsumed or
 - strengthen traversed clauses by self-subsumption [EénBiere SAT’05]
 - use Bloom Filters (as in “bit-state hashing”), aka signatures

- check old clauses being subsumed by new clause: \textbf{backward (self) subsumption}
 - new clause (self) subsumes existing clause
 - new clause smaller or equal in size

- check new clause to be subsumed by existing clauses \textbf{forward (self) subsumption}
 - can be made more efficient by one-watcher scheme [Zhang-SAT’05]
Variable Instantiation

[AnderssonBjesseCookHanna DAC’02] also in Oepir SAT solver, this is our reformulation

- for all literals l
 - for all clauses c in which l occurs (with this particular phase)
 * assume the negation of all the other literals in c, assume l
 * if BCP does not lead to a conflict continue with next literal in outer loop
 - if all clauses produced a conflict permanently assign $\neg l$

Correctness: Let $c = l \lor d$, assume $\neg d \land l$.

If this leads to a conflict $d \lor \neg l$ could be learned (but is not added to the CNF).

Self subsuming resolution with c results in d and c is removed.

If all such cases lead to a conflict, $\neg l$ becomes a pure literal.
Generalization of pure literals.

Given a partial assignment σ.

A clause of a CNF is “touched” by σ if it contains a literal assigned by σ.

A clause of a CNF is “satisfied” by σ if it contains a literal assigned to true by σ.

If all touched clauses are satisfied then σ is an “autarky”.

All clauses touched by an autarky can be removed.

Example: $(-1 \ 2)(-1 \ 3)(1 \ -2 \ -3)(2 \ 5) \cdots$ (more clauses without 1 and 3).

Then $\sigma = \{-1, -3\}$ is an autarky.
Blocked Clause Elimination (BCE)

one clause $C \in F$ with l
all clauses in F with \bar{l}

fix a CNF F

$$a \lor b \lor l$$

$$\bar{l} \lor \bar{a} \lor c$$

$$\bar{l} \lor \bar{b} \lor d$$

all resolvents of C on l are tautological \Rightarrow

C can be removed

Proof
assume assignment σ satisfies $F \setminus C$ but not C

can be extended to a satisfying assignment of F by flipping value of l
Definition A literal l in a clause C of a CNF F blocks C w.r.t. F if for every clause $C' \in F$ with $\overline{l} \in C'$, the resolvent $(C \setminus \{l\}) \cup (C' \setminus \{\overline{l}\})$ obtained from resolving C and C' on l is a tautology.

Definition [Blocked Clause] A clause is **blocked** if has a literal that blocks it.

Definition [Blocked Literal] A literal is **blocked** if it blocks a clause.

Example

\[(a \lor b) \land (a \lor \overline{b} \lor \overline{c}) \land (\overline{a} \lor c)\]

only **first clause** is not blocked.

second clause contains two blocked literals: a and \overline{c}.

literal c in the **last clause** is blocked.

after removing either $(a \lor \overline{b} \lor \overline{c})$ or $(\overline{a} \lor c)$, the clause $(a \lor b)$ becomes blocked actually all clauses can be removed
[JärvisaloBiereHeule-TACAS’10]

COI Cone-of-Influence reduction

MIR Monontone-Input-Reduction

NSI Non-Shared Inputs reduction

PG Plaisted-Greenbaum polarity based encoding

TST standard Tseitin encoding

VE Variable-Elimination as in DP / Quantor / SATeLite

BCE Blocked-Clause-Elimination
Plaisted-Greenbaum encoding
Circuit-level simplification
Tseitin encoding
CNF-level simplification
[BCE+VE](PG)
VE(PG) BCE(PG)
PL(PG)
PG(MIR) PG(COI)
PG
PG(NSI) COI MIR NSI
VE
BCE+VE
BCE
PL
TST

Plaisted-Greenbaum encoding
Tseitin encoding
preprocessing can be extremely beneficial

- most SAT competition solvers use variable elimination (VE) [EénBiere SAT’05]
- equivalence / XOR reasoning
- probing / failed literal preprocessing / hyper binary resolution
- however, even though polynomial, can not be run until completion

simple idea to benefit from full preprocessing without penalty

- “preempt” preprocessors after some time
- resume preprocessing between restarts
- limit preprocessing time in relation to search time
Benefits of Inprocessing

- allows to use *costly* preprocessors
 - without increasing run-time “much” in the worst-case
 - still useful for benchmarks where these costly techniques help
 - good examples: probing and distillation

- additional benefit:
 - makes units / equivalences learned in search available to preprocessing
 - particularly interesting if preprocessing simulates encoding optimizations

- danger of hiding “bad” implementation though ...

- … and hard(er) to debug
equivalent literal substitution find strongly connected components in binary implication graph, replace equivalent literals by representatives

boolean ring reasoning extract XORs, then Gaussian elimination etc.

hyper-binary resolution focus on producing binary resolvents

hidden/asymmetric tautology elimination discover redundant clauses through probing

covered clause elimination use covered literals in probing for redundant clauses

unhiding randomized algorithm (one phase linear) for clause removal and strengthening